金属纳米光学天线结构增强拉曼及近场超分辨光刻研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光学天线因其新颖的物理现象和对光场的收集、发射及调控能力受到研究人员的广泛关注,在微纳光场调控、增强拉曼散射和增强荧光、近场成像及近场光刻等领域都有重要应用。金属纳米颗粒和纳米结构的局域表面等离子体(LSPs)效应是决定光学天线性质的基础,具有高度场局域和场增强特性。本文基于光学天线可调制分子发光性能的特性,设计了两种耦合型天线结构,并应用于表面增强拉曼散射(SERS)实验。研究了两种耦合结构的近远场光学性质及其与结构参数之间的关系。另外,根据光学天线的近场局域功能,使用蝴蝶结形光学天线进行近场超分辨光刻研究。基于该天线的近场光学性质,引入干涉式空间位相成像(ISPI)技术对掩膜板和光刻胶基底进行测距、调平,最终实现大规模并行超分辨光刻。本论文工作对于发展制备简单、灵敏度高的SERS基底,及分辨率高、产率大、成本低廉、可靠性好的微纳制造技术均有重要意义。
     具体研究内容如下:
     1.设计并制备了具有纳米级间隙的银纳米球帽-纳米小孔耦合型光学天线结构并应用于SERS实验。该结构制备方法简单,成本低廉。将耦合结构与非耦合的银纳米球帽单元结构进行对比研究,结合数值模拟手段分析知银纳米球帽和纳米小孔边缘的间隙中存在LSPs耦合效应,使能量高度局域在间隙区域内,增强电场强度,从而产生更多“热点”和更高的SERS增强因子,导致SERS信号大幅增强。研究还发现耦合效应强弱与耦合距离密切相关,通过改变蒸镀银膜厚度可调节该结构的耦合间隙大小,从而能改变SERS信号的强度,这为人为调控SERS基底的工作性能提供了有效途径。
     2.设计并制备了准三维的银纳米立方体-银纳米小孔阵列耦合结构,并应用于SERS实验。银纳米立方体通过化学合成法制备。银纳米小孔阵列结构则通过在具有周期孔洞结构的阳极氧化铝(AAO)模板上蒸镀银获得。使用纳米级厚度的PMMA薄膜作为间隔层,将银立方体和银小孔阵列结构纵向叠加在一起获得耦合结构。SERS实验和数值模拟结果显示,该结构可将银立方体和银小孔阵列结构的LSPs有效耦合并局域于PMMA间隔层中,影响掺杂在PMMA中的拉曼分子激发和辐射过程,从而可获得1.1×108的SERS增强因子。一系列单变量对比实验证明耦合效应对间隔层厚度、银膜厚度、小孔孔径及孔间距等特征结构参数敏感,为该结构今后的实际应用提供了多样化的调控手段。
     3.研究基于蝴蝶结形光学天线的近场扫描超分辨光刻技术。根据蝴蝶结形光学天线的近场局域特性和光斑发散特性,设计掩膜板结构、调平准直体系和光刻工艺,建立了一套基于该天线的近场光刻系统。通过实验和理论分析,系统地研究了光刻胶特性、光源、扫描速度、润滑剂等各项实验条件对光刻效果的影响。经过实验参数优化,最终获得可见光曝光条件下线宽分别为78nm和106nm的一维和二维任意图形超分辨近场扫描光刻结果。
     4.为提高近场光刻的生产效率,进行大规模并行近场光刻研究。在光刻系统中引入ISPI技术,用于对掩膜板与光刻胶基底进行精密测距和调平。通过ISPI调平可获得0.02mrad的掩膜板-基底空间平行度。建立了反馈控制机制,有效控制系统噪声,提高光刻胶基底移动过程中的系统稳定性。利用ISPI技术精确控制光学天线的工作距离,可进一步提高光刻分辨率,获得最小19nm线宽的光刻图形。使用改良的实验装置及掩膜板,实现了5×5(25个)和32×32(1024个)蝴蝶结形光学天线阵列的大规模并行近场二维扫描光刻。所获得的图形形貌均一,表面质量好,可靠性高。进一步提高扫描速度,可将产率相对于传统近场扫描光刻技术提高104倍以上。
     本论文的创新点在于:
     1.基于耦合型光学天线结构增强局域场的光学效应,设计制备了一种新颖的银纳米球帽-纳米小孔耦合天线结构,并应用于SERS实验。该结构的制备方法简单易行,可通过控制蒸镀银膜厚度的方法调节耦合间隙大小,从而对耦合效应和SERS信号强度起调制作用。
     2.提出一种新型的准三维耦合天线结构作为SERS基底。使用纳米级PMMA薄膜作为间隔层,将银纳米立方体和银纳米小孔阵列结构组装到一起。利用银小孔阵列结构增强对入射光的吸收,利用LSPs耦合效应将能量局域在耦合区域中,增强该区域内拉曼分子的激发和辐射效率,通过银立方体增强辐射,将近场拉曼信号发射至远场,便于被探测器收集。该耦合结构相比非耦合结构具有更好的拉曼增强效应,可获得1.1×108的SERS增强因子。
     3.首次将ISPI技术引入基于蝴蝶结形光学天线的近场扫描光刻体系,对掩膜板与光刻胶基底进行纳米级精密测距和调平,获得0.02mrad以上的掩膜板-基底平行度。系统地研究了近场扫描光刻过程中各技术参数对光刻结果的影响,使用ISPI技术精确控制天线工作距离,提高光刻分辨率,获得线宽最小可达19nm的光刻图形,并最终实现1024个天线阵列并行的大规模近场二维扫描超分辨光刻。该技术可将近场扫描光刻产率提高104倍。
Optical antenna has been widely investigated due to their novel optical phenomena and capability of manipulating light field at the nanometer scale. It has been used in many fields such as nano-scale light manipulation, surface enhanced Raman spectroscopy (SERS), fluorescence enhancement, near-field imaging and near-field optical nanolithography. Its properties are based on the localized surface plasmons (LSPs) that are supported by metal nanoparticles or nanostructures. In our work, two kinds of antennas consist of LSPs coupling structures were designed for SERS experiments, which can significantly increase the Raman signals due to the excitation and radiation enhancement of the molecules. On the other hand, based on the localization property, near-field optical nanolithography was investigated using bowtie aperture antennas. We studied the optical near-field properties of the bowtie aperture antenna and established a nanolithography system. To improve the lithography resolution and quality, interferometric-spatial-phase-imaging (ISPI) technique was introduced into this system, and finally assisted to realize high-throughput parallel near-field scanning optical lithography with diffraction-unlimited resolution. Our work has great potentials on developing easy-fabricated and low-cost SERS substrates and high-resolution, high-throughput, low-cost and reliable nano-manufacture technologies.
     The details of this thesis are shown as following:
     1. Ag nanocap-nanohole coupling antenna was designed for SERS experiments. This structure was fabricated through a facile and low-cost method. Both the SERS measurements and numerical simulations show that the cap-hole structure produces much stronger Raman signal than the non-coupling structures which is due to the plasmonic coupling effect within the gap between the cap and the hole. The coupling effect localized the energy in the gap so that can produce more "hot spots" and higher SERS enhancement factor. Additionally, the coupling effect is sensitive to the gap size, which can be controlled by the Ag layer thickness during the evaporation process. It provides an effective way to control the SERS performance for further applications.
     2. A quasi-3D system composed of Ag nanocubes and Ag nanohole arrays was designed and fabricated. The Ag nanocubes were synthesized through chemical reaction. The Ag nanohole arrays were obtained by evaporating Ag onto anodic aluminum oxide (AAO) templates, which have self-organized hexagonally-ordered hole arrays. PMMA film with nanoscale thichness was used as a spacer layer to separate the cubes and the hole array. SERS measurements and numerical simulation show that this structure supports LSPs coupling effect within the spacer. The intense local field can affect the excitation and radiation of Raman molecules doped in PMMA, which produced1.1×108SERS enhancement. A series of experiments were performed to investigate the sensitivity of the coupling effect to the structure parameters (such as the spacer thickness, the Ag film thickness, the hole diameter and the hole period). It provides varies ways to modulate the SERS performance of this kind of structure.
     3. Near-field scanning optical nanolithography was studied using bowtie aperture antennas. The near-field optical properties of the bowtie antenna were investigated for the reference of the mask design, the alignment procedure and the lithography technique. A near-field scanning optical lithography system was established using bowtie antennas as focusing elements. The effects of experimental parameters such as the photoresist properties, exposing source, scanning speed and the lubricant were analyzed through experiments. After optimizing the parameters,1D and2D arbitrary patterns with diffraction-unlimited resolution (78nm and106nm, respectively) were achieved under visible exposing light.
     4. To improve the throughput of near-field scanning nanolithography, parallel lithography technique was studied. Interferometric-spatial-phase-imaging (ISPI) technique was introduced into the lithography system to realize accurate gap detection and alignment. Through the ISPI alignment for the mask and photoresist substrate,0.02mrad parallelism can be achieved. The ISPI technique was also utilized to establish a feed-back system to suppress the noise during lithography process, which improved the stability of the whole system. The experimental setup and mask structure is developed according to the ISPI-assistant lithography strategy, and the working distance of the antennas can be well controlled to achieve a lithography resolution as small as19nm. High-throughput parallel near-field nanolithography using massive antenna arrays (e.g.25and1024antennas) were successfully realized with good quality, uniformity and reliability. By additionally speeding up the scanning movement, the throughput can be further increased to104times higher than the traditional near-field scanning lithography technique.
     The innovations of this thesis are listed following:
     1. Based on the local field enhancement of the LSPs coupling effect, Ag nanocap-nanohole coupling antenna was designed for SERS. The fabrication of this structure is facile and low-cost, and is able to control the gap size through the thickness of the Ag layer, which provides a easy way to modulate the SERS effect of this kind of structure.
     2. A quasi-3D plasmonic coupling antenna structure which is consist of Ag nanocubes and Ag nanohole arrays was realized using a PMMA film as spacer layer. An idea was performed to use Ag nanohole array to increase the absorption of the incident light energy and localize it in the coupling area. While the Ag cubes can enhance the radiation of the Raman signal and transfer it to far field for detection. This structure produced1.1×108SERS enhancement.
     3. Near-field scanning optical nanolithography using bowtie aperture antannas was studied thoroughly by investigating the influence of each technical parameter. ISPI technique was introduced into the lithography system to detect the distance between the mask and photoresist substrate and align them with a high accuracy (0.02mrad) so that the problems caused by the near-field property of the antenna can be solved. The ISPI technique can precisely control the working distance of the antenna, which helps to achieve a lithography resolution as small as19nm and finally realize massive parallel lithography for1D and2D arbitrary patterns. The throughput can reach104times of the traditional near-field lithography method.
引文
1 R. Feynman. There's plenty of room at the bottom[R].1960, Eng. Sci. Mag.,23: 22.
    2 Stefan AM. Plasmonics:Fundamentals and Applications[M].2007, Berlin: Springer.
    3 Ishi T, Fujikata J, Makita K, et al. Si Nano-Photodiode with a Surface Plasmon Antenna[J].2005, Jpn. J. Appl. Phys.,44(12):L364.
    4 Mahboub O, Carretero Palacios S, Genet C, et al. Optimization of bull's eye structures for transmission enhancement[J].2010, Optics Express,18(11):11292.
    5 Lezec HJ, Deqirion A, Devaux E, et al. Beaming Light from a Subwavelength Aperture[J].2002, Science,297:820.
    6 Wessel J. Surface-enhanced optical microscopy [J].1985, J. Opt. Soc. Am. B,2: 1538.
    7 Fischer UC and Pohl DW. Observation on single-particle plasmons by near-field optical microscopy[J].1989, Phys. Rev. Lett.,62:458.
    8 Novotny L, Sanchez EJ, and Xie XS. Near-field optical imaging using metal tips illuminated by higher-order Hermite-Gaussian beams[J].1998, Ultramicroscopy, 71:21.
    9 Pohl DW. Near-field optics:Principles and Applications[M]. M. Ohtsu and X. Zhu, editors,2000, Singapore:World Scientific.
    10 Crozier KB, Sundaramurthy A, Kino GS, et al. Optical antennas:Resonators for local field enhancement[J].2003, Journal of Applied Physics,94:4632.
    11 Greffet, JJ. Nanoantennas for light emission[J].2005, Science,308(5728):1561.
    12 Farahni JN, Pohl DW, Eisler HJ, et al. Single Quantum Dot Coupled to a Scanning Optical Antenna:A Tunable Superemitter[J].2005, Phys.Rev. Lett.,95: 017402.
    13 Muhlschlegel P, Eisler HJ, Martin OJF, et al. Resonant Optical Antennas[J].2005, Science,308:1607.
    14 Bharadwaj P, Deutsch B, Novotny L. Optical Antennas[J].2009, Adv. Opt. Photon., 1(3):438-483.
    15 Greffet JJ, Laroche M, and Marquier F. Impedance of a Nanoantenna and a Single Quantum Emitter[J].2010, Phys. Rev. Lett.105,117701.
    16 Novotny L and Hecht B. Principles of Nano-Optics[M].2006, Cambridge: Cambridge University Press.
    17 Paolo B, Jer-Shing H, and Bert H. Nanoantennas for visible and infrared radiation[J].2012, Reports on Progress in Physics 75(2):024402.
    18 Purcell EM. Spontaneous emission probabilities at radio frequencies[J].1946, Phys.Rev.69:681.
    19 Joulain K, Carminati R, Mulet JP, et al. Definition and measurement of the local density of electromagnetic states close to an interface[J].2003, Phys. Rev. B 68: 245405.
    20 Kleppner D. Inhibited spontaneous emission[J].1981, Phys. Rev. Lett.,47:233.
    21 Goy P, Raimond J, Gross M, et al. Observation of cavityenhanced single-atom spontaneous emission[J].1983, Phys. Rev. Lett.,50:1903.
    22 Lee KF. Principles of antenna theory [M].1984, New York:John Wiley and Sons.
    23 Balanis CA. Antenna theory:analysis and design[M].1997, New York:John Wiley and Sons.
    24 Krasnok AE, Maksymov IS, Denisyuk AI, et al. Optical nanoantennas[J].2013, Physics-Uspekhi 56(6):539.
    25 Novotny L, van Hulst N. Antennas for light[J].2011, Nat. Photon.5(2):83.
    26 Giannini V et al. Nanoantennas for visible and infrared radiation[J].2011, Chem. Rev.111:3888.
    27 Biagioni P, Huang JS, Hecht B[J].2012, Rep. Prog. Phys.75:024402.
    28 Taminiau TH, Moerland RJ, Segerink FB, et al. λ/4 resonanceof an optical monopole antenna probed by single molecule uorescence[J].2007, Nano Lett.,7: 28.
    29 Taminiau TH, Stefani FD, Segerink FB, et al. Optical antennas direct single-molecule emission[J].2008, Nat. Photonics 2:234.
    30 Moerland RJ, van Hulst NF, Gersen H, et al. Probing the negative permittivity perfect lens at optical frequencies using near-field optics and single molecule detection[J].2005, Opt. Eng.13:1604.
    31 Landau LD and Lifshitz EM. Elektrodynamik der kontinua[M].1985, Berlin: Akademie-verlag.
    32 Dorfmuller J, Vogelgesang R, Khunsin W, et al. Plasmonic nanowire antennas: experiment, simulation and theory[J].2010, Nano Lett.,10:3596.
    33 Taminiau TH, Stefani FD, and van Hulst NF. Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna[J].2008, Opt. Express,16:10858.
    34 Shimizu KT, Woo WK, Fisher BR, et al. Surface-enhanced emission from single semiconductor nanocrystals[J].2002, Phys. Rev. Lett.,89:117401.
    35 Farahani JN, Pohl DW, Eisler HJ, et al. Single quantum dot coupled to a scanning optical antenna:a tunable superemitter[J].2005, Phys. Rev. Lett.,95: 017402.
    36 Bharadwaj P and Novotny L. Spectral dependence of single molecule fluorescence enhancement J].2007, Opt. Express,15:14266.
    37 Borg GG, Harris JH, Miljak DG, et al. Application of plasma columns toradiofrequency antennas[J].1999, Appl. Phys. Lett.,74:3272.
    38 Bryant JH. The first century of microwaves-1886 to 1986[J].1988, IEEE Trans, on Microwave Theory Tech.,36:830.
    39 Lorenta HA. The Theory of Electrons[M].1909, Teubner.
    40方容川.固体光谱学[M].2001,合肥:中国科学技术大学出版社.
    41 P. Drude.1900, Phys.,1:566
    42 Carsten S. Plasmons in metal nano-structures[D].2011, Munich:Ludwig Maximilians University of Munich.
    43 Mock JJ, Barbic M, Smith DR, et al. Shape effectsinplasmon resonance of individual colloidal silver nanoparticles[J].2002, J. Chem. Phys.,116(15):6755.
    44 Mattei G, Mazzoldi P and Bernas H. Metal Nanoclusters for Optical Properties[M].1995, Berlin:Springer.
    45 Kelly KL, Coronado E, Zhao LL, et al.2003, J. Phys. Chem. B,107(3):668.
    46 Ghenuche P, Cherukulappurath S, Taminiau TH, et al. Spectroscopic mode mapping of resonant plasmonnanoantennas[J].2008, Phys. Rev. Lett., 101:116805.
    47 Schuck PJ, Fromm DP, Sundaramurthy A, et al. Improving themismatch between light and nanoscale objects with gold bowtie nanoantennas[J].2005, Phys. Rev.Lett.,94:017402.
    48 Muskens OL, Giannini V, Sanchez-Gil JA, et al. Strong enhancement of the radiativedecay rate of emitters by single plasmonicnanoantennas[J].2007, Nano Lett.,7:2871
    49 Schnell M, Garcia-Etxarri A, Huber AJ, et al. Controlling the near-field oscillations of loaded plasmonic nanoantennas[J].2009 Nature Photonics,3:287.
    50 Micro-, nano-fabrication and integration. http://nam.epfl.ch/research/15.html
    51 Orlo J, Utlaut M, and Swanson L. High resolution focused ion beams:FIB and applications[M].2002, Dordrecht:Kluwer Academic/Plenum Publishers.
    52 Melngailis J. Focused ion beam technology and applications[J].1987, J. Vac. Sci. Technol. B,5:469.
    53 Huang JS, Callegari V, Geisler P, et al. Atomically at single-crystalline gold nanostructures for plasmonicnanocircuitry[J].2010,NatureComm.,1:150.
    54 Huang JS, Kern J, Geisler P, et al. Mode imaging and selection in strongly coupled nanoantennas[J].2010, Nano Lett.,10:2105.
    55 Pramod P and Thomas KG. Plasmon coupling in dimers of Au nanorods[J].2008, Adv. Mat.,20:4300.
    56 Jain T, Westerlund F, Johnson E, et al. Self-assemblednanogaps via seed-mediated growth of end-to-end linked gold nanorods[J].2009, ACS Nano, 3:828.
    57 Kukura P, Celebrano M, Renn A, et al. Single-molecule sensitivity in opticalabsorption at room temperature[J].2010, J. Phys. Chem. Lett.,1:3323.
    58 Chong S, Min W, and Xie S. Ground-state depletion microscopy:detection sensitivity ofsingle-molecule optical absorption at room temperature[J].2010, J. Phys. Chem. Lett.,1:3316.
    59 Celebrano M, Kukura P, Renn A, et al. Single-molecule imaging by opticalabsorption[J].2011, Nature Phot.,5:95.
    60 Keller O. Near-field optics:the nightmare of the photon[J].2000, J. Chem. Phys., 112:7856.
    61 Lounis B and Orrit M. Single-photon sources[J].2005, Rep. Prog. Phys., 68:1129.
    62 Alu A and Engheta N. Input Impedance, "Nanocircuit Loading, and Radiation Tuning of Optical Nanoantennas[J].2008, Phys. Rev. Lett.,101(4):043901.
    63 Kinkhabwala A, et al. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna[J].2009, Nature Photonics,3(11):654-657.
    64 Biagioni P, et al. Cross resonant optical antenna[J].2009, Phys. Rev. Lett., 102(25):256801.
    65 Biagioni P, et al. Near-field polarization shaping by a near-resonant plasmonic cross antenna[J].2009, Phys. Rev. B,80(15):153409.
    66 Zhu W, Banaee MG, Wang D, et al. Lithographically Fabricated Optical Antennas with Gaps Well Below 10 nm[J].2011, Small 7(13):1761.
    67 Li WD, Ding F, Hu J, et al. Three-dimensional cavity nanoantenna coupled plasmonic nanodots for ultrahigh and uniform surface-enhanced Raman scattering over large area[J].2011, Opt Express 19(5):3925.
    68 Farahani JN, Eisler HJ, Pohl DW, et al. Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy [J].2007, Nanotechnology, 18:125506.
    69 Anger P, Bharadwaj P, and Novotny L. Enhancement and quenching of single-molecule fluorescence[J].2006, Phys. Rev. Lett.,96:113002.
    70 Kuhn S, Hakanson U, Rogobete L, et al. Enhancement of single-moleculeuorescence using a gold nanoparticle as an optical antenna[J].2006, Phys. Rev. Lett.,97:017402.
    71 Castro-Lopez M, Brinks D, Sapienza R, et al. Polarized multiphoton emissionfrom resonant Al, Ag and Au nanoantennas[C].2010, Beijing:11th International Conference on Near-field.
    72 Farrer RA, Butterfield FL, Chen VW, et al. Highly efficient multiphoton absorption-induced luminescence from gold nanoparticles[J].2005, Nano Lett., 5:1139.
    73 Eichelbautm M, Schmidt BE, Ibrahim H, et al. Three-photon-inducedluminescence of gold nanoparticles embedded in and located on the surface of glassy nanolayers[J].2007, Nanotechnology,18:355702.
    74 Trompoukis C, El Daif O, Depauw V, et al. Photonic assisted light trapping integrated in ultrathin crystalline silicon solar cells by nanoimprint lithography [J]. 2012, Appl. Phys. Lett.101(10):103901.
    75 Yu Y, Ferry VE, Alivisatos AP, et al. Dielectric Core-Shell Optical Antennas for Strong Solar Absorption Enhancement[J].2012, Nano Letters 12(7):3674.
    1易明芳.银纳米立方体及其与银膜耦合结构增强的荧光与拉曼研究[D].2011,合肥:中国科学技术大学.
    2 Fleischmann M, Hendra PJ, McQuillan AJ. Raman spectra of pyridine adsorbed at a silver electrode[J].1974, Chem. Phys. Lett.,26(2):163.
    3 Jeanmaire DL, Van Duyne RP. Surface raman spectroelectrochemistry:Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode[J].1977, J. Electroanal. Chem.,84(1):1.
    4 Albrecht MG, Creighton JA. Anomalously intense Raman spectra of pyridine at a silver electrode[J].1977, J. Am. Chem. Soc.,99(15):5215.
    5 Moskovits M. Surface-enhanced spectroscopy. Rev. Mod. Phys.,1985,57:783.
    6 Chang RK, Furtak TE, Eds. Surface Enhanced Raman Scattering[M].1982, New York:Plenum Press.
    7 Kerker M. Electromagnetic model for surface-enhanced Raman scattering (SERS) on metal colloids[J].1984, Acc. Chem. Res.,17:271.
    8 Otto A. Surface enhanced Raman scattering (SERS), what do we know[J].1980, Appl. Surf. Sci.,6:309.
    9 Dornhaus R. Surface enhanced raman spectroscopy [J].1982, Adv. Solid State Phys.,22:201.
    10 Ueba H. Theory of charge transfer excitation in surface enhanced Raman scattering[J].1983, Surface Science,131:347.
    11 Mo Y, Morke I, Wachter P. The influence of surface roughness on the Raman scattering of pyridine on copper and silver surfaces[J].1984, Solid State Commun.,50:829.
    12 Mo Y, Lei J, Li X. Surface enhanced Raman scattering of rhodamine 6G and dye 1555 adsorbed on roughened copper surfaces[J].1988, Solid State Commun., 66(2):127.
    13 Van Duyne RP, Hulteen JC, and Treichel DA. Atomic force microscopy and surface-enhanced Raman spectroscopy. I. Ag island films and Ag film over polymer nanosphere surfaces supported on glass[J].1993, The Journal of Chemical Physics,99:2101.
    14 Lin WC, Huang SH, Chen CL, et al. Controlling SERS intensity by tuning the size and height of a silver nanoparticle array [J].2010, Applied Physics A, 101:185.
    15 Krasnok AE, Maksymov IS, Denisyuk AI, et al. Optical nanoantennas[J].2013, Physics-Uspekhi 56(6):539.
    16 Ghenuche P, Cherukulappurath S, Taminiau TH, et al. Spectroscopic mode mapping of resonant plasmon nanoantennas[J].2008, Phys. Rev. Lett. 101:116805.
    17 Im H, Bantz KC, Lindquist NC, et al. Vertically oriented sub-10-nm plasmonic nanogap arrays[J].2010, Nano Letters,10(6):2231.
    18 Sun F, Cai W, Li Y, et al. Laser morphological manipulation of gold nanoparticles periodically arranged on solid supports[J].2005, Applied Physics B,81(6):765.
    19 Zheng YB, Juluri BK, Kiraly B, et al. Ordered Au nanodisk and nanohole arrays: fabrication and applications[J].2010, Journal of Nanotechnology in Engineering and Medicine, 1(3):031011.
    20 Liu J, Maaroof AI, Wieczorek L, et al. Fabrication of hollow metal "nanocaps" and their red-shifted optical absorption spectra[J].2005, Advanced Materials, 17(10):1276.
    21 Mirin NA, Halas NJ. Light-bending nanoparticles[J].2009, Nano Letters, 9(3):1255.
    22 Shao MW, Lu L, Wang H, et al. An ultrasensitive method:surface-enhanced Raman scattering of Ag nanoparticles from β-silver vanadate and copper[J]. 2008, Chem. Commun.,20:2310.
    23 Palik ED. Handbook of Optical Constants of Solids[M].1998, Amsterdam:Elsevier.
    24 Yamaguchi K, Inoue T, Fujii M, et al. Electric field enhancement of nano gap of silver prisms[J].2007, Chinese Physics Letters,24:2934.
    25 Leveque G, and Martin OJF. Optical interactions in a plasmonic particle coupled to a metallic film[J].2006, Opt. Express,14:9971.
    1 Ringe E, Grubisic A, Cobley C, et al. Plasmon Near-Electric Field Enhancement Effects in Ultrafast Photoelectron Emission:Correlated Spatial and Laser Polarization Microscopy in Individual Ag Nanocubes[J].2012, Nano Lett.,12:4823.
    2 Stewart ME, Mack NH, Malyarchuk V, et al. Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals[J].2006, Proceedings of the National Academy of Sciences,103(46):17143.
    3 Yao J, Le AP, Gray SK, et al. Nanostructured Plasmonic Materials:Functional Nanostructured Plasmonic Materials[J].2010, Advanced Materials,22(10):1102.
    4 Hou Y, Xu J, Zhang X, et al. SERS on periodic arrays of coupled quadrate-holes and squares[J].2010, Nanotechnology,21(19):195203.
    5 Ye J, Shioi M, Lodewijks K, et al. Tuning plasmonic interaction between gold nanorings and a gold film for surface enhanced Raman scattering[J].2010, Appl. Phys. Lett.,97(16):163106.
    6 Ameling R, Langguth L, Hentschel M, et al. Cavity-enhanced localized plasmon resonance sensing[J].2010, Appl. Phys. Lett.,97(25):253116.
    7 Chu Y, Crozier KB. Experimental study of the interaction between localized and propagating surface plasmons[J].2009, Opt. Lett.,34(3):244.
    8 Skrabalak SE, Au L, Li X, et al. Facile synthesis of Ag nanocubes and Au nanocages[J].2007, Nat. Protocols 2:2182.
    9 Zhang Q, Li W, Moran C, et al. Seed-Mediated Synthesis of Ag Nanocubes with Controllable Edge Lengths in the Range of 30-200 nm and Comparison of Their Optical Properties[J].2010, Journal of the American Chemical Society, 132:11372.
    10 Keller F, Hunter MS, Robinson DL. Structural features of oxide coatings on aluminum[J].1953, J. Electrochem. Soc.,100:411.
    11 Masuda H, Fukuda K. Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina[J].1995, Science, 268:1466.
    12 Hornyak GL, Patrissi CJ, Martin CR. Fabrication, characterization, and optical properties of gold nanoparticle/porous alumina composites:the nonscattering Maxwell-Garnett limit[J].1997, J. Phys. Chem. B,101:1548.
    13 Brumlik CJ, Menon VP, Martin CR. Template synthesis of metal microtubule ensembles utilizing chemical, electro-chemical and vacuum deposition techniques[J].1994, J. Mater. Res.,9:1174.
    14贾冲.利用氧化铝模板合成准一维纳米结构[D].2005,合肥:中国科学技术大学.
    15 Evans PR, Hendren WR, Atkinson R, et al. Optical transmission measurements of silver, silver–gold alloy and silver–gold segmented nanorods in thin film alumina[J].2008, Nanotechnology,19:465708.
    16 Qiu T, Kong F, Zhang WJ, et al. Tailoring light emission properties of organic emitter by coupling to resonance-tuned silver nanoantenna arrays[J].2009, Appl. Phys. Lett.,95:213104.
    17 Zhang D, Moh K, and Yuan X. Surface plasmon-coupled emission from shaped PMMA films doped with fluorescence moleculese[J].2010, Opt. Express, 18(6):12185.
    18 Zhang D, Yuan X and Bouhelier A. Direct image of surface plasmon-coupled emission by leakage radiation microscopy [J].2010, Appl. Opt.49:875.
    19 Zhang D, Yuan X, Bouhelier A, et al. Active control of surface plasmon polaritons by optical isomerization of an azobenzene polymer film[J].2009, Appl. Phys. Lett.,95:101102.
    20 Zhang D, Yuan X, Bouhelier A, et al. Excitation of surface plasmon polaritons guided mode by Rhodamine B molecules doped in a PMMA stripe[J].2010, Opt. Lett.,35:408.
    21易明芳.银纳米立方体及其与银膜耦合结构增强的荧光与拉曼研究[D].2011,合肥:中国科学技术大学.
    22 Shao MW, Lu L, Wang H, et al. An ultrasensitive method:surface-enhanced Raman scattering of Ag nanoparticles from β-silver vanadate and copper[J]. 2008, Chem. Commun.,20:2310.
    23 Choi D, Choi Y, Hong S, et al. Self-organized hexagonal-nanopore SERS array[J].2010, Small 6:1741.
    24 Reilly TH, Chang SH, Corbman JD, et al. Quantitative Evaluation of Plasmon Enhanced Raman Scattering from Nanoaperture Arrays[J].2006, The Journal of Physical Chemistry C,111:1689.
    25 Yamaguchi K, Inoue T, Fujii M, et al. Electric field enhancement of nano gap of silver prisms[J].2007, Chinese Physics Letters,24:2934.
    26 Leveque G, and Martin OJF. Optical interactions in a plasmonic particle coupled to a metallic film[J].2006, Opt. Express,14:9971.
    27 Braun J, Gompf B, Kobiela G, et al. How holes can obscure the view:suppressed transmission through an ultrathin metal film by a subwavelength hole array [J]. 2009, Phys. Rev. Lett.,103:203901.
    28 Ghaemi HF, Thio T, Grupp DE, et al. Surface plasmons enhance optical transmission through subwavelength holes[J].1998, Phys. Rev. B,58:6779.
    1 Vieu C, Carcenac F, Pepin A, et al. Electron beam lithography:resolution limits and applications[J].2000, Applied Surface Science,164:111.
    2 Fischer PB, Chou SY.10 nm electron beam lithography and sub-50 nm overlay using a modified scanning electron microscope[J].1993, Applied Physics Letters, 62(23):2989.
    3 Craighead HG, Howard RE, Jackel LD, et al.10-nm linewidth electron beam lithography on GaAs[J].1983, Applied Physics Letters,42(1):38.
    4 Cabrini S, Carpentiero A, Kumar R, et al. Focused ion beam lithography for two dimensional array structures for photonic applications[J].2005, Microelectronic Engineering,78(79):11.
    5 Watt F, Bettiol AA, Van Kan JA, et al. Ion beam lithography and nanofabrication: a review[J].2005, International Journal of Nanoscience,4(3):269.
    6 Springham SV, Osipowicz T, Sanchez JL, et al. Micromachining using deep ion beam lithography[J].1993, Nuclear Instruments and Methods in Physics Research Section B,130:155.
    7 Switkes M, Rothschild M. Resolution enhancement of 157 nm lithography by liquid immersion[J].2002, J. Micro/Nanolith. MEMS MOEMS.,1(3):225.
    8 Switkes M. Immersion lithography at 157 nm[J].2001, J. Vac. Sci. Tech. B, 19(6):2353.
    9 Sau TK, Rogach AL. Nonspherical Noble Metal Nanoparticles: Colloid-Chemical Synthesis and Morphology ControlfJ].2010, Advanced Materials 22(16):1781.
    10 Sau TK, Rogach AL, Jackel F, et al. Properties and Applications of Colloidal Nonspherical Noble Metal Nanoparticles[J].2010, Adv. Mater.,22(16):1805.
    11 Ding X, Xu R, Liu H, et al. Hyperbranched Polymer-Assisted Hydrothermal In situ Synthesis of Submicrometer Silver Tubes[J].2008, Crystal Growth & Design 8(8):2982.
    12 Skrabalak SE, Au L, Li X, et al. Facile synthesis of Ag nanocubes and Au nanocages[J].2007, Nat Protocols 2(9):2182.
    13 Peter JS. Extreme ultraviolet lithography:overview and development status[J]. 2005, J. Micro/Nanolith. MEMS MOEMS,4(1):011006.
    14 Jonkers J. High power extreme ultra-violet (EUV) light sources for future lithography[J].2006, Plasma Sources Science and Technology,15(2):8.
    15 Heuberger A. X-ray lithography [J].1988, J. Vac. Sci. Tech. B,6(1):107.
    16 Kim T, Lee WS, Joe HE, et al. High-speed plasmonic nanolithography with a solid immersion lens-based plasmonic optical head[J].2012, Appl. Phys. Lett., 101(16):161109.
    17 Pan L, Park Y, Xiong Y, et al. Maskless Plasmonic Lithography at 22 nm Resolution[J].2011, Sci. Rep.,1:175.
    18 Liao X, Brown KA, Schmucker AL, et al. Desktop nanofabrication with massively multiplexed beam pen lithography [J].2013, Nat. Commun.,4:2103.
    19 Wang L, Uppuluri SM, Jin EX, et al. Nanolithography Using High Transmission Nanoscale Bowtie Apertures[J].2006, Nano Letters,6(3):361.
    20 Murphy-DuBay N, Wang L, Xu X. Nanolithography using high transmission nanoscale ridge aperture probe[J].2008, Appl. Phys. A,93(4):881.
    21 Murphy-DuBay N, Wang L, Kinzel EC, et al. Nanopatterning using NSOM probes integrated with high transmission nanoscale bowtie aperture[J].2008, Opt. Express 16(4):2584.
    22 Jin EX, Xu X. Finitte-Difference Time-Domain Studies on Optical Transmission through Planar Nano-Apertures in a Metal Film[J].2004, Jpn. J. Appl. Phys., 43(1):407.
    23 Srituravanich W, Pan L, Wang Y, et al. Flying plasmonic lens in the near field for high-speed nanolithography [J].2008, Nature Nanotechnology,3(12):733.
    24 Jin EX, Xu X. Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture[J].2005, Appl. Phys. Lett.,86(11):111106.
    25 Srisungsitthisunti P, Ersoy OK, Xu X. Improving near-field confinement of a bowtie aperture using surface plasmon polaritons[J].2011, Appl. Phys. Lett., 98(22):223106.
    26 Srisungsitthisunti P. Efficient subdiffraction focusing of light using zone plate and bowtie aperture[D].2011, West Lafayette:Purdue University.
    27 Uppuluri SMV, Kinzel EC, Li Y, et al. Parallel optical nanolithography using nanoscale bowtie aperture array[J].2010, Opt. Express,18(7):7369.
    28 MICROPOSITTM S1800TM G2 series photoresist data sheet. Philadelphia: Rohm and Haas company.
    29 Homola AM. Lubrication issues in magnetic disk storage devices[J].1996, IEEE Transactions on Magnetics,32(3):1812.
    1 Uppuluri SMV, Kinzel EC, Li Y, et al. Parallel optical nanolithography using nanoscale bowtie aperture array[J].2010, Opt. Express,18(7):7369.
    2 Liao X, Brown KA, Schmucker AL, et al. Desktop nanofabrication with massively multiplexed beam pen lithography[J].2013, Nat. Commun.4:2103.
    3 Huo F, Zheng G, Liao X, et al. Beam pen lithography [J].2010, Nat. Nano. 5(9):637.
    4 Haq E, Liu Z, Zhang Y, et al. Parallel Scanning Near-Field Photolithography: The Snomipede[J].2010, Nano Letters,10(11):4375.
    5 Liu C. Parallel scanning probe arrays:their applications[J].2008, Materials Today, 11(0):22.
    6 Moon EE, Everett PN, Meinhold MW, et al. Novel mask-wafer gap measurement scheme with nanometer-level detectivity [J].1999, J. Vac. Sci. Technol. B, 17(6):2698.
    7 Moon EE and Smith HI. Nanometer-precision pattern registration for scanning-probe lithographies using interferometric-spatial-phase imaging[J]. 2006, J. Vac. Sci. Technol. B,24(6):3083.
    8 Moon EE, Everett PN, Meinhold MW, et al. Dynamic three-dimensional mask-wafer positioning with nanometer exposure overlay accuracy [J].2000, Tokyo:Microprocesses and Nanotechnology Conference.
    9 Srisungsitthisunti P, Moon EE, Tansarawiput C, et al. Nanometer-level alignment using interferometric-spatial-phase-imaging (ISPI) during silicon nanowire growth[J].2010, Proc. of SPIE,7767:776707
    10 Srisungsitthisunti P. Efficient subdiffraction focusing of light using zone plate and bowtie aperture[J].2011, West Lafayette:Purdue University.
    11 Menon R, Moon EE, Mondol MK, et al. Scanning-spatial-phase alignment for zone-plate-array lithography [J].2004, J. Vac. Sci. Technol. B,22(6):3328.
    12 Mitchell JI, Park SJ, Watson CA, et al. Laser direct write of silicon nanowires[J]. 2011, Opt. Eng.,50(10):5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700