金、银纳米结构的制备与光学性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代技术的发展与变革在很大程度上依赖于现有材料的改进及新材料的产生。在纳米材料的研究热潮中,贵金属(尤其是Au和Ag)纳米材料因其独特的光、电、催化等特性及其在新能源材料、光电子学、信息存储、生物医疗及表面增强效应等领域的应用而受到众多研究领域的广泛关注。研究表明:金属纳米材料的性能与纳米粒子的尺寸和形貌密切相关。因此对纳米粒子实现可控的生长,并实现按照人的意愿设计合成功能材料具有重要的意义。虽然纳米材料的制备方法日益多样化,但在纳米材料的可控制备方面所取得的成就仍非常有限,因而得到科研工作者越来越多的关注。基于目前贵金属纳米粒子的国内外研究现状,本论文选取金、银纳米粒子作为研究对象,利用简单可行的化学液相法制备了多种形貌可控的金、银纳米结构,并得到了一些新颖的纳米形貌。利用场发射扫描电子显微镜(FE-SEM)、透射电子显微镜(TEM)、高分辨透射电镜(HRTEM),X射线衍射仪(XRD)和紫外-可见光光谱仪(UV-Visble)对所得的金、银纳米粒子的结构、形貌和光谱进行表征,并探索了化学反应机理及金、银纳米粒子的生长规律。
     本论文的主要结果如下:
     1.通过改进PVP (K30, MW=44,000)辅助的多羟基方法,简单快速的一步制备了高产量、形貌完美的银纳米立方体,且立方体的尺寸均一(约230纳米)。研究了温度、PVP/AgNO3的摩尔比对银纳米结构的形貌影响,实验发现温度为150℃、摩尔比为1是合成银纳米立方体的最佳实验参数。随着银纳米立方体尺寸的增加,其表面等离激元共振(SPR)表现明显的红移。从晶体生长的热力学控制和动力学控制两个方面简单讨论了银纳米立方体的生长机制。
     2.利用多羟基方法,探讨不同聚合度(链长)的PVP对合成Ag的纳米线的影响。实验发现:用长链的PVP (K90, MW=800,000))可获得产量高、均一性好、长径比较大的银纳米线。研究了银纳米线的光学性质以及生长机制。在反应初期阶段,Ag‘离子与PVP链的极性基团的化学吸附可以促进银纳米线的生长。
     3.在改进的多羟基过程中,通过引进短链的PVP(K25, MW=38,000),合成了银纳米线和纳米颗粒的混合物,并研究了样品的表面增强拉曼散射性质。实验发现其拉曼增强因子高于其单一的银纳米线和银纳米颗粒,这种增强效应可能是纳米线与颗粒的耦合效应的结果。通过观察银纳米结构在生长过程中形貌的演变,发现了一个新颖的银纳米线的横向生长过程,提出了银纳米线可能的横向生长机制。TEM结果表明:银颗粒按照纳米线的轴向聚集而促成了银纳米线的横向生长。
     4.利用多羟基方法制备尺寸可控的金纳米片(厚度为数十纳米,尺寸在微米量级)。常规方法合成纳米片的形貌以六边形,三角形及截角三角形为主。通过改变温度及PVP/HAuCl4的摩尔比,探讨了金纳米片的最佳生长条件;通过溶剂热的方法,在密封的环境中制备了大尺寸的金纳米片(-50gm)。研究了金纳米片的微观结构和光学性质。
     5.在室温条件下,以胶体状态的PVP/HAuCl4为研究对象,在晶体生长的初期阶段,通过对温度进行适当调节,合成了具有新颖形貌的金纳米片(星形、盾形,截角星形等)。研究了PVP聚合度对结果的影响,阐述了新型金纳米片可能的生长过程,其中金的(111)晶面将可能沿着<110>,<211>以及其它高指数方向生长。
The evolution and revolution of all modern technologies strongly depend on the improvement of existing materials and the development of new materials. In the hot research topic of nanomaterials, noble metal (especially for gold and silver) nanostructures have attracted particular attention because of their unique optical, electric, catalytic properties and the promising applications in the fields of new energy materials, optoelectronics, information storage, biomedicine and surface-enhanced Raman scattering. Recent investigations demonstrate that their properties are strongly depended on the size and shape of metal nanoparticles. Therefore, it is important to get the shape-controlled noble metal nanoparticles and design the functional materials. Although there have been a lot of reports on the synthesis of nanomaterials, the shape-controllable synthesis is still a challenge for materials and chemistry researchers. Based on the development of noble metal nanoparticles in the world, this dissertation presents a facile chemical solution method to prepare silver and gold nanoparticles with various morphologies and some nanostructures with novel shapes. Structures, morphology and spectra characterization were carried out by field emission scanning electron microscope (FE-SEM), transmission electron microscopy (TEM), high-resolution transmission electronmicroscopy (HRTEM), X-ray diffraction (XRD) and UV-visible spectrometer (UV-Visble). The chemical reaction and possible growth mechanism were also proposed. The main results of this work are listed as follows:
     1. Silver nanocubes with perfect shape were prepared by a simple poly(vinyl pyrrolidone, K30, MW=44,000)-directed polyol synthesis process. Ag nanocubes with an average edge length of230nm were obtained successfully with sharp edges and corners under a precise synthesis condition of R=1and T=150℃. The effects of poly(vinylpyrrolidone)/AgNO3ratio R and reaction temperature T on the morphology and size of the products were investigated. The optical properties of Ag nanocubes show an attractive plasma resonance red-shift with size in a wide spectra region. The growth mechanism of the Ag nanocubes is proposed to be thermodynamically and kinetically controlled.
     2. Polyvinyl pyrrolidone (PVP) with different molecular weights was used as capping agent to synthesize silver nanowires through a polyol process. The results indicated that the yields and aspect ratios of silver nanowires were controlled by the chain length of PVP and increased with increasing the molecular weight (MW) of PVP. When the long-chain PVP-K90(MW=800,000) was used, the product was uniform in size and was dominated by nanowires with high aspect ratios. The growth mechanism and optical properties of the nanowires were studied. It is proposed that the chemical adsorption of Ag+on the PVP chains at the initial stage promotes the growth of Ag nanowires.
     3. A mixture of Ag nanowires and nanoparticles was obtained by an improved polyol process with the usage of PVP-K25(MW=38,000). Results of Surface-enhanced Raman scattering indicated that the enhancement factor of the wires/particles mixture is larger than that of Ag nanowires and nanoparticles of the mixture. This enhancement should ascribe to the coupling effect of nanowires and nanoparticles. A novel vertical growth process of silver nanowires was revealed by tracing the morphology evolution of Ag nanostructures, in which Ag nanoparticles undergo an important dissolution-recrystallization process and act as fuel for the lateral growth of nanowires. A plausible novel growth mechanism for the silver nanowires was proposed, in which the collection of Ag nanoparticles along the same direction leading to the vertical growth process of Ag nanowires.
     4. Gold nanoplates (tens of nanometers in thickness and micrometers in size) have been mass-synthesized through a polyol process. In general methods, most Au nanoplates are regular shapes of triangle and hexagon. The suitable growth conditions for gold nanoplates was studied by changing temperatures and the molar ratios of PVP/HAuCl4. Large sized gold nanoplates with size of~50um were fabricated by a solvent-thermal method.
     5. Au nanoplates with novel shapes, involving star-like and shield-like and other novel polygonal are found with introduction of obvious temperature variation in the early crystal growth stage. Structural studies demonstrate that the obtained Au nanoplates are single-crystalline with(111) planes as two growth of (111) plane along <110>,<211> and other high-index directions.
引文
[1]张立德,牟季美,纳米材料和纳米结构,北京:科技出版社,51-65.(2001).
    [2]S. Auer, D. Frenkel, Suppression of crystal nucleation in polydisperse colloids due to increase of the surface free energy, Nature.413,711. (2001).
    [3]J. F. Wang, M. S. Gudiksen, X. F. Duan, et al., Highly polarized photoluminescence and photodetection from single indium phosphide nanowires, Science.293,1455.(2001).
    [4]C. J. Murphy, Nanocubes and Nanoboxes, Science.298,2139-2141. (2002).
    [5]Y. Sun, Y. Xia, Shape-Controlled Synthesis of Gold and Silver Nanoparticles, Science.298,2176. (2002).
    [6]B. Yurke, A. J. Turberfield, A. P. Mills, et al., A DNA-fuelled molecular machine made of DNA, Nature.406,605. (2000).
    [7]T. S. Ahmadi, Z. L. Wang, T. C. Green, et al., Shape-Controlled Synthesis of Colloidal Platinum Nanoparticles, Science.272,1924. (1996).
    [8]S. H. Chen, Z. Y. Fan, D. L. Carroll, Silver Nanodisks:Synthesis, Characterization, and Self-Assembly, J. Phys. Chem. B.106,10777. (2002).
    [9]Y. Sun, Y. Xia, Mechanistic Study on the Replacement Reaction between Silver Nanostructures and Chloroauric Acid in Aqueous Medium, J. Am. Chem. Soc. 126,3892.(2004).
    [10]V. I. Pipa, V. V. Mitin, M. Stroscio, Photons in a semibounded dielectric and the surface effect on spontaneous emission in nanostructures, Phys. Rev. B.65, 235308. (2002).
    [11]W. H. Xu, T. Y. Zhang, Surface effect for different types of materials in nanoindentation, Advances in fracture and failure prevention.261-263,1587. (2004).
    [12]A. Henglein, Small-particle research:physicochemical properties of extremely small colloidal metal and semiconductor particles, Chem. Rev.89,1861. (1989).
    [13]J. K. Kenneth, S. Jane, K. Olga, M. Cathy, D. G. Park, S. Decker, Y. Jiang, I. Lagadic, D. J. Zhang, Nanocrystals as Stoichiometric Reagents with Unique Surface Chemistry, J. Phys. Chem.100,12142. (1996).
    [14]A. Hagfeldt, M. Graetzel, Light-Induced Redox Reactions in Nanocrystalline Systems, Chem. Rev.95,49. (1995).
    [15]T. Trindade, P. O. Brien, N. L. Pickett, Nanocrystalline Semiconductors: Synthesis, Properties, and Perspectives, Chem. Mater.13,3843. (2001).
    [16]B. Barbara, W. Wernsdorfer, Quantum tunneling effect in magnetic particles, Curr. O. Pin. Solid State Mater. Sci.2,220. (1997).
    [17]Y. Xia, N. J. Halas, Shape-Controlled Synthesis and Surface Plasmonic Properties of Metallic Nanostructures, MRS Bull.30,338. (2005).
    [18]M. Fleischmann, P. J. Hendra, A. D. McQuillan, Raman-spectra of pyridine adsorbed at a silver interface, Chem. Phys.Lett.26,163. (1974).
    [19]D. L. Jeanmaire, R. P. Van Duyne, Surface raman spectroelectrochemistry:Part Ⅰ. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode, J.Electroanal. Chem.84,1. (1977).
    [20]C. L. Haynes, A. D. McFarland,R. P. Van Duyne, Surface-Enhanced Raman Spectroscopy, Anal Chem.77,338A. (2005).
    [21]A. Stella, M. Nisoli, S. D. Silvestri, et al., Size effects in the ultrafast electronic dynamics of metallic tin nanoparticles, Phys. Rev. B 53,15497. (1996).
    [22]Q. Darugar, W. Qian, M. A. El-Sayed, et al., Size-Dependent Ultrafast Electronic Energy Relaxation and Enhanced Fluorescence of Copper Nanoparticles, J. Phys. Chem. B 110,143.(2006).
    [23]B. R. Cuenya, S. H. Baeck, T. F. Jaramillo, et al., Size-and Support-Dependent Electronic and Catalytic Properties of AuO/Au3+ Nanoparticles Synthesized from Block Copolymer Micelles, J. Am. Chem. Soc.125,12928. (2003).
    [24]P. Mulvaney, Surface Plasmon Spectroscopy of Nanosized Metal Particles, Langmuir 12,788. (1996).
    [25]A. J. Haes, S. Zou, G. C. Schatz, et al., A Nanoscale Optical Biosensor:The Long Range Distance Dependence of the Localized Surface Plasmon Resonance of Noble Metal Nanoparticles, J. Phys. Chem. B 108,109. (2004).
    [26]J. H. Shim, B. J. Lee, Y. W. Cho, Thermal stability of unsupported gold nanoparticle:a molecular dynamics study, Surf. Sci.512,262. (2002).
    [27]K. Dick, T. Dhanasekaran, Z. Zhang, et al., Size-Dependent Melting of Silica-Encapsulated Gold Nanoparticles, J. Am. Chem. Soc.124,2312. (2002).
    [28]何鑫,张梅,尹荔松,多形貌纳米银的研究进展,材料导报,4,36(2009).
    [29]Y. N. Xia, Y.J. Xiong, B. Lim, S. E. Skrabalak, Shape-Controlled Synthesis of Metal Nanocrystals:Simple Chemistry Meets Complex Physics?, Angew. Chem. Int. Ed.48,60(2009)
    [30]B. Hvolb(?)k, T. V.W. Janssens, B. S. Clausen, H. Falsig, C. H. Christensen, J. K. N(?)rskov, Catalytic activity of Au nanoparticles, Nano Today 2,14. (2007).
    [31]Y. P. Xu, Z. J. Tian, L.W. Lin, Nanostructure and Catalytic Performance of Noble Metal Solid Catalysts, Chinese Journal of Catalysis 25,331. (2004)[徐云鹏,田志坚,林励吾,贵金属固体催化剂的纳米结构及催化性能,催化学报25,331.(2004).]
    [32]S. Peng, Y. Lee, C. Wang, H. F. Yin, S. Dai, S. H. Sun, A Facile Synthesis of Monodisperse Au Nanoparticles and Their Catalysis of CO Oxidation, Nano Research 1,229. (2008).
    [33]M. S. Chen, D.W. Goodman, Catalytically active gold on ordered titania supports, Chem. Soc. Rev.37,1860. (2008).
    [34]D. J. Gorin, F. D. Toste, Relativistic effects in homogeneous gold catalysis, Nature 446,395. (2007).
    [35]L. L. Yi, H. G. Guo, H. D. Tang, Unique properties and preparation of noble-metal nanocluster, Industrial Catalysis 12,44. (2003)[易丽丽,国海光,唐浩东.贵金属纳米簇的独特性能及其制备方法,工业催化,12,44.(2003).]
    [36]M. C. Kung, R. J. Davis, H. H. Kung, Understanding Au-Catalyzed Low-Temperature CO Oxidation, J. Phys. Chem. C 111 (32),11767. (2007).
    [37]A. Dahan, M. Portnoy, Pd Catalysis on Dendronized Solid Support:Generation Effects and the Influence of the Backbone Structure, J. Am. Chem. Soc.129 (18),5860. (2007).
    [38]M. S. Chen, D. Kumar, C.W. Yi, Goodman, D. W., The Promotional Effect of Gold in Catalysis by Palladium-Gold, Science 310,291. (2005).
    [39]L. H. Lu, G. Y. Sun,; H. J. Zhang, H. S. Wang, S. Q. Xi, J. Q. Hu, Z. Q. Tian, R. Chen, Fabrication of core-shell Au-Pt nanoparticle film and its potential application as catalysis and SERS substrate, J. Mater. Chem.14,1005.0013, (2004).
    [40]C. Wang, H. Daimon, Y. Lee, J. Kim, S. H. Sun, Synthesis of Monodisperse Pt Nanocubes and Their Enhanced Catalysis for Oxygen Reduction, J. Am.Chem. Soc.129 (22),6974. (2007).
    [41]X. Huang, I. H. El-Sayed, W. Qian, M. A. El-Sayed, Cancer Cell Imaging and Photothermal Therapy in the Near-Infrared Region by Using Gold Nanorods, J. Am.Chem. Soc.128,2115. (2006).
    [42]A. Wijaya, K. Hamad-Schifferli, Ligand Customization and DNA Functionalization of Gold Nanorods via Round-Trip Phase Transfer Ligand Exchange, Langmuir 24,9966. (2008).
    [43]M. De, P. S. Ghosh, V. M. Rotello, Applications of Nanoparticles in Biology, Adv. Mater.20,4225. (2008).
    [44]J. H. Park, G. Von Maltzahn, M. J. Xu, V. Fogal, V. R. Kotamraju, E. Ruoslahti, S. N. Bhatia, M. Sailor, Cooperative nanomaterial system to sensitize, target, and treat tumors, J. PNAS 107,981. (2010).
    [45]Z. Zhou, Optimization of the Condition for DNA Precipitation Using ZnCI, Chinese Bulletin of Life Sciences 21,461. (2009)[周政.纳米金探针在基因检测中的应用,生命科学,21,461.(2009).]
    [46]N. Wang, S. K. Xu, W. X. Wang, Nano-Gold Bio-Probe and Its Applications, Progress in Chemistry 19 (2/3),408. (2007)[王楠,徐淑坤,王文星,纳米金生物探针及其应用,化学进展,19(2/3),408.(2007).]
    [47]S. J. Sun, Z. L. Jiang, Preparation and Characterization of Gold Nanoparticles and Their Application in Biochemical Analysis, Precious Metals 26 (3),1. (2005).[孙双姣,将治良,金纳米微粒的制备和表征及其在生化分析中的应用,贵金属,26(3),1.(2005).]
    [48]J. K. Cheng, Analytical Chemistry in Single Cell, SciencePress:Beijing, (2005).
    [49]G. N. Xiao, J. Y. Cai, Optical Biosensors Based on Loca lized Surface Plasmon Resonance Effect, Progress in Chemistry 22,194. (2010)[肖桂娜,蔡继业,基于局域表面等离子体共振效应的光学生物传感器,化学进展,22,194.(2010).]
    [50]J. J. Zhang, Y. G. Liu, L. P. Jiang, J. J. Zhu, Synthesis, characterizations of silica-coated gold nanorods and its applications in electroanalysis of hemoglobin, Electrochem.Commun.10,355. (2008).
    [51]W. L. Zhu, Y. Zhou, J. R. Zhang, Direct electrochemistry and electrocatalysis of myoglobin based on silica-coated gold nanorods/room temperature ionic liquid/silica sol-gel composite film, Talanta 80,224. (2009).
    [52]L. Shao, K. C. Woo, H. J. Chen, Z. Jin, J. F. Wang, H.Q. Lin, Angle-and Energy-Resolved Plasmon Coupling in Gold Nanorod Dimers, ACS Nano 4,3053. (2010).
    [53]T. Ming, L. Zhao, M. Xiao, J. F. Wang, Resonance-Coupling-Based Plasmonic Switches, Small 6,2514. (2010).
    [54]P. Zijlstra, J.W. M. Chon, N. Gu, Five-dimensional optical recording mediated by surface plasmons in gold nanorods, Nature 459,410. (2009).
    [55]J. M. Weissman, H. B. Sunkara, A. S. Tee, et al., Thermally Switchable Periodicities and Diffraction from Mesoscopically Ordered Materials, Science 274,959.(1996).
    [56]Y. Y. Yu, S. S. Chang, C. L. Lee, et al., Gold Nanorods:Electrochemical Synthesis and Optical Properties, J. Phys. Chem. B 101,6661. (1997).
    [57]S. Link, M. B. Mohamed, M. A. El-Sayed, Simulation of the Optical Absorption Spectra of Gold Nanorods as a Function of Their Aspect Ratio and the Effect of the Medium Dielectric Constant, J. Phys. Chem. B 103,3073. (1999).
    [58]B. M. I. van der Zande, M. R. Bohmer, L. G. J. Fokkink, et al., Colloidal Dispersions of Gold Rods:Synthesis and Optical Properties, Langmuir 16,451. (2000).
    [59]N. R. Jana, L. Gearheart, C. J. Murphy, Wet Chemical Synthesis of High Aspect Ratio Cylindrical Gold Nanorods, J. Phys. Chem. B 105,4065. (2001).
    [60]B. D. Busbee, S. O. Obare, C. J. Murphy, An Improved Synthesis of High-Aspect-Ratio Gold Nanorods, Adv. Mater 15,414. (2003).
    [61]J. Sloan, D. M. Wright, H. G. Woo, et al., Capillarity and silver nanowire formation observed in single walled carbon nanotubes, Chem. Commun. (8),699. (1999).
    [62]Y. Sun, Y. Xia, Large-Scale Synthesis of Uniform Silver Nanowires Through a Soft, Self-Seeding, Polyol Process. Adv. Mater 14,833. (2002).
    [63]R. C. Jin, Y. W. Cao, C. A. Mirkin, et al., Photoinduced Conversion of Silver Nanospheres to Nanoprisms, Science 294,1901. (2001).
    [64]C. X. Kan, X. G. Zhu, G. H. Wang, Single-Crystalline Gold Microplates:Synthesis, Characterization, and Thermal Stability, J. Phys. Chem. B 110,4651 (2006).
    [65]S. Chen, D. L. Carroll, Synthesis and Characterization of Truncated Triangular Silver Nanoplates, Nano Lett.2,1003 (2002).
    [66]Y. Sun, B. Mayers, Y. Xia, Transformation of Silver Nanospheres into Nanobelts and Triangular Nanoplates through a Thermal Process, Nano Lett.3,675 (2003).
    [67]K. L. Kelly, E. Coronado, L. L. Zhao, et al., The Optical Properties of Metal Nanoparticles:The Influence of Size, Shape, and Dielectric Environment, J. Phys. Chem. B 107,668. (2003).
    [68]N. Okada, Y. Hamanaka, A. Nakamura, et al., Linear and Nonlinear Optical Response of Silver Nanoprisms:Local Electric Fields of Dipole and Quadrupole Plasmon Resonances, J. Phys. Chem. B 108,8751 (2004).
    [69]G. S. Metraux, C. A. Mirkin, Rapid Thermal Synthesis of Silver Nanoprisms with Chemically Tailorable Thickness, Adv. Mater 17,412. (2005).
    [70]D. Yu, V. W. Yam, Controlled Synthesis of Monodisperse Silver Nanocubes in Water, J. Am. Chem. Soc.126,13200 (2004).
    [71]S. H. Chen, Z. L. Wang, J. Ballato, et al., Monopod, Bipod, Tripod, and Tetrapod Gold Nanocrystals, J. Am. Chem. Soc.125,16186 (2003).
    [72]W. X. Niu, S. L. Zheng, D. W. Wang, et al., Selective Synthesis of Single-Crystalline Rhombic Dodecahedral, Octahedral, and Cubic Gold Nanocrystals, J. Am. Chem. Soc.131,697. (2009).
    [73]J. Perez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzan, P. Mulvaney, Gold nanorods:Synthesis, characterization and applications, Coord. Chem. Rev.249, 1870.(2005).
    [74]Z. F. Ma, G. L. Si, Y. M. Chu, Y. Chen, Advances on Triangular Silver Nanoprisms, Progress in Chemistry 21 (9),1847. (2009)[马占芳,司国丽,初鸣,陈颖,三角银纳米柱的研究进展,化学进展,21(9),1847.(2009).]
    [75]T. K. Sau, A. L. Rogach, Nonspherical Noble Metal Nanoparticles: Colloid-Chemical Synthesis and Morphology Control, Adv. Mater.22,1781. (2010).
    [76]D. O. Yener, J. Sindel, C. A. Randall, Adair, Synthesis of Nanosized Silver Platelets in Octylamine-Water Bilayer Systems, J. H. Langmuir 18,8692. (2002).
    [77]G. Wei, H. Zhou, Z. Liu, Y. Song, L. Wang, L. Sun, Z. Li, One-Step Synthesis of Silver Nanoparticles, Nanorods, and Nanowires on the Surface of DNA Network, J. Phys. Chem. B 109,8738. (2005).
    [78]J. Zhang, H. Liu, Z. Wang, N. Ming, Shape-Selective Synthesis of Gold Nanoparticles with Controlled Sizes, Shapes, and Plasmon Resonances, Adv. Funct. Mater.17,3295. (2007).
    [79]F. Kim, J. H. Song, P. J. Yang, Photochemical Synthesis of Gold Nanorods, Am. Chem. Soc.124,14316.(2002).
    [80]N. R. Jana, L. Gearheart, C. Murphy, Seed-Mediated Growth Approach for Shape-Controlled Synthesis of Spheroidal and Rod-like Gold Nanoparticles Using a Surfactant Template, Adv. Mater.13,1389. (2001).
    [81]X. L. Wang, Y. F. Zeng, X. H. Bu, Templating Syntheses of Nano-structured Materials, Chemistry NO.10,723. (2005)[王秀丽,曾永飞,卜显和,模板法合成纳来结构材料,化学通报,NO.10,723.(2005).]
    [82]Y. J. Han, J. M. Kim, G. D. Stucky, Preparation of Noble Metal Nanowires Using Hexagonal Mesoporous Silica SBA-15, Chem. Mater.12,2068. (2000).
    [83]C. R. Martin, Membrane-Based Synthesis of Nanomaterials, Chem. Mater.8, 1739.(1996).
    [84]D. K. Smith, B. A. Korgel, The Importance of the CTAB Surfactant on the Colloidal Seed-Mediated Synthesis of Gold Nanorods, Langmuir 24 (3),644. (2008).
    [85]Y. Y. Yu, S. S. Chang, C. L. Lee, C. R. C.Wang, Gold Nanorods:Electrochemical Synthesis and Optical Properties, J. Phys.Chem. B 101,6661. (1997).
    [86]S. S. Chang, C.W. Shih, C. D. Chen, W. C. Lai, C. R.C. Wang, The Shape Transition of Gold Nanorods, Langmuir 15,701. (1999).
    [87]M. Wirtz, C. R. Martin, Template-Fabricated Gold Nanowires and Nanotubes, Adv. Mater.15,455. (2003).
    [88]E. K. Payne, K. L. Shuford, S. Park, G. C. Schatz, C. A. Mirkin, Multipole Plasmon Resonances in Gold Nanorods, J. Phys. Chem. B 110,2150. (2006).
    [89]J. G. Wang, M. L. Tian, T. E. Mallouk, M. H.W. Chan, Microstructure and Interdiffusion of Template-Synthesized Au/Sn/Au Junction Nanowires, NanoLett.4, 1313.(2004).
    [90]X. Liu, R. Huang, J. Zhu, Functional Faceted Silver Nano-Hexapods:Synthesis, Structure Characterizations, and Optical Properties, Chem. Mater.20,192. (2008).
    [91]C. X. Kan, X. G. Zhu, G. H. Wang, Single-Crystalline Gold Microplates: Synthesis, Characterization, and Thermal Stability, J. Phys. Chem. B 110,4651. (2006).
    [92]C. X. Kan, C. S. Wang, J. J. Zhu, H. C. Li, Formation of gold and silver nanostructures within polyvinylpyrollidone (PVP) gel, J. Solid State Chem.183, 858. (2010).
    [93]I. Pastoriza-Santos, L. M. Liz-Marzan, Synthesis of Silver Nanoprisms in DMF, Nano Lett.2,903.(2002).
    [1]C. Salzemann, I. Lisiecki, A. Brioude, J. Urban, M.-P. Pileni, Collections of Copper Nanocrystals Characterized by Different Sizes and Shapes:Optical Response of These Nanoobjects. J. Phys. Chem. B 108, 13242 (2004)
    [2]Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, One-Dimensional Nanostructures:Synthesis, Characterization, and Applications. Adv. Mater.15,353 (2003)
    [3]Z. L. Wang, T. S. Ahmad, M. A. El-Sayed, Steps, ledges and kinks on the surfaces of platinum nanoparticles of different shapes. Surf. Sci.380,302 (1997)
    [4]J. Beermann, S. I. Bozhevolnyi, V. Coello, Modeling of nonlinear microscopy of localized field enhancements in random metal nanostructures. Phys. Revi. B 73,115408(2006)
    [5]E. Hao, S. Li, R. C.Bailey, S. Zou, G. C. Schatz, J. T. Hupp, Optical Properties of Metal Nanoshells.J. Phys. Chem. B 108,1224(2004)
    [6]K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, The Optical Properties of Metal Nanoparticles:The Influence of Size, Shape, and Dielectric Environment. J. Phys. Chem. B 107,668 (2003)
    [7]M. Baia, L. Baia, S. Astilean, J. Popp, Surface-enhanced Raman scattering efficiency of truncated tetrahedral Ag nanoparticle arrays mediated by electromagnetic couplings. Appl. Phys. Lett.88,143121 (2006)
    [8]J. P. Schmidt, S. E. Cross., S. K. Buratto, Surface-enhanced Raman scattering from ordered Ag nanocluster arrays. J. Chem. Phys.121,10657 (2004)
    [9]A. J. Haes, R. P. Van Duyne, A Nanoscale Optical Biosensor:Sensitivity and Selectivity of an Approach Based on the Localized Surface Plasmon Resonance Spectroscopy of Triangular Silver Nanoparticles. J. Am. Chem. Soc.124, 10596(2002)
    [10]A. Panacek, L. Kvitek, R. Prucek, M. Kolar, R. Vecerova, N. Pizurova, V. K. Sharma, T. Nevecna, R. Zboril, Silver Colloid Nanoparticles:Synthesis, Characterization, and Their Antibacterial Activity. J. Phys. Chem. B 110, 16248(2006)
    [11]J. P. Kottmann, O. J. F. Martin, D. R. Smith, S. Schultz, Plasmon resonances of silver nanowires with a nonregular cross section. Phys. Rev. B 64,235402 (2001)
    [12]J. P. Kottmann, O. J. F. Martin, D. R. Smith, S. Schultz, Dramatic localized electromagnetic enhancement in plasmon resonant nanowires. Chem. Phys. Lett.341,1 (2001)
    [13]I. O. Sosa, C. Noguez, R. G. Barrera, Optical Properties of Metal Nanoparticles with Arbitrary Shapes. J. Phys. Chem. B 107,6269 (2003)
    [14]W-H. Yang, G. C. Schatz, R. P. Van Duyne, Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitrary shapes. J.Chem.Phys.103,869 (1995)
    [15]R-L. Zong, J. Zhou, Q. Li, B. Du, B. Li, M. Fu, X-W. Qi, L-T. Li, S. Buddhudu, Synthesis and Optical Properties of Silver Nanowire Arrays Embedded in Anodic Alumina Membrane. J. Phys. Chem. B.108,16713 (2004)
    [16]B. Wiley, Y. Sun, B. Mayers, Y. Xia, Shape-Controlled Synthesis of Metal Nanostructures:The Case of Silver. Chem. Eur. J.11,454 (2005)
    [17]F. Fievet, J. P. Lagier, M. Figlarz, Preparing Monodisperse Metal Powders in Micrometer and Submicrometer Sizes by the Polyol Process. M. R. S. Bulletin 14,29 (1989)
    [18]J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z-Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. Li, Y. Xia, Gold Nanocages:Bioconjugation and Their Potential Use as Optical Imaging Contrast Agents. Nano Lett.5,473 (2005)
    [19]J. Chen, B.Wiley, J. McLellan, Y. Xiong, Z-Y. Li, Y. Xia, Optical Properties of Pd-Ag and Pt-Ag Nanoboxes Synthesized via Galvanic Replacement Reactions. Nano Lett.5,2058 (2005)
    [20]D. Yu, V. W-W. Yam, Controlled Synthesis of Monodisperse Silver Nanocubes in Water. J. Am. Chem. Soc.126,13200 (2004)
    [21]Y. Sun, Y. Xia, Shape-Controlled Synthesis of Gold and Silver Nanoparticles. Science 298,2176 (2002)
    [22]S. H. Im, Y. T. Lee, B. Wiley, Y. Xia, Large-Scale Synthesis of Silver Nanocubes:The Role of HCl in Promoting Cube Perfection and Monodispersity. Angew. Chem.44,2154 (2005)
    [23]J. M. McLellan, A. Siekkinen, J. Chen, Y. Xia, Comparison of the surface-enhanced Raman scattering on sharp and truncated silver nanocubes. Chem. Phys. Lett.427,122 (2006)
    [24]H. H. Huang, X. P. Ni, G. L. Loy, C. H. Chew, K. L. Tan, F. C. Loh, J. F. Deng, G. Q. Xu, Photochemical Formation of Silver Nanoparticles in Poly(N-vinylpyrrolidone). Langmuir 12,909 (1996)
    [25]H. Chen, Y. Gao, H. Yu, H. Zhang, L. Liu, Y. Shi, H. Tian, S. Xie, J. Li, Structural properties of silver nanorods with fivefold symmetry. Micron 35; 469 (2004)
    [26]Y. T. Lee, S. H. Im, B. Wiley, Y. Xia, Quick formation of single-crystal nanocubes of silver through dual functions of hydrogen gas in poly ol synthesis. Chem. Phys. Lett.411,479 (2005)
    [27]C. Noguez, I. O. Sosa, R. G. Barrera, Light scattering by isolated nanoparticles with arbitrary shapes, Mat. Res. Soc. Symp. Proc.,704,275 (2002)
    [28]Y. Xiong, B.Wiley, J. Chen, Z. Li, Y. Yin, Y. Xia, Corrosion-based synthesis of single-crystal Pd nanoboxes and nanocages and their surface plasmon properties, Angew. Chem.,44,7913 (2005).
    [29]L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, Y. Xia, Localized Surface Plasmon Resonance Spectroscopy of Single Silver Nanocubes. Nano Lett.5,2034 (2005)
    [30]Z. L. Wang, Transmission Electron Microscopy of Shape-Controlled Nanocrystals and Their Assemblies. J. Phys. Chem. B 104,1153 (2000)
    [31]H. Hofmeister, Forty years study of fivefold twinned structures in small particles and thin films, Cryst. Res. Technol.33,3 (1998)
    [32]H. Hofmeister, Fivefold Twinned nanoparticles, Encyclopedia of Nanoscience and Nanotechnology,3,431 (2004)
    [33]C. L. Cleveland, U. Landman, T. G. Schaaff, M. N. Shafigullin, P. W. Stephens, R. L. Whetten, Structural Evolution of Smaller Gold Nanocrystals:The Truncated Decahedral Motif. Phys. Rev. Lett.79,1873 (1997)
    [34]J. M. Petroski, Z. L. Wang, T. C. Green, M. A. El-Sayed, Kinetically Controlled Growth and Shape Formation Mechanism of Platinum Nanoparticles. J.Phys.Chem.B 102,3316 (1998)
    [35]L. D. Marks, Experimental studies of small particle structures. Rep. Prog. Phys. 57,603 (1994).
    [36]J. E. Millstone, S. Park, K. L. Shuford, L. Qin, G. C. Schatz, C. A. Mirkin, J. Am. Chem. Soc.2005,127,5312.
    [37]R. C. Jin, Y. W. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, J. G. Zheng, Science 2001,294,1901.
    [38]C. Ozmetin, M. Copur, A. Yartasi, M. M. Kocakerim, Kinetic investigation of reaction between metallic silver and nitric acid solutions. Chem. Eng. Technol. 23,707 (2000)
    [39]H. Bi, W. Cai, C. Kan, L. Zhang, Optical study of redox process of Ag nanoparticles at high temperature. J. Appl. Phys.92,7491 (2002)
    [40]Y. Sun, B. Mayers, T. Herricks, Y. Xia, Polyol Synthesis of Uniform Silver Nanowires:A Plausible Growth Mechanism and the Supporting Evidence. Nano Lett.3,955(2003)
    [1]Z. L. Wang, T. S. Ahmad, M. A. El-Sayed, Steps, ledges and kinks on the surfaces of platinum nanoparticles of different shapes, Surface Science,380, 302(1997).
    [2]E. Hao, S. Li, R. C. Bailey, S. Zou, G. C. Schatz, J. T. Hupp, Optical Properties of Metal Nanos hells, Journal of Physical Chemistry B,108,1224 (2004).
    [3]J. Beermann, S. I. Bozhevolnyi, V. Coello, Modeling of nonlinear microscopy of localized field enhancements in random metal nanostructures, Physical Review B,73, Article ID 115408,10 pages(2006).
    [4]X. h. Huang, P. K. Jain, I. H. EI-Sayed, M. A. EI-Sayed, Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy, Nanomedicine,2,681(2007).
    [5]Y. Nishihata, J. Mizuki, T. Akao, H. Tanaka, M. Uenishi, M. Kimura, T. Okamoto, N. Hamada, Self-regeneration of a Pd-perovskite catalyst for automotive emissions control, Nature,418,164 (2002).
    [6]S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, H. A. Atwater, Plasmonics-A Route to Nanoscale Optical Devices, Advanced Materials,13,1501 (2001).
    [7]L. A. Peyser, A. E. Vinson, A. P. Bartko, R. M. Dickson, Photoactivated fluorescence from individual silver nanoclusters, Science,291,103 (2001).
    [8]M. L. Coluccio, G. Das, F. Mecarini, F. Gentile, A. Pujia, L. Bava, R. Tallerico, P. Candeloro, C. Liberale, F. D. Angelis, E. D. Fabrizio, Silver-based surface enhanced Raman scattering (SERS) substrate fabrication using nanolithography and site selective electroless deposition, Microelectronic Engineering,86,1085 (2009).
    [9]J. M. McLellan, Z. Y. Li, A. R. Siekkinen, Y. Xia, The SERS Activity of a Supported Ag Nanocube Strongly Depends on Its Orientation Relative to Laser Polarization, Nano Letters,7,1013 (2007).
    [10]Q. Q. Wang, J. B. Han, H. M. Gong, D. J. Chen, X. J. Zhao, J.Y. Feng, J. J. Ren, Linear and nonlinear optical properties of Ag nanowire polarizing glass,Advanced Functional Materials,16,2405 (2006).
    [11]S. S. Hassani, M. R. Ghasemi, M. Rashidzadeh, Z. Sobat, Nano-sized silver crystals and their dispersion over α-alumina for ethylene epoxidation, Crystal Research and Technology,44,948 (2009).
    [12]I. O. Sosa, C. Noguez, R. G. Barrera, Optical Properties of Metal Nanoparticles with Arbitrary Shapes, Journal of Physical Chemistry B,107,6269 (2003).
    [13]B. Wiley, Y. Sun, B. Mayers, Y. Xia, Shape-Controlled Synthesis of Metal Nanostructures:The Case of Silver, Chemistry A European Journal,11,454 (2005).
    [14]J. P. Kottmann, O. J. F. Martin, D. R. Smith, S. Schultz, Plasmon resonances of silver nanowires with a nonregular cross section, Physical Review B,64, Article ID 235402,10 pages(2001).
    [15]R. Jin, Y. C. Cao, E. Hao, G. S. Metraux, G. C. Schatz, C. A. Mirkin, Controlling anisotropic nanoparticle growth through plasmon excitation, Nature,425,487 (2003).
    [16]T. Shegai, Y. Huang, H. Xu, M. Kall, Coloring fluorescence emission with silver nanowires, Applied Physics Letters,96, Article ID 103114,3 pages(2010).
    [17]K. Aslan, Z. Leonenko, J. R. Lakowicz, C. D. Geddes, Fast and Slow Deposition of Silver Nanorods on Planar Surfaces:Application to Metal-Enhanced Fluorescence, Journal of Physical Chemistry B,109,3157 (2005).
    [18]H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, J. R. Krenn, Silver Nanowires as Surface Plasmon Resonator, PhysicalL Review Letters,95, Article ID 257403,4 pages(2005).
    [19]A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. Xia, E. R. Dufresne, M. A. Reed, Observation of Plasmon Propagation, Redirection, and Fan-Out in Silver Nanowires, Nano Letters,6,1822 (2006).
    [20]M. W. Knight, N. K. Grady, R. Bardhan, F. Hao, P. Nordlander, N. J. Halas, Nanoparticle-Mediated Coupling of Light into a Nanowire, Nano Letters,7 2346 (2007).
    [21]Z. Y. Fang, Y.W. Lu, L. R. Fan, C. F. Lin, X. Zhu, Surface Plasmon Polariton Enhancement in Silver Nanowire-Nanoantenna Structure, Plasmonics,5,57 (2010).
    [22]B. R. Martin, D. J. Dermody, B. D. Reiss, M. Fang, L. A. Lyon, M. J. Natan,T. E. Mallouk, Orthogonal Self-Assembly on Colloidal Gold-Platinum Nanorods, Advanced Materials,11,1021 (1999).
    [23]Y. Sun, Y. Xia, Large-Scale Synthesis of Uniform Silver Nanowires Through a Soft, Self-Seeding, Polyol Process, Advanced Materials,14,833 (2002).
    [24]M. Tsuji, Y. Nishizawa, K. Matsumoto, M. Kubokawa, N. Miyamae, T. Tsuji, Effects of chain length of polyvinylpyrrolidone for the synthesis of silver nanostructures by a microwave-polyol method, Materials Letters,60,834 (2006).
    [25]R. Becker, F. Soderlind, B. Liedberg, P. O. Kall, Synthesis of silver nanowires in aqueous solutions, Materials Letters,64,956 (2010).
    [26]C. X. Kan, J. J. Zhu, X. G. Zhu, Silver nanostructures with well-controlled shapes:synthesis, characterization and growth mechanism, Journal of Physics D:Applied Physics,41, Article ID 155304,9 pages(2008).
    [27]J. J. Zhu, C. X. Kan, X. G. Zhu, J. G. Wan, M. Han, Y. Zhao, B. L. Wang, G. H. Wang, Synthesis of perfect silver nanocubes by a simple polyol process, Journal of Materials Research,22,1479 (2007).
    [28]Y. Sun, B. Mayers, Y. Xia, Transformation of silver nanospheres into nanobelts and triangular nanoplates through a thermal process, Nano Letters,3,675 (2003).
    [29]X. Liu, F. Zhang, R. Huang, C. Pan, J. Zhu, Capping modes in PVP-directed silver nanocrystal growth:Multi-twinned nanorods versus single-crystalline nano-hexapods, Crystal Growth & Design,8,1916 (2008).
    [30]Y. Sun, B. Mayers, T. Herricks, Y. Xia, Polyol synthesis of uniform silver nanowires:A plausible growth mechanism and the supporting evidence, Nano Letters,3,955(2003).
    [31]K. K. Caswell, C. M. Bender, C. J. Murphy, Seedless, surfactantless wet chemical synthesis of silver nanowires, Nano Letters,3,667 (2003).
    [32]H. Hofmeister, S. A. Nepijkob, D. N. Ievlevb, W. Schulzeb, G. Ertl, Composition and lattice structure of fivefold twinned nanorods of silver, Journal of Crystal Growth,234,773 (2002).
    [33]H. Chen, Y. Gao, H. Yu, H. Zhang, L. Liu, Y. Shi, H. Tian, S. Xie, J. Li, Structural properties of silver nanorods with fivefold symmetry, Micron,35, 469 (2004).
    [34]C. Ni, P. A. Hassan, E. W. Kaler, Structural characteristics and growth of pentagonal silver nanorods prepared by a surfactant method, Langmuir,21, 3334 (2005).
    [35]J. P. Kottmann, O. J. F. Martin, D. R. Smith, S. Schultz, Plasmon resonances of silver nanowires with a nonregular cross section, Physical Review B,64, Article ID 235402,10 pages(2001).
    [36]J. P. Kottmann, O. J. F. Martin, D. R. Smith, S. Schultz, Spectral response of plasmon resonant nanoparticles with a non-regular shape, Optics Express,6, 213(2000).
    [37]S. Chen, D. L. Carroll, Synthesis and characterization of truncated triangular silver nanoplates, Nano Letters,2,1003 (2002).
    [38]C. X. Kan, C. S. Wang, J. J. Zhu, H. C. Li, Formation of gold and silver nanostructures within polyvinylpyrollidone (PVP) gel, Journal of Solid State Chemistry,183,858 (2010).
    [39]P. V. Kamat, Photophysical, photochemical and photocatalytic aspects of metal nanoparticles, J. Phys. Chem. B,106,7729(2002).
    [40]J. Y. Chen, B. J. Wiley, Y. N. Xia, One-dimensional nanostructures of metals: Large-scale synthesis and some potential applications, Langmuir,23, 4120(2007).
    [41]Y. Xiong, Y. Xia, Shape-controlled synthesis of metal nanostructures:The case of palladium, AdV. Mater.,19,3385(2007).
    [42]C. Lofton, W. Sigmund, Mechanisms controlling crystal habits of gold and silver colloids, Adv. Funct. Mater.,15,1197(2005).
    [43]W. Zhang, Y. Liu, R. Cao, Z. Li, Y. Zhang, Y. Tang, K. Fan, Synergy between Crystal Strain and Surface Energy in Morphological Evolution of Five-Fold-Twinned Silver Crystals J. AM. CHEM. SOC.,130,15581 (2008).
    [44]Y. Sun, B. Mayers, T. Herricks, Y. Xia, Polyol synthesis of uniform silver nanowires:A plausible growth mechanism and the supporting evidence, Nano Letters,3,955 (2003).
    [45]C. X Kan, W. P. Cai, C. C. Li, L. D. Zhang, Optical studies of polyvinylpyrrolidone reduction effect on free and complex metal ions, J. Mater. Res.,20,320(2005).
    [46]P. Jiang, S.Y Li, S. S. Xie, Y. Gao, L. Song, Machinable long PVP-stabilized silver nanowires, Chemistry A European Journal,10,4817 (2004).
    [47]C. X. Kan, W. P. Cai, C. C. Li, L. D. Zhang, Optical studies of polyvinylpyrrolidone reduction effect on free and complex metal ions, Journal of Materials Research,20,320 (2005).
    [48]Y. Gao, P. Jiang, D. F. Liu, H. J. Yuan, X. Q. Yan, Z. P. Zhou, J. X. Wang, L. Song, L. F. Liu, W. Y. Zhou, G. Wang, C. Y. Wang, S. S. Xie, J. M. Zhang, D. Y. Shen, Evidence for the monolayer assembly of polyvinylpyrrolidone) on the surfaces of silver nanowires, Journal of Physical Chemistry B,108,12877 (2004).
    [1]S. Lal, S. Link, N.J. Halas, Nano-optics from sensing to waveguiding, Nature Photonics 1,641 (2007).
    [2]A.J. Haes, R.P. Van Duyne, A Nanoscale Optical Biosensor:Sensitivity and Selectivity of an Approach Based on the Localized Surface Plasmon Resonance Spectroscopy of Triangular Silver Nanoparticles, J. Am. Chem. Soc.124,10596(2002).
    [3]F. J. Garcia-Vidal and J. B. Pendry, Collective Theory for Surface Enhanced Raman Scattering, Physical Review Letters 77 (6),1163 (1996).
    [4]H. Xu, J. Aizpurua, M. Kall and P. Apell, Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering, Physical Review E 62 (3),4318 (2000).
    [5]K. Kneipp, M. Moskovits and H. Kneipp, Surface-Enhanced Raman Scattering, Physics and Applications, Topics in Applied Physics 10,1 (2006).
    [6]D. Graham and R. Goodacre, Chemical and bioanalytical applications of surface enhanced Raman scattering spectroscopy, Chem. Soc. Rev.37,883 (2008).
    [7]M. Fleischmann, P.J. Hendra, A.J. McQuillan, Raman spectra from electrode surfaces, J. Chem. Soc. Chem. Commun.80 (1973).
    [8]D.L. Jeanmaire, R.P. Van Duyne, Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,J. Electroanal. Chem.84,1 (1977).
    [9]M.G. Albrecht, J.A. Creighton, Anomalously intense Raman spectra of pyridine at a silver electrode, J.Am.Chem.Soc.99,5215 (1977).
    [10]Y. Chao, Q. Zhou, Y. Li, et al., Potential Dependent Surface-enhanced Raman Scattering of 4-Mercaptopyridine on Electrochemically Roughened Silver Electrodes, J. Phys. Chem. C 111,16990 (2007).
    [11]M. Moskovits, D. P. DiLella, K. Maynard, Surface Raman spectroscopy of a number of cyclic aromatic molecules adsorbed on silver:selection rules and molecular reorientation, Langmuir 4,67 (1988).
    [12]B. Nikoobakht, M. A. El-Sayed, Surface-Enhanced Raman Scattering Studies on Aggregated Gold Nanorods, J. Phys. Chem. A 107,3372 (2003).
    [13]A. M. Schwartzberg, C. D. Grant, A. Wolcott et al., Unique Gold Nanoparticle Aggregates as a Highly Active Surface-Enhanced Raman Scattering Substrate, J. Phys. Chem. B 108,19191 (2004).
    [14]R. C. Jin, Y. W. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, J. G. Zheng, Photoinduced Conversion of Silver Nanospheres to Nanoprisms, Science 294, 1901 (2001).
    [15]H. Hofmeister, S. A. Nepijkob, D. N. Ievlevb, W. Schulzeb, G. Ertl, Composition and lattice structure of fivefold twinned nanorods of silver, Journal of Crystal Growth,234,773 (2002).
    [16]H. Chen, Y. Gao, H. Yu, H. Zhang, L. Liu, Y. Shi, H. Tian, S. Xie, J. Li, Structural properties of silver nanorods with fivefold symmetry, Micron,35, 469 (2004).
    [17]C. Ni, P. A. Hassan, E. W. Kaler, Structural characteristics and growth of pentagonal silver nanorods prepared by a surfactant method, Langmuir,21, 3334 (2005).
    [18]K. L. Norrod, L. M. Sudnik, D. Rousell, K. L. Roulen, Quantitative Comparison of Five SERS Substrates:Sensitivity and Limit of Detection Applied Spectroscopy,51,994 (1997).
    [19]Y. Sun, B. Mayers, T. Herricks, Y. Xia, Polyol synthesis of uniform silver nanowires:A plausible growth mechanism and the supporting evidence, Nano Letters,3,955 (2003).
    [20]Y. Xiong, Y. Xia, Shape-Controlled Synthesis of Metal Nanostructures:The Case of Palladium, AdV. Mater.19,3385 (2007).
    [21]C. Lofton, W. Sigmund, Mechanisms Controlling Crystal Habits of Gold and Silver Colloids, AdV. Funct. Mater.15,1197 (2005).
    [1]A. Hasegawa, K. Yoshizawa, K. Hirao, Electronic structures of gold nanowires, Chem. Phys. Lett.345,367. (2001).
    [2]G. Bilalbegovic, Structure and stability of finite gold nanowires, Phys. Rev. B 58, 15412(1998).
    [3]U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters, Springer, New York, (1995).
    [4]A. Bogozi, O. Lam, H. He, C. Li, N. J. Tao, L. A. Nagahara, I. Amlani, R. Tsui, Molecular Adsorption onto Metallic Quantum Wires, J. Am. Chem. Soc.123, 4585(2001).
    [5]S. Fedrigo, W. Harbich, J. Buttet, Collective dipole oscillations in small silver clusters embedded in rare-gas matrices, Phys. Rev. B 47, P10706 (1993).
    [6]C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley:New York, (1983).
    [7]P. Mulvaney, Surface Plasmon Spectroscopy of Nanosized Metal Particles, Langmuir 12,788(1996).
    [8]J. P. Kottmann, O. J. F. Martin, D. R.Smith, S. Schultz, Plasmon resonances of silver nanowires with a nonregular cross section, Phys. Rev. B 64,235402 (2001).
    [9]J. P. Kottmann, O. J. F. Martin, D. R. Smith, S. Schultz, Dramatic localized electromagnetic enhancement in plasmon resonant nanowires, Chem. Phys. Lett. 341.(2001).
    [10]Y. Y. Yu, S. S.Chang, C. L. Lee, C. R. C. Wang, Gold Nanorods: Electrochemical Synthesis and Optical Properties, J. Phys. Chem. B 101,6661 (1997).
    [11]S. Link, M. B. Mohamed, M. A. El-Sayed, Simulation of the Optical Absorption Spectra of Gold Nanorods as a Function of Their Aspect Ratio and the Effect of the Medium Dielectric Constant, J. Phys. Chem. B 103,3073. (1999).
    [12]M. I. van der Zande Bianca, R. B. Marcel, G. J. F. Lambertus, S. Christian, Colloidal Dispersions of Gold Rods:Synthesis and Optical Properties, Langmuir 16,451 (2000).
    [13]N. R. Jana, L. Gearheart, C. J. Murphy, Wet Chemical Synthesis of High Aspect Ratio Cylindrical Gold Nanorods, J. Phys. Chem. B 105,4065 (2001).
    [14]B. D. Busbee, S. O. Obare, C. J. Murphy, An Improved Synthesis of High-Aspect-Ratio Gold Nanorods, Adv. Mater.15,414 (2003).
    [15]J. Sloan, D. M. Wright, H. G.Woo, S. Bailey, G. Brown, A. P. E. York, K. S. Coleman, J. L.Hutchison, M. L. H.Green, Capillarity and silver nanowire formation observed in single walled carbon nanotubes, Chem. Commun.699 (1999).
    [16]Y. G. Sun, Y. N. Xia, Large-Scale Synthesis of Uniform Silver Nanowires Through a Soft, Self-Seeding, Polyol Process, Adv. Mater.14,833 (2002).
    [17]R. C. Jin, Y. W. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, J. G. Zheng, Photoinduced Conversion of Silver Nanospheres to Nanoprisms, Science 294, 1901 (2001).
    [18]S. H. Chen, D. L. Carroll, Synthesis and Characterization of Truncated Triangular Silver Nanoplates, Nano Lett.2,1003 (2002).
    [19]E. Hao, K. L. Kelly, J. T. Hupp, G. C. Schatz, Synthesis of Silver Nanodisks Using Polystyrene Mesospheres as Templates, J. Am. Chem. Soc.124,15182. (2002).
    [20]Y. G. Sun, B. Mayers, Y. N. Xia, Transformation of Silver Nanospheres into Nanobelts and Triangular Nanoplates through a Thermal Process, Nano Lett.3, 675 (2003).
    [21]K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, The Optical Properties of Metal Nanoparticles:The Influence of Size, Shape, and Dielectric Environment, J. Phys. Chem. B 107,668. (2003).
    [22]Q. T. Zhao, L. S. Hou, C. J. Zhao, S. P. Gu, R. A. Huang, S. H. Ren, Conversion of silver nanoprisms into colloidal nanoparticles induced by femtosecond laser pulses, Laser Phys. Lett.1,115 (2004).
    [23]N. Okada, Y. Hamanaka, A. Nakamura, I.Pastoriza-Santos, L. M.Liz-Marza, Linear and Nonlinear Optical Response of Silver Nanoprisms:Local Electric Fields of Dipole and Quadrupole Plasmon Resonances, J. Phys. Chem. B 108, 8751(2004).
    [24]G. S.Metraux, C. A. Mirkin, Rapid Thermal Synthesis of Silver Nanoprisms with Chemically Tailorable Thickness, Adv. Mater.17,412. (2005).
    [25]D. B.Yu, V. W. Yam, Controlled Synthesis of Monodisperse Silver Nanocubes in Water, J. Am. Chem. Soc.126,13200 (2004).
    [26]S. H.Chen, Z. L. Wang, J. Ballato, S. H. Foulger, D. L. Carroll, Monopod, Bipod, Tripod, and Tetrapod Gold Nanocrystals, J. Am. Chem. Soc.125,16186. (2003).
    [27]Y.G. Sun, Y. N. Xia, Shape-Controlled Synthesis of Gold and Silver Nanoparticles, Science 298,2176 (2002).
    [28]S. H. Chen, D. L. Carroll, Silver Nanoplates:Size Control in Two Dimensions and Formation Mechanisms, J. Phys. Chem. B 108,5500 (2004).
    [29]C. R. Simpson, M. Kohl, M. Essenpreis, M. Cope, Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique, Phys. Med. Biol.43,2465 (1998).
    [30]A. J. Haes, R. P. Van Duyne, A Nanoscale Optical Biosensor:Sensitivity and Selectivity of an Approach Based on the Localized Surface Plasmon Resonance Spectroscopy of Triangular Silver Nanoparticles,J. Am. Chem. Soc.124,10596 (2002).
    [31]J. Y. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z. Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. D. Li, Y. N. Xia, Gold Nanocages:Bioconjugation and Their Potential Use as Optical Imaging Contrast Agents, Nano Lett.5,473 (2005).
    [32]N. Malikova, I. Pastoriza-Santos, M. Schierhorn, N. A. Kotov, L. M. Liz-Marzan, Layer-by-Layer Assembled Mixed Spherical and Planar Gold Nanoparticles: Control of Interparticle Interactions, Langmuir 18,3694 (2002).
    [33]T. K. Sau, C. J. Murphy, Room Temperature, High-Yield Synthesis of Multiple Shapes of Gold Nanoparticles in Aqueous Solution, J. Am. Chem. Soc.126, 8648 (2004).
    [34]Y. Shao, Y. D. Jin, S. J. Dong, Synthesis of gold nanoplates by aspartate reduction of gold chloride, Chem. Comm.9,1104 (2004).
    [35]L. Y.Wang, X. Chen, J. Zhan, Y. C. Chai, C. J.Yang, L. M. Xu, W. C. Zhuang, B. Jing, Synthesis of Gold Nano- and Microplates in Hexagonal Liquid Crystals, J. Phys. Chem. B 109,3189 (2005).
    [36]S. S.Shankar, A. Rai, A. Ahmad, M. Sastry, Controlling the Optical Properties of Lemongrass Extract Synthesized Gold Nanotriangles and Potential Application in Infrared-Absorbing Optical Coatings, Chem. Mater.17,566 (2005).
    [37]X. P.Sun, S. J. Dong, E. K.Wang, High-Yield Synthesis of Large Single-Crystalline Gold Nanoplates through a Polyamine Process, Langmuir 21, 4710(2005).
    [1]J. P. Kottmann, O. J. F. Martin, D. R. Smith, S. Schultz, Plasmon resonances of silver nanowires with a nonregular cross section, Phys. Rev. B 64,235402 (2001).
    [2]Y. C. Cao, R. Jin, C. A. Mirkin, Nanoparticles with Raman Spectroscopic Fingerprints for DNA and RNA Detection, Science 297,1536 (2002).
    [3]Y. Xiong, B. Wiley, J. Chen, Z. Y. Li, Y. Yin, Y. Xia, Corrosion-Based Synthesis of Single-Crystal Pd Nanoboxes and Nanocages and Their Surface Plasmon Properties, Angew.Chem.117,8127 (2005).
    [4]T. K. Sau, A. L. Rogach, Adv.Mater. Nonspherical Noble Metal Nanoparticles:Colloid-Chemical Synthesis and Morphology Control,22, 1781 (2010).
    [5]J. Turkevich, P. C. Stevenson, J. Hillier, A study of the nucleation and growth processes in the synthesis of colloidal gold, Faraday Soc.11,55 (1951).
    [6]U. Krebig, M. Vollmer, Theoretical considerations-single clusters:Intrinsic size effects of the optical properties, Optical Properties of Metal Clusters, Springer-Verlag, Berlinand Heidelberg, Germany,83 (1995).
    [7]C. F. Bohren, D. R. Huffman, Surface modes in small particles, Absorption and Scattering of Light by Small Particles, J. Wiley & Sons Inc, New York, 373(1983).
    [8]J. Pe'rez-Juste, I. Pastoriza-Santos, L. M. Liz-Marza'n, P. Mulvaney, Gold nanorods:synthesis, characterization and applications, Coord. Chem. Rev. 249,1870(2005).
    [9]M. Maillard, S. Giorgio, M. P. Pileni, Tuning the Size of Silver Nanodisks with Similar Aspect Ratios:Synthesis and Optical Properties, J. Phys. Chem. B 107,2466 (2003).
    [10]D. A. Stuart, A. J. Haes, C. R. Yonzon, E. M. Hicks, R. P. Van Duyne, Biological applications of localised surface plasmonic phenomenae, IEE Proc. Nanobiotechnol.152,13 (2005).
    [11]G. H. Wu, A. Mikhailovsky, H. A. Khant, C. Fu, W. Chiu and J. A. Zasadzinski, Remotely Triggered Liposome Release by Near-Infrared Light Absorption via Hollow Gold Nanoshells, J. Am. Chem. Soc.130,8175 (2008).
    [12]P. Zijlstra, J. W. M. Chon, M. Gu, Five-dimensional optical recording mediated by surface plasmons in gold nanorods, Nature 459,410 (2009).
    [13]H. Y. Wu, W. L. Huang, M. H. Huang, Direct High-Yield Synthesis of High Aspect Ratio Gold Nanorods, Cryst. Growth Des.7,831 (2007).
    [14]Y. Xia, Y. Xiong, B. Lim, S. E. Skrabalak, Shape-Controlled Synthesis of Metal Nanocrystals:Simple Chemistry Meets Complex Physics, Angew. Chem. Int. Ed.48,60 (2009).
    [15]J. E. Millstone, S. J. Hurst, G. S. Metraux, J. I. Cutle, C. A. Mirkin, Colloidal Gold and Silver Triangular Nanoprisms, Small 5,646 (2009).
    [16]C. Li, K. L. Shuford, Q. H. Park, W. Cai, Y. Li, E. J. Lee, S. O. Cho, High-Yield Synthesis of Single-Crystalline Gold Nano-octahedra, Angew. Chem. Int. Ed.46,3264 (2007).
    [17]C. C. Li, R. Sato, M. Kanehara, H. Zeng, Y. Bando, T. Teranishi, Controllable Polyol Synthesis of Uniform Palladium Icosahedra:Effect of Twinned Structure on Deformation of Crystalline Lattices, Angew. Chem. Int. Ed.48,6883 (2009).
    [18]C. Kan, X. Zhu, G. Wang, Single-Crystalline Gold Microplates:Synthesis, Characterization, and Thermal Stability, J. Phys. Chem. B 110,4651 (2006).
    [19]J. H. Zhang, H. Y. Liu, Z. L. Wang, N. B. Ming, Shape-Selective Synthesis of Gold Nanoparticles with Controlled Sizes, Shapes, and Plasmon Resonances, Adv. Funct. Mater.17,3295. (2007).
    [20]R. Klajn, A. O. Pinchuk, G. C. Schatz, B. A. Grzybowski, Synthesis of Heterodimeric Sphere-Prism Nanostructures via Metastable Gold Supraspheres, Angew. Chem. Int. Ed.46,8363. (2007).
    [21]Y. J. Xiong, J. Y. Chen, B. Wiley, Y. N. Xia, S. Aloni, Y. D. Yin, Understanding the Role of Oxidative Etching in the Polyol Synthesis of Pd Nanoparticles with Uniform Shape and Size, J. Am. Chem. Soc.127,7332 (2005).
    [22]Y. Z. Huang, W. Z. Wang, H. Y. Liang, H. X. Xu, Surfactant-Promoted Reductive Synthesis of Shape-Controlled Gold Nanostructures, Cryst. Growth Des.9,858 (2009).
    [23]N. Zhao, Y. Wei, N. Sun, Q. Chen, J. Bai, L. Zhou, Y. Qin, M. Li, L. Qi, Controlled Synthesis of Gold Nanobelts and Nanocombs in Aqueous Mixed Surfactant Solutions, Langmuir 24,991 (2008).
    [24]S. Kumar, T. Nann, Shape Control of II-VI Semiconductor Nanomaterials, Small 2,316(2006).
    [25]N. Tian, Z. Y. Zhou, S. G Sun, Y. Ding, Z. L. Wang, Synthesis of Tetrahexahedral Platinum Nanocrystals with High-Index Facets and High Electro-Oxidation Activity, Science 316,732 (2007).
    [26]A. R. Tao, S. Habas, P. D.Yang, Shape Control of Colloidal Metal Nanocrystals, Small 4,310 (2008).
    [27]E. Hao, R. C. Bailey, G. C. Schatz, et al., Synthesis and Optical Properties of "Branched" Gold Nanocrystals, Nano Lett 4,327 (2004).
    [28]C. Li, K. L. Shuford, Q. H. Park, et al., High-Yield Synthesis of Single-Crystalline Gold Nano-octahedra, Angew. Chem 119,3328 (2007).
    [29]C. Li, R. Sato, M. Kanehara, et al., Controllable Polyol Synthesis of Uniform Palladium Icosahedra:Effect of Twinned Structure on Deformation of Crystalline Lattices, Angew.Chem 121,7015 (2009).
    [30]R. H. Morriss, W. R. Bottoms, R. G. Peacock. Growth and Defect Structure of Lamellar Gold Microcrystals, J. Appl. Phys 39,3016 (1968).
    [31]C. X. Kan, C. S. Wang, J. J. Zhu, H. C. Li, Formation of gold and silver nanostructures within polycinylpyrollidone(PVP) gel, J. Solid State Chem. 183,858(2010).
    [32]R. H. Morriss, W. R. Bottoms, R. G. Peacock, Growth and Defect Structure of Lamellar Gold Microcrystals, J. Appl. Phys.39,3016 (1968).
    [33]U. Schlotterbeck, C. Aymonier, R. Thomann, H. Hofmeister, M. Tromp, W. Richtering, S. Mecking, Shape-Selective Synthesis of Palladium Nanoparticles Stabilized by Highly Branched Amphiphilic Polymers, Adv. Funct. Mater.14,999 (2004).
    [34]C. Salzemann, J. Urban, I. Lisiecki, M. P. Pileni, Characterization and Growth Process of Copper Nanodisks, Adv. Funct. Mater.15,1277 (2005).
    [35]V. Germain, J. Li, D. Ingert, Z. L. Wang, M. P. Pileni, Stacking Faults in Formation of Silver Nanodisks, J. Phys. Chem. B 107,8717 (2003).
    [36]C. C. Li, W. P. Cai, B. Q. Cao, F. Q. Sun, Y. Li, C. X. Kan, L. D. Zhang, Mass Synthesis of Large, Single-Crystal Au Nanosheets Based on a Polyol Process, Adv. Funct. Mater.16,83. (2006)
    [37]R. C. Jin, Y. C. Cao, E. Hao, G. S. Me'traux, G. C. Schatz, C. A. Mirkin, Controlling anisotropic nanoparticle growth through plasmon excitation, Nature 425,487 (2003).
    [38]D. Ahrne, D. M. Ledwith, M. Gara, J. M. Kelly, Optical Properties and Growth Aspects of Silver Nanoprisms Produced by a Highly Reproducible and Rapid Synthesis at Room Temperature, Adv. Funct. Mater.18,2005 (2008).
    [39]B. Delley, An all-electron numerical method for solving the local density functional for polyatomic molecules J. Chem. Phys.92,508 (1990).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700