纳米等离子体激元结构的构建及其在生物检测和纳米催化中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
局域表面等离子体激元共振是贵金属纳米材料具有的一种特殊的光学性质。这种光与纳米材料的交互作用会引起纳米材料对光的散射、吸收以及光热效应,给生命分析化学领域的研究带来了新的突破。这种光学性质有两个显著的特点。首先,它所发出的散射光亮度高,而且光学稳定性好,没有闪烁、漂白的现象;其次,局域表面等离子体激元共振频率对纳米材料的尺寸、形貌、组成、电荷以及其所处的介电环境非常敏感。因此,贵金属纳米材料,尤其是金纳米材料,已广泛应用于化学或生物传感、计数、成像与示踪之中。暗场显微镜是可以在单颗粒的水平上观察和研究贵金属纳米颗粒的强力武器,能够进行单颗粒成像,并采集其散射光谱。在本论文中,首先进行了纳米等离子体激元材料的合成、构建与表征,而后分别利用其光学性质两方面的特点,将这种材料应用到了生命分析化学领域两个不同层面的研究之中。具体如下:
     第一,合成了各种形貌的具有等离子体激元性质的纳米材料,包括各种粒径的球形金纳米颗粒、各种长径比的金纳米棒、三角形的金纳米片、银纳米立方体以及金纳米笼,并对其进行了表征。
     第二,利用金纳米颗粒的光学性质,并在其表面修饰可以特异性识别可卡因的核酸适配体,得到了能够同时进行指纹成像和分子识别的双功能探针。在暗场显微镜下,获取了清晰的潜指纹图像,甚至能分辨出其中第二、三层次的精细结构。与此同时,通过可卡因诱导金纳米颗粒聚集而引起的散射光从绿到红的颜色变化,实现了对潜指纹中可卡因携带量的半定量检测。
     第三,提出了一种纳米等离子体激元天线介导的间接策略,利用一种DNA组装构建的核-卫星金纳米结构(大的金纳米颗粒为核,是纳米等离子体激元的天线;小的金纳米颗粒为卫星,是多相催化反应的催化剂),于暗场显微镜下在单颗粒水平上实时地监测了金纳米颗粒催化葡萄糖氧化的反应。获得了关于此多相催化反应的大量细节信息,更深入地了解了金纳米颗粒的催化性质,并充分展示了采用暗场显微术和纳米等离子体激元天线策略来研究多相催化反应过程的广阔前景。
     通过以上研究,完成了一些纳米等离子体激元结构的构建,并将其应用到了生物检测和纳米催化的研究之中。论文最后提出了对本课题的总结,以及与研究内容相关的展望和对下一步工作的构想。纳米等离子体激元学的相关研究在生命分析化学领域有着巨大发展空间。
Local Surface Plasmon Resonance (LSPR) is a unique optical property of coinagemetal nanomaterials. Interactions of light and nanomaterials in nanoscale bring lightabsorption, scattering and even a photothermy effect on metal nanomaterials, whichfacilitate the studies in bioanalytical chemistry field. This unique plasmonic propertyis surprisingly highly sensitive to their size, shape, composition, and charge density aswell as local dielectric environment. In addition to high sensitivity, plasmonicnanostructures provide higher intensity, nonblinking, optical stability and easiness toprepare. In consequence, Au and Ag nanostructures have long been widely utilized fornanoplasmonic chemical and biological sensing, counting, imaging and trackingsystem. By Dark-field microscopy (DFM), single-particle imaging and spectroscopycan be obtained.
     Firstly, gold nanospheres, gold nanorods, gold nanoprisms, silver nanocubes andgold nanocages were synthesized and characterized.
     Secondly, we reported a conceptually new nanoplasmonic approach to providehigh-resolution dark-field microscopic (DFM) images of latent fingerprints (LFPs) aswell as the ability to identify cocaine in LFPs with aptamer-bound Au nanoparticles(Au NPs). The level2and level3characteristic details of sebaceous LFPs could beclearly observed. Moreover, by using aptamer-bound Au nanoparticles as imaging andrecognition probes, the cocaine-induced aggregation of Au NPs resulted in a truegreen-to-red color change of the scattered light, providing a quasi-quantative methodto identify cocaine loadings in LFPs.
     Thirdly, we proposed a nanoplasmonic-antenna mediated indirect strategy formonitoring a catalytic reaction at real time and on single nanoparticle level with darkfield microscopy (DFM), and designed a DNA assembled core-satellites (C/S) Aunanostructure comprising a large Au NP core as a plasmonic antenna and severalsurrounding small Au NPs satellites as heterogeneous catalysts, in which the nanoplasmonic properties and catalytic activities of Au NPs are integrated. Thus, theplasmon band shifts of one single C/S nanostructure throughout the reaction providedan indirect means for monitoring the catalytic reaction. Abundant information of thecatalytic reaction and the catalytic activity of single Au NPs were obtained. This studyexemplifies the power of dark-field microscopy and the concept of plasmonic-antennafor in-depth understanding of different chemical processes in a heterogeneouscatalytic reaction.
     At last, a summary and prospect was completed. There s plenty of room fornanoplasmonics in the bioanalytical chemistry field.
引文
1. Odom T W, Schatz G C. Introduction to plasmonics. Chemical Reviews,2011,111(6):3667-3668
    2. Rycenga M, Cobley C M, Zeng J, Li W, Moran C H, Zhang Q, Qin D, Xia Y. Controlling thesynthesis and assembly of silver nanostructures for plasmonic applications. ChemicalReviews,2011,111(6):3669-3712
    3. Cortie M B, McDonagh A M. Synthesis and optical properties of hybrid and alloy plasmonicnanoparticles. Chemical Reviews,2011,111(6):3713-3735
    4. Jones M R, Osberg K D, Macfarlane R J, Langille M R, Mirkin C A. Templated techniquesfor the synthesis and assembly of plasmonic nanostructures. Chemical Reviews,2011,111(6):3736-3827
    5. Mayer K M, Hafner J H. Localized surface plasmon resonance sensors. Chemical Reviews,2011,111(6):3828-3857
    6. Hartland G V. Optical studies of dynamics in noble metal nanostructures. Chemical Reviews,2011,111(6):3858-3887
    7. Giannini V, Fernandez-Dominguez A I, Heck S C, Maier S A. Plasmonic nanoantennas:fundamentals and their use in controlling the radiative properties of nanoemitters. ChemicalReviews,2011,111(6):3888-3912
    8. Halas N J, Lal S, Chang W-S, Link S, Nordlander P. Plasmons in strongly coupled metallicnanostructures. Chemical Reviews,2011,111(6):3913-3961
    9. Morton S M, Silverstein D W, Jensen L. Theoretical studies of plasmonics using electronicstructure methods. Chemical Reviews,2011,111(6):3962-3994
    10.启钧.光学教程:高等教育出版社;2008.
    11. Goodman J W. Introduction to Fourier optics: Roberts and Company Publishers;2005.
    12. Shen Y-R. The principles of nonlinear optics: New York, Wiley-Interscience;1984.
    13. Boyd R W. Nonlinear optics: Academic press;2003.
    14. Bainbridge W S. Societal implications of nanoscience and nanotechnology: Springer;2001.
    15. Braun T, Schubert A, Zsindely S. Nanoscience and nanotecnology on the balance.Scientometrics,1997,38(2):321-325
    16. Whitesides G M. Nanoscience, nanotechnology, and chemistry. Small,2005,1(2):172-179
    17. Ohtsu M, Kobayashi K, Kawazoe T, Sangu S, Yatsui T. Nanophotonics: design, fabrication,and operation of nanometric devices using optical near fields. IEEE Journal of selected topicsin quantum electronics,2002,8(4):839-862
    18. Kirchain R, Kimerling L. A roadmap for nanophotonics. Nature Photonics,2007,1(6):303-305
    19. Ozbay E. Plasmonics: merging photonics and electronics at nanoscale dimensions. Science,2006,311(5758):189-193
    20. Maier S A, Brongersma M L, Kik P G, Meltzer S, Requicha A A, Atwater H A. Plasmonics-aroute to nanoscale optical devices. Advanced Materials,2001,13(19):1501-1505
    21. Gramotnev D K, Bozhevolnyi S I. Plasmonics beyond the diffraction limit. Nature Photonics,2010,4(2):83-91
    22. Atwater H A. The promise of plasmonics. Scientific American,2007,296(4):56-62
    23. Maier S A. Plasmonics: Fundamentals and Applications: Springer;2007.
    24. Schuller J A, Barnard E S, Cai W, Jun Y C, White J S, Brongersma M L. Plasmonics forextreme light concentration and manipulation. Nature Materials,2010,9(3):193-204
    25. Anker J N, Hall W P, Lyandres O, Shah N C, Zhao J, Van Duyne R P. Biosensing withplasmonic nanosensors. Nature Materials,2008,7(6):442-453
    26. Lal S, Link S, Halas N J. Nano-optics from sensing to waveguiding. Nature Photonics,2007,1(11):641-648
    27. Faraday M. The Bakerian Lecture: Experimental Relations of Gold (and Other Metals) toLight. Philosophical Transactions of the Royal Society. London,1857,147:145–181
    28. Mie G. Articles on the optical characteristics of turbid tubes, especially colloidal metalsolutions. Annalen Der Physik,1908,25(3):377-445
    29. Gans R. The shape of ultra microscopic gold particles. Annalen Der Physik,1912,37(5):881-900
    30. Gans R. Form of ultramicroscopic particles of silver. Annalen Der Physik,1915,47(2):270–284
    31. Kelly K L, Coronado E, Zhao L L, Schatz G C. The optical properties of metal nanoparticles:the influence of size, shape, and dielectric environment. The Journal of Physical Chemistry B,2003,107(3):668-677
    32. Wriedt T. Mie theory: A review. The Mie Theory: Springer;2012. p.53-71.
    33. Willets K A, Van Duyne R P. Localized surface plasmon resonance spectroscopy and sensing.Annu Rev Phys Chem,2007,58:267-297
    34. Bohren C F, Huffman D R. Absorption and scattering of light by small particles: John Wiley&Sons;2008.
    35. Hecht E. Optics: Addison Wesley, New York;2002.
    36. Zhao J, Zhang X, Yonzon C R, Haes A J, Van Duyne R P. Localized surface plasmonresonance biosensors. Nanomedicine,2006,1(2):219-228
    37. Kedem O, Vaskevich A, Rubinstein I. Critical Issues in Localized Plasmon Sensing. TheJournal of Physical Chemistry C,2014, DOI:10.1021/jp409954s
    38. Aroca R F. Plasmon enhanced spectroscopy. Physical Chemistry Chemical Physics,2013,15(15):5355-5363
    39. Jung L S, Campbell C T, Chinowsky T M, Mar M N, Yee S S. Quantitative interpretation ofthe response of surface plasmon resonance sensors to adsorbed films. Langmuir,1998,14(19):5636-5648
    40. Malinsky M D, Kelly K L, Schatz G C, Van Duyne R P. Chain length dependence andsensing capabilities of the localized surface plasmon resonance of silver nanoparticleschemically modified with alkanethiol self-assembled monolayers. Journal of the AmericanChemical Society,2001,123(7):1471-1482
    41. Haes A J, Van Duyne R P. A nanoscale optical biosensor: sensitivity and selectivity of anapproach based on the localized surface plasmon resonance spectroscopy of triangular silvernanoparticles. Journal of the American Chemical Society,2002,124(35):10596-10604
    42. Schatz G. Electrodynamics of nonspherical noble metal nanoparticles and nanoparticleaggregates. Journal of Molecular Structure: Theochem,2001,573(1):73-80
    43. Purcell E M, Pennypacker C R. Scattering and Absorption of Light by NonsphericalDielectric Grains. The Astrophysical Journal,1973,186:705-714
    44. Draine B T, Flatau P J. Discrete-dipole approximation for scattering calculations. JOSA A,1994,11(4):1491-1499
    45. Kunz K S, Luebbers R J. The finite difference time domain method for electromagnetics:CRC press;1993.
    46. Hao F, Nordlander P. Efficient dielectric function for FDTD simulation of the opticalproperties of silver and gold nanoparticles. Chemical Physics Letters,2007,446(1):115-118
    47. Li Y, Jing C, Zhang L, Long Y-T. Resonance scattering particles as biological nanosensors invitro and in vivo. Chemical Society Reviews,2012,41(2):632-642
    48. Henry A-I, Bingham J M, Ringe E, Marks L D, Schatz G C, Van Duyne R P. Correlatedstructure and optical property studies of plasmonic nanoparticles. The Journal of PhysicalChemistry C,2011,115(19):9291-9305
    49. Novo C, Funston A M, Mulvaney P. Direct observation of chemical reactions on single goldnanocrystals using surface plasmon spectroscopy. Nature Nanotechnology,2008,3(10):598-602
    50. Liu G L, Yin Y, Kunchakarra S, Mukherjee B, Gerion D, Jett S D, Bear D G, Gray J W,Alivisatos A P, Lee L P. A nanoplasmonic molecular ruler for measuring nuclease activity andDNA footprinting. Nature Nanotechnology,2006,1(1):47-52
    51. Zhou R, Zhou H, Xiong B, He Y, Yeung E S. Pericellular matrix enhances retention andcellular uptake of nanoparticles. Journal of the American Chemical Society,2012,134(32):13404-13409
    52. El-Sayed I H, Huang X, El-Sayed M A. Surface plasmon resonance scattering and absorptionof anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications inoral cancer. Nano Letters,2005,5(5):829-834
    53. Kang B, Mackey M A, El-Sayed M A. Nuclear targeting of gold nanoparticles in cancer cellsinduces DNA damage, causing cytokinesis arrest and apoptosis. Journal of the AmericanChemical Society,2010,132(5):1517-1519
    54. Earnshaw A, Greenwood N. Chemistry of the Elements.2nd edn, Elsevier; Butterworth-Heinemann, Burlington, MA,1997.
    55. Chen M S, Goodman D W. The structure of catalytically active gold on titania. Science,2004,306(5694):252-255
    56. Green I X, Tang W, Neurock M, Yates J T, Jr. Spectroscopic Observation of Dual CatalyticSites During Oxidation of CO on a Au/TiO2Catalyst. Science,2011,333(6043):736-739
    57. Valden M, Lai X, Goodman D W. Onset of catalytic activity of gold clusters on titania withthe appearance of nonmetallic properties. Science,1998,281(5383):1647-1650
    58. Shaw C F. Gold-based therapeutic agents. Chemical Reviews,1999,99(9):2589-2600
    59. Dreaden E C, Mackey M A, Huang X, Kang B, El-Sayed M A. Beating cancer in multipleways using nanogold. Chemical Society Reviews,2011,40(7):3391-3404
    60. Dreaden E C, Alkilany A M, Huang X, Murphy C J, El-Sayed M A. The golden age: goldnanoparticles for biomedicine. Chemical Society Reviews,2012,41(7):2740-2779
    61. Kim S, Jin J, Kim Y-J, Park I-Y, Kim Y, Kim S-W. High-harmonic generation by resonantplasmon field enhancement. Nature,2008,453(7196):757-760
    62. Kosako T, Kadoya Y, Hofmann H F. Directional control of light by a nano-optical Yagi-Udaantenna. Nature Photonics,2010,4(5):312-315
    63. Noginov M, Zhu G, Belgrave A, Bakker R, Shalaev V, Narimanov E, Stout S, Herz E,Suteewong T, Wiesner U. Demonstration of a spaser-based nanolaser. Nature,2009,460(7259):1110-1112
    64. Zijlstra P, Chon J W, Gu M. Five-dimensional optical recording mediated by surfaceplasmons in gold nanorods. Nature,2009,459(7245):410-413
    65. Yavuz M S, Cheng Y, Chen J, Cobley C M, Zhang Q, Rycenga M, Xie J, Kim C, Song K H,Schwartz A G. Gold nanocages covered by smart polymers for controlled release withnear-infrared light. Nature Materials,2009,8(12):935-939
    66. Larsson E M, Langhammer C, Zori I, Kasemo B. Nanoplasmonic probes of catalyticreactions. Science,2009,326(5956):1091-1094
    67. Liu K, Nie Z, Zhao N, Li W, Rubinstein M, Kumacheva E. Step-growth polymerization ofinorganic nanoparticles. Science,2010,329(5988):197-200
    68. Wang H, Huff T B, Zweifel D A, He W, Low P S, Wei A, Cheng J-X. In vitro and in vivotwo-photon luminescence imaging of single gold nanorods. Proceedings of the NationalAcademy of Sciences of the United States of America,2005,102(44):15752-15756
    69. Park J-H, von Maltzahn G, Xu M J, Fogal V, Kotamraju V R, Ruoslahti E, Bhatia S N, SailorM J. Cooperative nanomaterial system to sensitize, target, and treat tumors. Proceedings ofthe National Academy of Sciences,2010,107(3):981-986
    70. Xia Y, Xiong Y, Lim B, Skrabalak S E. Shape‐Controlled Synthesis of Metal Nanocrystals:Simple Chemistry Meets Complex Physics? Angewandte Chemie International Edition,2009,48(1):60-103
    71. Xia X, Wang Y, Ruditskiy A, Xia Y.25th Anniversary Article: Galvanic Replacement: ASimple and Versatile Route to Hollow Nanostructures with Tunable and Well‐ControlledProperties. Advanced Materials,2013,25(44):6313-6333
    72. Zhang L, Xia Y. Scaling up the Production of Colloidal Nanocrystals: Should We Increase orDecrease the Reaction Volume? Advanced Materials,2014, DOI:10.1002/adma.201304897
    73. Xia Y, Xia X, Wang Y, Xie S. Shape-controlled synthesis of metal nanocrystals. MRS bulletin,2013,38(04):335-344
    74. Comin A, Manna L. New materials for tunable plasmonic colloidal nanocrystals. ChemicalSociety Reviews,2014, DOI:10.1039/c3cs60265f
    75. Liu X, Swihart M T. Heavily-doped colloidal semiconductor and metal oxide nanocrystals:an emerging new class of plasmonic nanomaterials. Chemical Society Reviews,2014,DOI:10.1039/c3cs60417a
    76. Knight M W, King N S, Liu L, Everitt H O, Nordlander P, Halas N J. Aluminum forPlasmonics. ACS Nano,2014,8(1):834-840
    77. Guler U, Ndukaife J C, Naik G V, Nnanna A A, Kildishev A V, Shalaev V M, Boltasseva A.Local Heating with Lithographically Fabricated Plasmonic Titanium Nitride Nanoparticles.Nano Letters,2013,13(12):6078-6083
    78. Wei T, Liu Y, Dong W, Zhang Y, Huang C, Sun Y, Chen X, Dai N. Surface-DependentLocalized Surface Plasmon Resonances in CuS Nanodisks. ACS applied materials&interfaces,2013,5(21):10473-10477
    79. Jain P K, Manthiram K, Engel J H, White S L, Faucheaux J A, Alivisatos A P. DopedNanocrystals as Plasmonic Probes of Redox Chemistry. Angewandte Chemie InternationalEdition,2013,52(51):13671-13675
    80. Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X, Zettl A, Shen Y R.Graphene plasmonics for tunable terahertz metamaterials. Nature Nanotechnology,2011,6(10):630-634
    81. Grigorenko A, Polini M, Novoselov K. Graphene plasmonics. Nature Photonics,2012,6(11):749-758
    82. Koppens F H, Chang D E, Garcia de Abajo F J. Graphene plasmonics: a platform for stronglight–matter interactions. Nano Letters,2011,11(8):3370-3377
    83. Hoggard A, Wang L-Y, Ma L, Fang Y, You G, Olson J, Liu Z, Chang W-S, Ajayan P M, LinkS. Using the Plasmon Linewidth to Calculate the Time and Efficiency of Electron Transferbetween Gold Nanorods and Graphene. ACS Nano,2013,7(12):11209-11217
    84. Low T, Avouris P. Graphene Plasmonics for Terahertz to Mid-Infrared Applications. ACSNano,2014,8(2):1086-1101
    85. Garci a de Abajo F J. Graphene plasmonics: Challenges and opportunities. ACS Photonics,2014,1(3):135-152
    86. Peiris J, Chu C, Cheng V, Chan K, Hung I, Poon L, Law K, Tang B, Hon T, Chan C. Clinicalprogression and viral load in a community outbreak of coronavirus-associated SARSpneumonia: a prospective study. The Lancet,2003,361(9371):1767-1772
    87. Rota P A, Oberste M S, Monroe S S, Nix W A, Campagnoli R, Icenogle J P, Penaranda S,Bankamp B, Maher K, Chen M-h. Characterization of a novel coronavirus associated withsevere acute respiratory syndrome. Science,2003,300(5624):1394-1399
    88. Ksiazek T G, Erdman D, Goldsmith C S, Zaki S R, Peret T, Emery S, Tong S, Urbani C,Comer J A, Lim W. A novel coronavirus associated with severe acute respiratory syndrome.New England Journal of Medicine,2003,348(20):1953-1966
    89. Linacre A, Graham D. Role of molecular diagnostics in forensic science. Expert Review ofMolecular Diagnostics,2002,2(4):346-353
    90. Teletchea F, Maudet C, H nni C. Food and forensic molecular identification: update andchallenges. Trends in Biotechnology,2005,23(7):359-366
    91. Nie S, Emory S R. Probing single molecules and single nanoparticles by surface-enhancedRaman scattering. Science,1997,275(5303):1102-1106
    92. Weiss S. Fluorescence spectroscopy of single biomolecules. Science,1999,283(5408):1676-1683
    93. Stewart M E, Anderton C R, Thompson L B, Maria J, Gray S K, Rogers J A, Nuzzo R G.Nanostructured plasmonic sensors. Chemical Reviews,2008,108(2):494-521
    94. Nickell S, Kofler C, Leis A P, Baumeister W. A visual approach to proteomics. Naturereviews Molecular cell biology,2006,7(3):225-230
    95. Robinson C V, Sali A, Baumeister W. The molecular sociology of the cell. Nature,2007,450(7172):973-982
    96. Hosking C R, Schwartz J L. The future's bright: Imaging cell biology in the21st century.Trends in Cell Biology,2009,19(11):553-554
    97. Abbe E. Beitr ge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung.Archiv für Mikroskopische Anatomie,1873,9(1):413-418
    98. Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission:stimulated-emission-depletion fluorescence microscopy. Optics Letters,1994,19(11):780-782
    99. Rust M J, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic opticalreconstruction microscopy (STORM). Nature Methods,2006,3(10):793-796
    100. Hess S T, Girirajan T P, Mason M D. Ultra-high resolution imaging by fluorescencephotoactivation localization microscopy. Biophysical Journal,2006,91(11):4258-4272
    101. Chen K-I, Li B-R, Chen Y-T. Silicon nanowire field-effect transistor-based biosensors forbiomedical diagnosis and cellular recording investigation. Nano Today,2011,6(2):131-154
    102. Oja S M, Wood M, Zhang B. Nanoscale electrochemistry. Analytical Chemistry,2012,85(2):473-486
    103. Scida K, Stege P W, Haby G, Messina G A, García C D. Recent applications of carbon-basednanomaterials in analytical chemistry: Critical review. Analytica Chimica Acta,2011,691(1):6-17
    104. Sapsford K E, Tyner K M, Dair B J, Deschamps J R, Medintz I L. Analyzing nanomaterialbioconjugates: a review of current and emerging purification and characterization techniques.Analytical Chemistry,2011,83(12):4453-4488
    105. Chiang C-K, Chen W-T, Chang H-T. Nanoparticle-based mass spectrometry for the analysisof biomolecules. Chemical Society Reviews,2011,40(3):1269-1281
    106. Wang W, Tao N. Detection, counting, and imaging of single nanoparticles. AnalyticalChemistry,2014,86(1):2-14
    107. ZhiáHuang C. Individually color-coded plasmonic nanoparticles for RGB analysis. ChemicalCommunications,2011,47(28):8121-8123
    108. Jing C, Gu Z, Ying Y-L, Li D-W, Zhang L, Long Y-T. Chrominance to dimension: A real-timemethod for measuring the size of single gold nanoparticles. Analytical Chemistry,2012,84(10):4284-4291
    109. Ringe E, Sharma B, Henry A-I, Marks L D, Van Duyne R P. Single nanoparticle plasmonics.Physical Chemistry Chemical Physics,2013,15(12):4110-4129
    110. Sagle L B, Ruvuna L K, Ruemmele J A, Van Duyne R P. Advances in localized surfaceplasmon resonance spectroscopy biosensing. Nanomedicine,2011,6(8):1447-1462
    111. Sannomiya T, V r s J. Single plasmonic nanoparticles for biosensing. Trends inBiotechnology,2011,29(7):343-351
    112. Ament I, Prasad J, Henkel A, Schmachtel S, So nnichsen C. Single unlabeled proteindetection on individual plasmonic nanoparticles. Nano Letters,2012,12(2):1092-1095
    113. Rosman C, Prasad J, Neiser A, Henkel A, Edgar J, So nnichsen C. Multiplexed PlasmonSensor for Rapid Label-Free Analyte Detection. Nano Letters,2013,13(7):3243-3247
    114. Zhang L, Li Y, Li D W, Jing C, Chen X, Lv M, Huang Q, Long Y T, Willner I. Single GoldNanoparticles as Real-Time Optical Probes for the Detection of NADH-DependentIntracellular Metabolic Enzymatic Pathways. Angewandte Chemie International Edition,2011,123(30):6921-6924
    115. Liu Q, Jing C, Zheng X, Gu Z, Li D, Li D-W, Huang Q, Long Y-T, Fan C. Nanoplasmonicdetection of adenosine triphosphate by aptamer regulated self-catalytic growth of single goldnanoparticles. Chemical Communications,2012,48(77):9574-9576
    116. Shi L, Jing C, Ma W, Li D W, Halls J E, Marken F, Long Y T. Plasmon Resonance ScatteringSpectroscopy at the Single-Nanoparticle Level: Real-Time Monitoring of a Click Reaction.Angewandte Chemie International Edition,2013,125(23):6127-6130
    117. Liu N, Tang M L, Hentschel M, Giessen H, Alivisatos A P. Nanoantenna-enhanced gassensing in a single tailored nanofocus. Nature Materials,2011,10(8):631-636
    118. Tang M L, Liu N, Dionne J A, Alivisatos A P. Observations of shape-dependent hydrogenuptake trajectories from single nanocrystals. Journal of the American Chemical Society,2011,133(34):13220-13223
    119. Tittl A, Yin X, Giessen H, Tian X-D, Tian Z-Q, Kremers C, Chigrin D N, Liu N. Plasmonicsmart dust for probing local chemical reactions. Nano Letters,2013,13(4):1816-1821
    120. Seo D, Park G, Song H. Plasmonic monitoring of catalytic hydrogen generation by a singlenanoparticle probe. Journal of the American Chemical Society,2011,134(2):1221-1227
    121. Shegai T, Langhammer C. Hydride Formation in Single Palladium and MagnesiumNanoparticles Studied By Nanoplasmonic Dark-Field Scattering Spectroscopy. AdvancedMaterials,2011,23(38):4409-4414
    122. Poyli M A, Silkin V, Chernov I, Echenique P, Muin o R D, Aizpurua J. Multiscale theoreticalmodeling of plasmonic sensing of hydrogen uptake in palladium nanodisks. The Journal ofPhysical Chemistry Letters,2012,3(18):2556-2561
    123. Schmidt M A, Lei D Y, Wondraczek L, Nazabal V, Maier S A. Hybrid nanoparticle-microcavity-based plasmonic nanosensors with improved detection resolution and extendedremote-sensing ability. Nature Communications,2012,3:1108
    124. Lee J S, Han M S, Mirkin C A. Colorimetric Detection of Mercuric Ion (Hg2+) in AqueousMedia using DNA-Functionalized Gold Nanoparticles. Angewandte Chemie InternationalEdition,2007,119(22):4171-4174
    125. Xiao L, Wei L, He Y, Yeung E S. Single molecule biosensing using color coded plasmonresonant metal nanoparticles. Analytical Chemistry,2010,82(14):6308-6314
    126. Waldeisen J R, Wang T, Ross B M, Lee L P. Disassembly of a Core-Satellite NanoassembledSubstrate for Colorimetric Biomolecular Detection. ACS Nano,2011,5(7):5383-5389
    127. Yuan Z, Cheng J, Cheng X, He Y, Yeung E S. Highly sensitive DNA hybridization detectionwith single nanoparticle flash-lamp darkfield microscopy. Analyst,2012,137(13):2930-2932
    128. Yang L, Zhu S, Hang W, Wu L, Yan X. Development of an ultrasensitive dual-channel flowcytometer for the individual analysis of nanosized particles and biomolecules. AnalyticalChemistry,2009,81(7):2555-2563
    129. Zhu S, Yang L, Long Y, Gao M, Huang T, Hang W, Yan X. Size differentiation and absolutequantification of gold nanoparticles via single particle detection with a laboratory-builthigh-sensitivity flow cytometer. Journal of the American Chemical Society,2010,132(35):12176-12178
    130. Person S, Deutsch B, Mitra A, Novotny L. Material-specific detection and classification ofsingle nanoparticles. Nano Letters,2010,11(1):257-261
    131. Rothenh usler B, Knoll W. Surface plasmon microscopy. Nature,1988,332:615-617
    132. Huang B, Yu F, Zare R N. Surface plasmon resonance imaging using a high numericalaperture microscope objective. Analytical Chemistry,2007,79(7):2979-2983
    133. Wang S, Shan X, Patel U, Huang X, Lu J, Li J, Tao N. Label-free imaging, detection, andmass measurement of single viruses by surface plasmon resonance. Proceedings of theNational Academy of Sciences,2010,107(37):16028-16032
    134. Shan X, Patel U, Wang S, Iglesias R, Tao N. Imaging local electrochemical current viasurface plasmon resonance. Science,2010,327(5971):1363-1366
    135. Shan X, Díez-Pérez I, Wang L, Wiktor P, Gu Y, Zhang L, Wang W, Lu J, Wang S, Gong Q.Imaging the electrocatalytic activity of single nanoparticles. Nature Nanotechnology,2012,7(10):668-672
    136. Baba K, Nishida K. Single-molecule tracking in living cells using single quantum dotapplications. Theranostics,2012,2(7):655-667
    137. Bruchez M P. Quantum dots find their stride in single molecule tracking. Current Opinion inChemical Biology,2011,15(6):775-780
    138. Pinaud F, Clarke S, Sittner A, Dahan M. Probing cellular events, one quantum dot at a time.Nature Methods,2010,7(4):275-285
    139. Sagle L B, Ruvuna L K, Bingham J M, Liu C, Cremer P S, Van Duyne R P. Single plasmonicnanoparticle tracking studies of solid supported bilayers with ganglioside lipids. Journal ofthe American Chemical Society,2012,134(38):15832-15839
    140. Yang Y-H, Nam J-M. Single Nanoparticle Tracking-Based Detection of Membrane ReceptorLigand Interactions. Analytical Chemistry,2009,81(7):2564-2568
    141. Lee K J, Nallathamby P D, Browning L M, Desai T, Cherukuri P K, Xu X-H N. Singlenanoparticle spectroscopy for real-time in vivo quantitative analysis of transport and toxicityof single nanoparticles in single embryos. Analyst,2012,137(13):2973-2986
    142. Chen L Q, Xiao S J, Peng L, Wu T, Ling J, Li Y F, Huang C Z. Aptamer-based silvernanoparticles used for intracellular protein imaging and single nanoparticle spectral analysis.The Journal of Physical Chemistry B,2010,114(10):3655-3659
    1. Faraday M. The Bakerian Lecture: Experimental Relations of Gold (and Other Metals) toLight. Philosophical Transactions of the Royal Society. London,1857,147:145–181
    2. Mie G. Articles on the optical characteristics of turbid tubes, especially colloidal metalsolutions. Annalen Der Physik,1908,25(3):377-445
    3. Knoll M, Ruska E. The Electron Microscope. Zeitschrift Fur Physik,1932,78(5-6):318-339
    4. Turkevich J, Stevenson P C, Hillier J. A Study of the Nucleation and Growth Processes in theSynthesis of Colloidal Gold. Discussions of the Faraday Society,1951,(11):55-75
    5. Frens G. Controlled Nucleation for Regulation of Particle-size in Monodisperse GoldSuspensions. Nature-Physical Science,1973,241(105):20-22
    6. Lamer V K, Dinegar R H. Theory, Production and Mechanism of Formation ofMonodispersed Hydrosols. Journal of the American Chemical Society,1950,72(11):4847-4854
    7. Pong B-K, Elim H I, Chong J-X, Ji W, Trout B L, Lee J-Y. New insights on the nanoparticlegrowth mechanism in the citrate reduction of Gold(III) salt: Formation of the au nanowireintermediate and its nonlinear optical properties. Journal of Physical Chemistry C,2007,111(17):6281-6287
    8. Wang H, Halas N J. Mesoscopic Au "Meatball" particles. Advanced Materials,2008,20(4):820-825
    9. Schmid G, Pfeil R, Boese R, Bandermann F, Meyer S, Calis G H M, Vandervelden W A.Au55P[(C6H5)3]12Cl6-A Gold Cluster of an Exceptional Size. Chemische Berichte-Recueil,1981,114(11):3634-3642
    10. Weare W W, Reed S M, Warner M G, Hutchison J E. Improved synthesis of small (d(CORE)approximate to1.5nm) phosphine-stabilized gold nanoparticles. Journal of the AmericanChemical Society,2000,122(51):12890-12891
    11. Brust M, Walker M, Bethell D, Schiffrin D J, Whyman R. Synthesis of Thiol-derivatizedGold Nanoparticles in a2-phase Liquid-liquid System. Journal of the Chemical Society-Chemical Communications,1994,(7):801-802
    12. Shimizu T, Teranishi T, Hasegawa S, Miyake M. Size evolution of alkanethiol-protected goldnanoparticles by heat treatment in the solid state. Journal of Physical Chemistry B,2003,107(12):2719-2724
    13. Pan Y, Leifert A, Ruau D, Neuss S, Bornemann J, Schmid G, Brandau W, Simon U,Jahnen-Dechent W. Gold Nanoparticles of Diameter1.4nm Trigger Necrosis by OxidativeStress and Mitochondrial Damage. Small,2009,5(18):2067-2076
    14. Pan Y, Neuss S, Leifert A, Fischler M, Wen F, Simon U, Schmid G, Brandau W,Jahnen-Dechent W. Size-dependent cytotoxicity of gold nanoparticles. Small,2007,3(11):1941-1949
    15. Hainfeld J F, Slatkin D N, Focella T M, Smilowitz H M. Gold nanoparticles: a new X-raycontrast agent. British Journal of Radiology,2006,79(939):248-253
    16. Hainfeld J F, Dilmanian F A, Zhong Z, Slatkin D N, Kalef-Ezra J A, Smilowitz H M. Goldnanoparticles enhance the radiation therapy of a murine squamous cell carcinoma. Physics inMedicine and Biology,2010,55(11):3045-3059
    17. Masuda H, Tanaka H, Baba N. Preparation of Porous Material by Replacing Microstructureof Anodic Alumina Film with Metal. Chemistry Letters,1990,(4):621-622
    18. Martin C R. Template Synthesis of Polymeric and Metal Microtubules. Advanced Materials,1991,3(9):457-459
    19. Yu Y Y, Chang S S, Lee C L, Wang C R C. Gold nanorods: Electrochemical synthesis andoptical properties. Journal of Physical Chemistry B,1997,101(34):6661-6664
    20. Jana N R, Gearheart L, Murphy C J. Seed-mediated growth approach for shape-controlledsynthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. AdvancedMaterials,2001,13(18):1389-1393
    21. Nikoobakht B, El-Sayed M A. Preparation and growth mechanism of gold nanorods (NRs)using seed-mediated growth method. Chemistry of Materials,2003,15(10):1957-1962
    22. Grzelczak M, Perez-Juste J, Mulvaney P, Liz-Marzan L M. Shape control in goldnanoparticle synthesis. Chemical Society Reviews,2008,37(9):1783-1791
    23. Murphy C J, Thompson L B, Chernak D J, Yang J A, Sivapalan S T, Boulos S P, Huang J,Alkilany A M, Sisco P N. Gold nanorod crystal growth: From seed-mediated synthesis tonanoscale sculpting. Current Opinion in Colloid&Interface Science,2011,16(2):128-134
    24. Khanal B P, Zubarev E R. Purification of high aspect ratio gold nanorods: Complete removalof platelets. Journal of the American Chemical Society,2008,130(38):12634-12635
    25. Carbo-Argibay E, Rodriguez-Gonzalez B, Pacifico J, Pastoriza-Santos I, Perez-Juste J,Liz-Marzan L M. Chemical sharpening of gold nanorods: The rod-to-octahedron transition.Angewandte Chemie-International Edition,2007,46(47):8983-8987
    26. Aden A L, Kerker M. Scattering of Electromagnetic Waves from2Concentric Spheres.Journal of Applied Physics,1951,22(10):1242-1246
    27. Oldenburg S J, Averitt R D, Westcott S L, Halas N J. Nanoengineering of optical resonances.Chemical Physics Letters,1998,288(2-4):243-247
    28. Brinson B E, Lassiter J B, Levin C S, Bardhan R, Mirin N, Halas N J. Nanoshells MadeEasy: Improving Au Layer Growth on Nanoparticle Surfaces. Langmuir,2008,24(24):14166-14171
    29. Wang H, Brandl D W, Nordlander P, Halas N J. Plasmonic nanostructures: Artificialmolecules. Accounts of Chemical Research,2007,40(1):53-62
    30. Chen J, McLellan J M, Siekkinen A, Xiong Y, Li Z-Y, Xia Y. Facile synthesis of gold-silvernanocages with controllable pores on the surface. Journal of the American Chemical Society,2006,128(46):14776-14777
    31. Skrabalak S E, Chen J, Sun Y, Lu X, Au L, Cobley C M, Xia Y. Gold Nanocages: Synthesis,Properties, and Applications. Accounts of Chemical Research,2008,41(12):1587-1595
    32. Lu X, Au L, McLellan J, Li Z-Y, Marquez M, Xia Y. Fabrication of cubic nanocages andnanoframes by dealloying Au/Ag alloy nanoboxes with an aqueous etchant based onFe(NO3)3or NH4OH. Nano Letters,2007,7(6):1764-1769
    33. Liang Z J, Susha A, Caruso F. Gold nanoparticle-based core-shell and hollow spheres andordered assemblies thereof. Chemistry of Materials,2003,15(16):3176-3183
    34. Liang H P, Wan L J, Bai C L, Jiang L. Gold hollow nanospheres: Tunable surface plasmonresonance controlled by interior-cavity sizes. Journal of Physical Chemistry B,2005,109(16):7795-7800
    35. Kim F, Connor S, Song H, Kuykendall T, Yang P D. Platonic gold nanocrystals. AngewandteChemie-International Edition,2004,43(28):3673-3677
    36. Sau T K, Murphy C J. Room temperature, high-yield synthesis of multiple shapes of goldnanoparticles in aqueous solution. Journal of the American Chemical Society,2004,126(28):8648-8649
    37. Seo D, Park J C, Song H. Polyhedral gold nanocrystals with O-h symmetry: From octahedrato cubes. Journal of the American Chemical Society,2006,128(46):14863-14870
    38. Seo D, Yoo C I, Park J C, Park S M, Ryu S, Song H. Directed surface overgrowth andmorphology control of polyhedral gold nanocrystals. Angewandte Chemie-InternationalEdition,2008,47(4):763-767
    39. Niu W, Zheng S, Wang D, Liu X, Li H, Han S, Chen J, Tang Z, Xu G. Selective Synthesis ofSingle-Crystalline Rhombic Dodecahedral, Octahedral, and Cubic Gold Nanocrystals.Journal of the American Chemical Society,2009,131(2):697-703
    40. Zhang J, Langille M R, Personick M L, Zhang K, Li S, Mirkin C A. Concave Cubic GoldNanocrystals with High-Index Facets. Journal of the American Chemical Society,2010,132(40):14012-14014
    41. Ma Y, Kuang Q, Jiang Z, Xie Z, Huang R, Zheng L. Synthesis of Trisoctahedral GoldNanocrystals with Exposed High-Index Facets by a Facile Chemical Method. AngewandteChemie-International Edition,2008,47(46):8901-8904
    42. Ming T, Feng W, Tang Q, Wang F, Sun L, Wang J, Yan C. Growth of Tetrahexahedral GoldNanocrystals with High-index Facets. Journal of the American Chemical Society,2009,131(45):16350-16351
    43. Personick M L, Langille M R, Zhang J, Harris N, Schatz G C, Mirkin C A. Synthesis andIsolation of {110}-Faceted Gold Bipyramids and Rhombic Dodecahedra. Journal of theAmerican Chemical Society,2011,133(16):6170-6173
    44. Shankar S S, Rai A, Ankamwar B, Singh A, Ahmad A, Sastry M. Biological synthesis oftriangular gold nanoprisms. Nature Materials,2004,3(7):482-488
    45. Millstone J E, Park S, Shuford K L, Qin L D, Schatz G C, Mirkin C A. Observation of aquadrupole plasmon mode for a colloidal solution of gold nanoprisms. Journal of theAmerican Chemical Society,2005,127(15):5312-5313
    46. Nehl C L, Liao H W, Hafner J H. Optical properties of star-shaped gold nanoparticles. NanoLetters,2006,6(4):683-688
    47. Hao F, Nehl C L, Hafner J H, Nordlander P. Plasmon resonances of a gold nanostar. NanoLetters,2007,7(3):729-732
    48. Khoury C G, Vo-Dinh T. Gold Nanostars For Surface-Enhanced Raman Scattering: Synthesis,Characterization and Optimization. Journal of Physical Chemistry C,2008,112(48):18849-18859
    49. Rodriguez-Lorenzo L, Alvarez-Puebla R A, Pastoriza-Santos I, Mazzucco S, Stephan O,Kociak M, Liz-Marzan L M, Javier Garcia de Abajo F. Zeptomol Detection ThroughControlled Ultrasensitive Surface-Enhanced Raman Scattering. Journal of the AmericanChemical Society,2009,131(13):4616-4618
    50. Barbosa S, Agrawal A, Rodriguez-Lorenzo L, Pastoriza-Santos I, Alvarez-Puebla R A,Kornowski A, Weller H, Liz-Marzan L M. Tuning Size and Sensing Properties in ColloidalGold Nanostars. Langmuir,2010,26(18):14943-14950
    51. Hrelescu C, Sau T K, Rogach A L, Jaeckel F, Laurent G, Douillard L, Charra F. SelectiveExcitation of Individual Plasmonic Hotspots at the Tips of Single Gold Nanostars. NanoLetters,2011,11(2):402-407
    52. Rodriguez-Lorenzo L, Krpetic Z, Barbosa S, Alvarez-Puebla R A, Liz-Marzan L M, Prior I A,Brust M. Intracellular mapping with SERS-encoded gold nanostars. Integrative Biology,2011,3(9):922-926
    53. Senthil Kumar P, Pastoriza-Santos I, Rodriguez-Gonzalez B, Garcia de Abajo F J,Liz-Marzan L M. High-yield synthesis and optical response of gold nanostars.Nanotechnology,2008,19(1):015606
    54. Guerrero-Martinez A, Barbosa S, Pastoriza-Santos I, Liz-Marzan L M. Nanostars shine brightfor you Colloidal synthesis, properties and applications of branched metallic nanoparticles.Current Opinion in Colloid&Interface Science,2011,16(2):118-127
    55. Hulteen J C, Vanduyne R P. Nanosphere Lithography-A Materials General FabricationProcess for Periodic Particle Array Surfaces. Journal of Vacuum Science&Technologya-Vacuum Surfaces and Films,1995,13(3):1553-1558
    56. Huang W Y, Qian W, El-Sayed M A. The optically detected coherent lattice oscillations insilver and gold monolayer periodic nanoprism arrays: The effect of interparticle coupling.Journal of Physical Chemistry B,2005,109(40):18881-18888
    57. Fromm D P, Sundaramurthy A, Schuck P J, Kino G, Moerner W E. Gap-dependent opticalcoupling of single "Bowtie" nanoantennas resonant in the visible. Nano Letters,2004,4(5):957-961
    58. Dreaden E C, Near R D, Abdallah T, Talaat M H, El-Sayed M A. Multimodal plasmoncoupling in low symmetry gold nanoparticle pairs detected in surface-enhanced Ramanscattering. Applied Physics Letters,2011,98(18):183115
    59. Xu Q, Rioux R M, Dickey M D, Whitesides G M. Nanoskiving: A New Method To ProduceArrays of Nanostructures. Accounts of Chemical Research,2008,41(12):1566-1577
    60. Zhang H, Li Z, Mirkin C A. Dip-pen nanolithography-based methodology for preparingarrays of nanostructures functionalized with oligonucleotides. Advanced Materials,2002,14(20):1472-1474
    61. Zhang H, Mirkin C A. DPN-generated nanostructures made of gold, silver, and palladium.Chemistry of Materials,2004,16(8):1480-1484
    62. Kim P, Epstein A K, Khan M, Zarzar L D, Lipomi D J, Whitesides G M, Aizenberg J.Structural Transformation by Electrodeposition on Patterned Substrates (STEPS): A NewVersatile Nanofabrication Method. Nano Letters,2012,12(2):527-533
    63. Liu G L, Lu Y, Kim J, Doll J C, Lee L P. Magnetic nanocrescents as controllablesurface-enhanced Raman scattering nanoprobes for biomolecular imaging. AdvancedMaterials,2005,17(22):2683-2688
    64. Lu Y, Liu G L, Lee L P. High-density silver nanoparticle film with temperature-controllableinterparticle spacing for a tunable surface enhanced Raman scattering substrate. Nano Letters,2005,5(1):5-9
    65. Henzie J, Kwak E S, Odom T W. Mesoscale metallic pyramids with nanoscale tips. NanoLetters,2005,5(7):1199-1202
    66. Lee J, Hasan W, Stender C L, Odom T W. Pyramids: A Platform for DesigningMultifunctional Plasmonic Particles. Accounts of Chemical Research,2008,41(12):1762-1771
    1. Nutt D, King L A, Saulsbury W, Blakemore C. Development of a rational scale to assess theharm of drugs of potential misuse. The Lancet,2007,369(9566):1047-1053
    2."Rules Proposed for Workplace Drug Testing". SAMHSA News,2004,12(3): a publicationof the United States Department of Health and Human Services.
    3. Fraser C. Italy MPs caught in drugs sting.9Oct.2006, http://news.bbc.co.uk/2/hi/europe/6035951.stm
    4. Hazarika P, Russell D A. Advances in Fingerprint Analysis. Angewandte Chemie-International Edition,2012,51(15):3524-3531
    5. Lee H C, Gaensslen R E.(ed.), Advances in Fingerprint Technology,2nd Edn., CRC Press,Boca Raton,2001
    6. Berry J, Stoney D A. in Lee H C, Gaensslen R E.(ed.), Advances in Fingerprint Technology,2nd Edn., CRC Press, Boca Raton,2001, pp.1
    7. Barnes J G. in McRoberts A.(ed.), The Fingerprint Source Book, National Institute of Justice,Washington,2011, ch.1. Available from http://www.nij.gov/pubs5sum/225320.htm
    8. Faulds H. On the Skin-Furrows of the Hand. Nature,1880,22,605
    9. Herschel W J. Skin Furrows of the Hand. Nature,1880,23,76
    10. Barnett K, in White P.(ed.), Crime Scene to Court: the essentials of forensic science,1stedn., RSC, Cambridge,1998, pp.98
    11. Galton F. Finger Prints, Macmillan, London,1892
    12. Saferstein R. Criminalistics: An Introduction to Forensic Science,9th edn., Prentice Hall,New Jersey,2006.
    13. Houck M M, Siegel J A. Fundamentals of Forensic Science, Academic Press, Burlington,2006.
    14. Jackson A R W, Jackson J M. Forensic Science,2nd edn., Prentice Hall, Harlow,2008.
    15. Ellis R A. in Zelickson A S.(ed.), Ultrastructure of Normal and Abnormal Skin, HenryKimpton, London,1967, pp.132-162
    16. Saga K. Structure and function of human sweat glands studied with histochemistry andcytochemistry. Progress in Histochemistry and Cytochemistry,2002,37(4):323-386
    17. Kelliher T P, Rittscher J, Tu P, Jason P J. in Encyclopedia of Forensic and Legal Medicine,Elsevier, Oxford,2005, pp.1-7
    18. Montagna W. The Cytology of Mammalian Epidermis and Sebceous Glands. InternationalReview of Cytology-a Survey of Cell Biology,1952,1:265-304
    19. Oden S, Von Hofsten B. Detection of fingerprints by the ninhydrin reaction. Nature,1954,173(4401):449-450
    20. Kuecken M. Models for fingerprint pattern formation. Forensic Science International,2007,171(2-3):85-96
    21. Bijl L J, Theeuwen A B. Visualization of latent fingerprints on porous and nonporousmaterials using iodine-benzoflavone aerosol. Archiv fur Kriminologie,1983,172(3-4):93-98
    22. Flynn K, Maynard P, Du Pasquier E, Lennard C, Stoilovic M, Roux C. Evaluation ofiodine-benzoflavone and ruthenium tetroxide spray reagents for the detection of latentfingermarks at the crime scene. Journal of Forensic Sciences,2004,49(4):707-715
    23. Keating D M, Miller J J. A Technique for Developing and Photographing Ridge Impressionson Decomposed Water-soaked Fingers. Journal of Forensic Sciences,1993,38(1):197-202
    24. Lewis L A, Smithwick R W, Devault G L, Bolinger B, Lewis S A. Processes involved in thedevelopment of latent fingerprints using the cyanoacrylate fuming method. Journal ofForensic Sciences,2001,46(2):241-246
    25. Kobus H J, Warrener R N, Stoilovic M.2Simple Staining Procedures Which Improve theContrast and Ridge Detail of Fingerprints Developed with Super Glue (Cyanoacrylate Ester).Forensic Science International,1983,23(2-3):233-240
    26. Chesher B K, Stone J M, Rowe W F. Use of the Omniprinttm1000Alternate Light-source toProduce Fluorescence in Cyanoacrylate-developed Latent Fingerprints Stained withBiological Stains and Commercial Fabric Dyes. Forensic Science International,1992,57(2):163-168
    27. Kent T, Thomas G L, Reynoldson T E, East H W. Vacuum Coating Technique forDevelopment of Latent Fingerprints on Polythene. Journal of the Forensic Science Society,1976,16(2):93-101
    28. Leggett R, Lee-Smith E E, Jickells S M, Russell D A."Intelligent" fingerprinting:Simultaneous identification of drug metabolites and individuals by usingantibody-functionalized nanoparticles. Angewandte Chemie-International Edition,2007,46(22):4100-4103
    29. Hazarika P, Jickells S M, Wolff K, Russell D A. Imaging of Latent Fingerprints through theDetection of Drugs and Metabolites. Angewandte Chemie-International Edition,2008,47(52):10167-10170
    30. Hazarika P, Jickells S M, Russell D A. Rapid detection of drug metabolites in latentfingermarks. Analyst,2009,134(1):93-96
    31. Hazarika P, Jickells S M, Wolff K, Russell D A. Multiplexed Detection of Metabolites ofNarcotic Drugs from a Single Latent Fingermark. Analytical Chemistry,2010,82(22):9150-9154
    32. Ifa D R, Manicke N E, Dill A L, Cooks G. Latent fingerprint chemical imaging by massspectrometry. Science,2008,321(5890):805-805
    33. Bhargava R, Perlman R S, Fernandez D C, Levin I W, Bartick E G. Non-invasive detection ofsuperimposed latent fingerprints and inter-ridge trace evidence by infrared spectroscopicimaging. Analytical and Bioanalytical Chemistry,2009,394(8):2069-2075
    34. Mou Y, Rabalais J W. Detection and Identification of Explosive Particles in FingerprintsUsing Attenuated Total Reflection-Fourier Transform Infrared Spectromicroscopy. Journal ofForensic Sciences,2009,54(4):846-850
    35. Ng P H R, Walker S, Tahtouh M, Reedy B. Detection of illicit substances in fingerprints byinfrared spectral imaging. Analytical and Bioanalytical Chemistry,2009,394(8):2039-2048
    36. Ifa D R, Jackson A U, Paglia G, Cooks R G. Forensic applications of ambient ionization massspectrometry. Analytical and Bioanalytical Chemistry,2009,394(8):1995-2008
    37. Zhang M, Girault H H. SECM for imaging and detection of latent fingerprints. Analyst,2009,134(1):25-30
    38. Yang S, Wang C-F, Chen S. A Release-Induced Response for the Rapid Recognition of LatentFingerprints and Formation of Inkjet-Printed Patterns. Angewandte Chemie-InternationalEdition,2011,50(16):3706-3709
    39. Xu L, Li Y, Wu S, Liu X, Su B. Imaging Latent Fingerprints by Electrochemiluminescence.Angewandte Chemie-International Edition,2012,51(37):8068-8072
    40. Zhang M, Girault H H. Fingerprint imaging by scanning electrochemical microscopy.Electrochemistry Communications,2007,9(7):1778-1782
    41. Shan X, Patel U, Wang S, Iglesias R, Tao N. Imaging Local Electrochemical Current viaSurface Plasmon Resonance. Science,2010,327(5971):1363-1366
    42. Ricci C, Bleay S, Kazarian S G. Spectroscopic Imaging of latent fingermarks collected withthe aid of a gelatin tape. Analytical Chemistry,2007,79(15):5771-5776
    43. Song W, Mao Z, Liu X, Lu Y, Li Z, Zhao B, Lu L. Detection of protein deposition withinlatent fingerprints by surface-enhanced Raman spectroscopy imaging. Nanoscale,2012,4(7):2333-2338
    44. Becue A, Champod C, Margot P. Use of gold nanoparticles as molecular intermediates for thedetection of fingermarks. Forensic Science International,2007,168(2-3):169-176
    45. Choi M J, McDonagh A M, Maynard P, Roux C. Metal-containing nanoparticles andnano-structured particles in fingermark detection. Forensic Science International,2008,179(2-3):87-97
    46. Spindler X, Hofstetter O, McDonagh A M, Roux C, Lennard C. Enhancement of latentfingermarks on non-porous surfaces using anti-L-amino acid antibodies conjugated to goldnanoparticles. Chemical Communications,2011,47(19):5602-5604
    47. Eustis S, El-Sayed M A. Why gold nanoparticles are more precious than pretty gold: Noblemetal surface plasmon resonance and its enhancement of the radiative and nonradiativeproperties of nanocrystals of different shapes. Chemical Society Reviews,2006,35(3):209-217
    48. Lal S, Link S, Halas N J. Nano-optics from sensing to waveguiding. Nature Photonics,2007,1(11):641-648
    49. Myroshnychenko V, Rodriguez-Fernandez J, Pastoriza-Santos I, Funston A M, Novo C,Mulvaney P, Liz-Marzan L M, Garcia de Abajo F J. Modelling the optical response of goldnanoparticles. Chemical Society Reviews,2008,37(9):1792-1805
    50. Jin Y. Engineering Plasmonic Gold Nanostructures and Metamaterials for Biosensing andNanomedicine. Advanced Materials,2012,24(38):5153-5165
    51. Li Y, Jing C, Zhang L, Long Y-T. Resonance scattering particles as biological nanosensors invitro and in vivo. Chemical Society Reviews,2012,41(2):632-642
    52. Becker J, Schubert O, Sonnichsen C. Gold nanoparticle growth monitored in situ using anovel fast optical single-particle spectroscopy method. Nano Letters,2007,7(6):1664-1669
    53. Grzelczak M, Liz-Marzan L M. Colloidal Nanoplasmonics: From Building Blocks to SensingDevices. Langmuir,2013,29(15):4652-4663
    54. Ringe E, Sharma B, Henry A-I, Marks L D, Van Duyne R P. Single nanoparticle plasmonics.Physical Chemistry Chemical Physics,2013,15(12):4110-4129
    55. Sonnichsen C, Reinhard B M, Liphardt J, Alivisatos A P. A molecular ruler based on plasmoncoupling of single gold and silver nanoparticles. Nature Biotechnology,2005,23(6):741-745
    56. Anker J N, Hall W P, Lyandres O, Shah N C, Zhao J, Van Duyne R P. Biosensing withplasmonic nanosensors. Nature Materials,2008,7(6):442-453
    57. Wang Z, Zhang J, Ekman J M, Kenis P J A, Lu Y. DNA-Mediated Control of MetalNanoparticle Shape: One-Pot Synthesis and Cellular Uptake of Highly Stable and FunctionalGold Nanoflowers. Nano Letters,2010,10(5):1886-1891
    58. Zhang L, Li Y, Li D-W, Jing C, Chen X, Lv M, Huang Q, Long Y-T, Willner I. Single GoldNanoparticles as Real-Time Optical Probes for the Detection of NADH-DependentIntracellular Metabolic Enzymatic Pathways. Angewandte Chemie-International Edition,2011,50(30):6789-6792
    59. Zheng X, Liu Q, Jing C, Li Y, Li D, Luo W, Wen Y, He Y, Huang Q, Long Y-T, Fan C.Catalytic Gold Nanoparticles for Nanoplasmonic Detection of DNA Hybridization.Angewandte Chemie-International Edition,2011,50(50):11994-11998
    60. de la Rica R, Stevens M M. Plasmonic ELISA for the ultrasensitive detection of diseasebiomarkers with the naked eye. Nature Nanotechnology,2012,7(12):821-824
    61. Shi L, Jing C, Ma W, Li D-W, Halls J E, Marken F, Long Y-T. Plasmon Resonance ScatteringSpectroscopy at the Single-Nanoparticle Level: Real-Time Monitoring of a Click Reaction.Angewandte Chemie-International Edition,2013,52(23):6011-6014
    62. Li D, Song S, Fan C. Target-Responsive Structural Switching for Nucleic Acid-BasedSensors. Accounts of Chemical Research,2010,43(5):631-641
    63. Song S, Qin Y, He Y, Huang Q, Fan C, Chen H-Y. Functional nanoprobes for ultrasensitivedetection of biomolecules. Chemical Society Reviews,2010,39(11):4234-4243
    64. Pelaz B, Jaber S, de Aberasturi D J, Wulf V, Aida T, de la Fuente J M, Feldmann J, Gaub H E,Josephson L, Kagan C R, Kotov N A, Liz-Marzan L M, Mattoussi H, Mulvaney P, Murray CB, Rogach A L, Weiss P S, Willner I, Parak W J. The State of Nanoparticle-BasedNanoscience and Biotechnology: Progress, Promises, and Challenges. Acs Nano,2012,6(10):8468-8483
    65. Lee J-S, Han M S, Mirkin C A. Colorimetric detection of mercuric ion (Hg2+) in aqueousmedia using DNA-functionalized gold nanoparticles. Angewandte Chemie-InternationalEdition,2007,46(22):4093-4096
    66. Willner I, Zayats M. Electronic aptamer-based sensors. Angewandte Chemie-InternationalEdition,2007,46(34):6408-6418
    67. Liu J, Cao Z, Lu Y. Functional Nucleic Acid Sensors. Chemical Reviews,2009,109(5):1948-1998
    68. Zhu Z, Su Y, Li J, Li D, Zhang J, Song S, Zhao Y, Li G, Fan C. Highly SensitiveElectrochemical Sensor for Mercury(II) Ions by Using a Mercury-Specific OligonucleotideProbe and Gold Nanoparticle-Based Amplification. Analytical Chemistry,2009,81(18):7660-7666
    69. Liu B, Lu L, Hua E, Jiang S, Xie G. Detection of the human prostate-specific antigen usingan aptasensor with gold nanoparticles encapsulated by graphitized mesoporous carbon.Microchimica Acta,2012,178(1-2):163-170
    70. Liu J W, Lu Y. Fast colorimetric sensing of adenosine and cocaine based on a general sensordesign involving aptamers and nanoparticles. Angewandte Chemie-International Edition,2006,45(1):90-94
    71. Zhang J, Wang L, Pan D, Song S, Boey F Y C, Zhang H, Fan C. Visual cocaine detectionwith gold nanoparticles and rationally engineered aptamer structures. Small,2008,4(8):1196-1200
    72. Li F, Zhang J, Cao X, Wang L, Li D, Song S, Ye B, Fan C. Adenosine detection by using goldnanoparticles and designed aptamer sequences. Analyst,2009,134(7):1355-1360
    73. Stojanovic M N, de Prada P, Landry D W. Aptamer-based folding fluorescent sensor forcocaine. Journal of the American Chemical Society,2001,123(21):4928-4931
    1. Bell A T. The impact of nanoscience on heterogeneous catalysis. Science,2003,299(5613):1688-1691
    2. Weckhuysen B M. Chemical Imaging of Spatial Heterogeneities in Catalytic Solids atDifferent Length and Time Scales. Angewandte Chemie-International Edition,2009,48(27):4910-4943
    3. Weckhuysen B M. Preface: recent advances in the in-situ characterization of heterogeneouscatalysts. Chemical Society Reviews,2010,39(12):4557-4559
    4. Buurmans I L C, Weckhuysen B M. Heterogeneities of individual catalyst particles in spaceand time as monitored by spectroscopy. Nature Chemistry,2012,4(11):873-886
    5. Cordes T, Blum S A. Opportunities and challenges in single-molecule and single-particlefluorescence microscopy for mechanistic studies of chemical reactions. Nature Chemistry,2013,5(12):993-999
    6. Wang W, Tao N J. Detection, Counting, and Imaging of Single Nanoparticles. AnalyticalChemistry,2014,86(1):2-14
    7. Gellman A J, Shukla N. NANOCATALYSIS More than speed. Nature Materials,2009,8(2):87-88
    8. Murzin D Y. Nanokinetics for nanocatalysis. Catalysis Science&Technology,2011,1(3):380-384
    9. Zhang S R, Nguyen L, Zhu Y, Zhan S H, Tsung C K, Tao F. In-Situ Studies of Nanocatalysis.Accounts of Chemical Research,2013,46(8):1731-1739
    10. Tao A R, Habas S, Yang P D. Shape control of colloidal metal nanocrystals. Small,2008,4(3):310-325
    11. Xia Y N, Xiong Y J, Lim B, Skrabalak S E. Shape-Controlled Synthesis of MetalNanocrystals: Simple Chemistry Meets Complex Physics? Angewandte Chemie-InternationalEdition,2009,48(1):60-103
    12. Langille M R, Personick M L, Zhang J, Mirkin C A. Defining Rules for the Shape Evolutionof Gold Nanoparticles. Journal of the American Chemical Society,2012,134(35):14542-14554
    13. Cox J T, Zhang B. Nanoelectrodes: Recent Advances and New Directions. Annual Review ofAnalytical Chemistry, Vol5,2012,5:253-272
    14. Ebejer N, Guell A G, Lai S C S, McKelvey K, Snowden M E, Unwin P R. ScanningElectrochemical Cell Microscopy: A Versatile Technique for Nanoscale Electrochemistry andFunctional Imaging. Annual Review of Analytical Chemistry, Vol6,2013,6:329-351
    15. Lu H P, Xun L Y, Xie X S. Single-molecule enzymatic dynamics. Science,1998,282(5395):1877-1882
    16. Edman L, Foldes-Papp Z, Wennmalm S, Rigler R. The fluctuating enzyme: a single moleculeapproach. Chemical Physics,1999,247(1):11-22
    17. Paige M F, Fromm D P, Moerner W E. Biomolecular applications of single-moleculemeasurements: Kinetics and dynamics of a single enzyme reaction. Proceedings of theSociety of Photo-Optical Instrumentation Engineers,2002,4634:92-103
    18. Velonia K, Flomenbom O, Loos D, Masuo S, Cotlet M, Engelborghs Y, Hofkens J, Rowan AE, Klafter J, Nolte R J M, de Schryver F C. Single-enzyme kinetics of CALB-catalyzedhydrolysis. Angewandte Chemie-International Edition,2005,44(4):560-564
    19. English B P, Min W, van Oijen A M, Lee K T, Luo G B, Sun H Y, Cherayil B J, Kou S C, XieX S. Ever-fluctuating single enzyme molecules: Michaelis-Menten equation revisited. NatureChemical Biology,2006,2(2):87-94
    20. Smiley R D, Hammes G G. Single molecule studies of enzyme mechanisms. ChemicalReviews,2006,106(8):3080-3094
    21. Roeffaers M B J, Sels B F, Uji-i H, De Schryver F C, Jacobs P A, De Vos D E, Hofkens J.Spatially resolved observation of crystal-face-dependent catalysis by single turnover counting.Nature,2006,439(7076):572-575
    22. Naito K, Tachikawa T, Fujitsuka M, Majima T. Real-time single-molecule imaging of thespatial and temporal distribution of reactive oxygen species with fluorescent probes:Applications to TiO2photocatalysts. Journal of Physical Chemistry C,2008,112(4):1048-1059
    23. Xu W L, Kong J S, Yeh Y T E, Chen P. Single-molecule nanocatalysis reveals heterogeneousreaction pathways and catalytic dynamics. Nature Materials,2008,7(12):992-996
    24. Janssen K P F, De Cremer G, Neely R K, Kubarev A V, Van Loon J, Martens J A, De Vos D E,Roeffaers M B J, Hofkens J. Single molecule methods for the study of catalysis: fromenzymes to heterogeneous catalysts. Chemical Society Reviews,2014,43(4):990-1006
    25. Chen P, Zhou X, Andoy N M, Han K-S, Choudhary E, Zou N, Chen G, Shen H.Spatiotemporal catalytic dynamics within single nanocatalysts revealed by single-moleculemicroscopy. Chemical Society Reviews,2014,43(4):1107-1117
    26. Tachikawa T, Majima T. Single-Molecule, Single-Particle Approaches for Exploring theStructure and Kinetics of Nanocatalysts. Langmuir,2012,28(24):8933-8943
    27. Chen P, Xu W L, Zhou X C, Panda D, Kalininskiy A. Single-nanoparticle catalysis atsingle-turnover resolution. Chemical Physics Letters,2009,470(4-6):151-157
    28. Xu W L, Kong J S, Chen P. Probing the catalytic activity and heterogeneity of Aunanoparticles at the single-molecule level. Physical Chemistry Chemical Physics,2009,11(15):2767-2778
    29. Zhou X C, Xu W L, Liu G K, Panda D, Chen P. Size-Dependent Catalytic Activity andDynamics of Gold Nanoparticles at the Single-Molecule Level. Journal of the AmericanChemical Society,2010,132(1):138-146
    30. Chen P, Zhou X C, Shen H, Andoy N M, Choudhary E, Han K S, Liu G K, Meng W L.Single-molecule fluorescence imaging of nanocatalytic processes. Chemical Society Reviews,2010,39(12):4560-4570
    31. Xu W L, Shen H, Kim Y J, Zhou X C, Liu G K, Park J, Chen P. Single-MoleculeElectrocatalysis by Single-Walled Carbon Nanotubes. Nano Letters,2009,9(12):3968-3973
    32. Han K S, Liu G K, Zhou X C, Medina R E, Chen P. How Does a Single Pt NanocatalystBehave in Two Different Reactions? A Single-Molecule Study. Nano Letters,2012,12(3):1253-1259
    33. Xu W, Jain P K, Beberwyck B J, Alivisatos A P. Probing Redox Photocatalysis of TrappedElectrons and Holes on Single Sb-doped Titania Nanorod Surfaces. Journal of the AmericanChemical Society,2012,134(9):3946-3949
    34. Zhou X C, Andoy N M, Liu G K, Choudhary E, Han K S, Shen H, Chen P. Quantitativesuper-resolution imaging uncovers reactivity patterns on single nanocatalysts. NatureNanotechnology,2012,7(4):237-241
    35. Andoy N M, Zhou X C, Choudhary E, Shen H, Liu G K, Chen P. Single-Molecule CatalysisMapping Quantifies Site-Specific Activity and Uncovers Radial Activity Gradient on Single2D Nanocrystals. Journal of the American Chemical Society,2013,135(5):1845-1852
    36. Zhou X C, Choudhary E, Andoy N M, Zou N M, Chen P. Scalable Parallel Screening ofCatalyst Activity at the Single-Particle Level and Subdiffraction Resolution. Acs Catalysis,2013,3(7):1448-1453
    37. Tachikawa T, Yamashita S, Majima T. Evidence for Crystal-Face-Dependent TiO2Photocatalysis from Single-Molecule Imaging and Kinetic Analysis. Journal of the AmericanChemical Society,2011,133(18):7197-7204
    38. Bian Z F, Tachikawa T, Kim W, Choi W, Majima T. Superior Electron Transport andPhotocatalytic Abilities of Metal-Nanoparticle-Loaded TiO2Superstructures. Journal ofPhysical Chemistry C,2012,116(48):25444-25453
    39. Wang N, Tachikawa T, Majima T. Single-molecule, single-particle observation of size-dependent photocatalytic activity in Au/TiO2nanocomposites. Chemical Science,2011,2(5):891-900
    40. Tachikawa T, Yonezawa T, Majima T. Super-Resolution Mapping of Reactive Sites onTitania-Based Nanoparticles with Water-Soluble Fluorogenic Probes. Acs Nano,2013,7(1):263-275
    41. Roeffaers M B J, De Cremer G, Libeert J, Ameloot R, Dedecker P, Bons A J, Buckins M, SelsB F, De Vos D E, Hofkens J. Super-Resolution Reactivity Mapping of NanostructuredCatalyst Particles. Angewandte Chemie-International Edition,2009,48(49):9285-9289
    42. De Cremer G, Roeffaers M B J, Bartholomeeusen E, Lin K F, Dedecker P, Pescarmona P P,Jacobs P A, De Vos D E, Hofkens J, Sels B F. High-Resolution Single-Turnover MappingReveals Intraparticle Diffusion Limitation in Ti-MCM-41-Catalyzed Epoxidation.Angewandte Chemie-International Edition,2010,49(5):908-911
    43. Nie S M, Emery S R. Probing single molecules and single nanoparticles by surface-enhancedRaman scattering. Science,1997,275(5303):1102-1106
    44. Kneipp K, Wang Y, Kneipp H, Perelman L T, Itzkan I, Dasari R, Feld M S. Single moleculedetection using surface-enhanced Raman scattering (SERS). Physical Review Letters,1997,78(9):1667-1670
    45. Brus L. Noble Metal Nanocrystals: Plasmon Electron Transfer Photochemistry andSingle-Molecule Raman Spectroscopy. Accounts of Chemical Research,2008,41(12):1742-1749
    46. Stiles P L, Dieringer J A, Shah N C, Van Duyne R R. Surface-Enhanced Raman Spectroscopy.Annual Review of Analytical Chemistry,2008,1:601-626
    47. Sonntag M D, Klingsporn J M, Zrimsek A B, Sharma B, Ruvuna L K, Van Duyne R P.Molecular plasmonics for nanoscale spectroscopy. Chemical Society Reviews,2014,43(4):1230-1247
    48. Bailo E, Deckert V. Tip-enhanced Raman scattering. Chemical Society Reviews,2008,37(5):921-930
    49. Pettinger B. Single-molecule surface-and tip-enhanced raman spectroscopy. MolecularPhysics,2010,108(16):2039-2059
    50. Kim H, Kosuda K M, Van Duyne R P, Stair P C. Resonance Raman and surface-andtip-enhanced Raman spectroscopy methods to study solid catalysts and heterogeneouscatalytic reactions. Chemical Society Reviews,2010,39(12):4820-4844
    51. Sonntag M D, Klingsporn J M, Garibay L K, Roberts J M, Dieringer J A, Seideman T,Scheidt K A, Jensen L, Schatz G C, Van Duyne R P. Single-Molecule Tip-Enhanced RamanSpectroscopy. Journal of Physical Chemistry C,2012,116(1):478-483
    52. Kang L L, Xu P, Zhang B, Tsai H H, Han X J, Wang H L. Laser wavelength-andpower-dependent plasmon-driven chemical reactions monitored using single particle surfaceenhanced Raman spectroscopy. Chemical Communications,2013,49(33):3389-3391
    53. Kang L L, Xu P, Chen D T, Zhang B, Han X J, Li Q, Wang H L. Amino Acid-AssistedSynthesis of Hierarchical Silver Microspheres for Single Particle Surface-Enhanced RamanSpectroscopy. Journal of Physical Chemistry C,2013,117(19):10007-10012
    54. Xu P, Kang L L, Mack N H, Schanze K S, Han X J, Wang H L. Mechanistic understanding ofsurface plasmon assisted catalysis on a single particle: cyclic redox of4-aminothiophenol.Scientific Reports,2013,3:6
    55. van Schrojenstein Lantman E M, Deckert-Gaudig T, Mank A J G, Deckert V, Weckhuysen BM. Catalytic processes monitored at the nanoscale with tip-enhanced Raman spectroscopy.Nature Nanotechnology,2012,7(9):583-586
    56. Sun M T, Zhang Z L, Zheng H R, Xu H X. In-situ plasmon-driven chemical reactionsrevealed by high vacuum tip-enhanced Raman spectroscopy. Scientific Reports,2012,2:4
    57. Willets K A, Van Duyne R P. Localized surface plasmon resonance spectroscopy and sensing.Annual Review of Physical Chemistry,2007,58:267-297
    58. Henry A-I, Bingham J M, Ringe E, Marks L D, Schatz G C, Van Duyne R P. CorrelatedStructure and Optical Property Studies of Plasmonic Nanoparticles. Journal of PhysicalChemistry C,2011,115(19):9291-9305
    59. Ringe E, Sharma B, Henry A I, Marks L D, Van Duyne R P. Single nanoparticle plasmonics.Physical Chemistry Chemical Physics,2013,15(12):4110-4129
    60. Anker J N, Hall W P, Lyandres O, Shah N C, Zhao J, Van Duyne R P. Biosensing withplasmonic nanosensors. Nature Materials,2008,7(6):442-453
    61. Stewart M E, Anderton C R, Thompson L B, Maria J, Gray S K, Rogers J A, Nuzzo R G.Nanostructured plasmonic sensors. Chemical Reviews,2008,108(2):494-521
    62. Zheng X X, Liu Q, Jing C, Li Y, Li D, Luo W J, Wen Y Q, He Y, Huang Q, Long Y T, Fan CH. Catalytic Gold Nanoparticles for Nanoplasmonic Detection of DNA Hybridization.Angewandte Chemie-International Edition,2011,50(50):11994-11998
    63. Liu Q, Jing C, Zheng X X, Gu Z, Li D, Li D W, Huang Q, Long Y T, Fan C H.Nanoplasmonic detection of adenosine triphosphate by aptamer regulated self-catalyticgrowth of single gold nanoparticles. Chemical Communications,2012,48(77):9574-9576
    64. Shi L, Jing C, Ma W, Li D W, Halls J E, Marken F, Long Y T. Plasmon Resonance ScatteringSpectroscopy at the Single-Nanoparticle Level: Real-Time Monitoring of a Click Reaction.Angewandte Chemie-International Edition,2013,52(23):6011-6014
    65. Li K, Qin W, Li F, Zhao X, Jiang B, Wang K, Deng S, Fan C, Li D. Nanoplasmonic imagingof latent fingerprints and identification of cocaine. Angewandte Chemie-International Edition,2013,52(44):11542-11545
    66. Langhammer C, Larsson E M. Nanoplasmonic In Situ Spectroscopy for CatalysisApplications. Acs Catalysis,2012,2(9):2036-2045
    67. Novo C, Funston A M, Mulvaney P. Direct observation of chemical reactions on single goldnanocrystals using surface plasmon spectroscopy. Nature Nanotechnology,2008,3(10):598-602
    68. Herrmann L O, Baumberg J J. Watching Single Nanoparticles Grow in Real Time throughSupercontinuum Spectroscopy. Small,2013,9(22):3743-3747
    69. Eo M, Baek J, Song H D, Lee S, Yi J. Quantification of electron transfer rates of differentfacets on single gold nanoparticles during catalytic reactions. Chemical Communications,2013,49(45):5204-5206
    70. Larsson E M, Langhammer C, Zoric I, Kasemo B. Nanoplasmonic Probes of CatalyticReactions. Science,2009,326(5956):1091-1094
    71. Langhammer C, Larsson E M, Kasemo B, Zoric I. Indirect Nanoplasmonic Sensing:Ultrasensitive Experimental Platform for Nanomaterials Science and OpticalNanocalorimetry. Nano Letters,2010,10(9):3529-3538
    72. Liu N, Tang M L, Hentschel M, Giessen H, Alivisatos A P. Nanoantenna-enhanced gassensing in a single tailored nanofocus. Nature Materials,2011,10(8):631-636
    73. Tang M L, Liu N, Dionne J A, Alivisatos A P. Observations of Shape-Dependent HydrogenUptake Trajectories from Single Nanocrystals. Journal of the American Chemical Society,2011,133(34):13220-13223
    74. Seo D, Park G, Song H. Plasmonic Monitoring of Catalytic Hydrogen Generation by a SingleNanoparticle Probe. Journal of the American Chemical Society,2012,134(2):1221-1227
    75. Tittl A, Yin X H, Giessen H, Tian X D, Tian Z Q, Kremers C, Chigrin D N, Liu N. PlasmonicSmart Dust for Probing Local Chemical Reactions. Nano Letters,2013,13(4):1816-1821
    76. Shan X N, Patel U, Wang S P, Iglesias R, Tao N J. Imaging Local Electrochemical Currentvia Surface Plasmon Resonance. Science,2010,327(5971):1363-1366
    77. Shan X N, Diez-Perez I, Wang L J, Wiktor P, Gu Y, Zhang L H, Wang W, Lu J, Wang S P,Gong Q H, Li J H, Tao N J. Imaging the electrocatalytic activity of single nanoparticles.Nature Nanotechnology,2012,7(10):668-672
    78. Frenkel A I, Rodriguez J A, Chen J G G. Synchrotron Techniques for In Situ Catalytic Studies:Capabilities, Challenges, and Opportunities. Acs Catalysis,2012,2(11):2269-2280
    79. Bordiga S, Groppo E, Agostini G, van Bokhoven J A, Lamberti C. Reactivity of SurfaceSpecies in Heterogeneous Catalysts Probed by In Situ X-ray Absorption Techniques.Chemical Reviews,2013,113(3):1736-1850
    80. Beale A M, Jacques S D M, Weckhuysen B M. Chemical imaging of catalytic solids withsynchrotron radiation. Chemical Society Reviews,2010,39(12):4656-4672
    81. de Smit E, Swart I, Creemer J F, Hoveling G H, Gilles M K, Kooyman P J, Zandbergen H W,Morin C, Weckhuysen B M, de Groot F M F. Nanoscale chemical imaging of a workingcatalyst by scanning transmission X-ray microscopy. Nature,2008,456(7219):222-239
    82. Tada M, Ishiguro N, Uruga T, Tanida H, Terada Y, Nagamatsu S, Iwasawa Y, Ohkoshi S.mu-XAFS of a single particle of a practical NiOx/Ce2Zr2Oy catalyst. Physical ChemistryChemical Physics,2011,13(33):14910-14913
    83. Chao W, Fischer P, Tyliszczak T, Rekawa S, Anderson E, Naulleau P. Real space soft x-rayimaging at10nm spatial resolution. Optics express,2012,20(9):9777-9783

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700