金针茹AEG抗性突变株筛选
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
提高农作物中人体与哺乳动物必需氨基酸含量是育种工作的主要研究领域,8种必需氨基酸中的赖氨酸、苏氨酸、甲硫氨酸和异亮氨酸皆以天冬氨酸为共同前体,通过不同的支路来代谢合成,其中赖氨酸还通常是影响氨基酸品质的第一限制性氨基酸,赖氨酸结构类似物S-(2-氨基乙基)-2′半胱氨酸(AEC)在天冬氨酸族代谢途径和含量提高的研究中起着重要作用。本研究首先观察AEC对6种食用菌菌丝生长的影响,探讨其与6种食用菌氨基酸含量的相关性及食用菌间氨基酸代谢的异同,在此基础上,以金针菇单核菌丝产生的粉孢子为材料,通过紫外线诱变,以AEC为选择培养基筛选具有AEC抗性的金针菇突变菌株,并测定突变株与出发菌株氨基酸含量,分析金针菇等食用菌天冬氨酸族氨基酸含量进一步提高的可能性,为食用菌氨基酸品质改良奠定理论与实验基础。
     [方法] 1、配制含有不同AEC浓度的基本和完全培养基上,接种金针菇单核菌丝(IM02),培养观察AEC对菌丝生长的抑制情况,并与AEC对白色茶树菇,榆黄蘑,虎奶菇,杏鲍菇和姬松茸抑制作用进行比较,计算AEC对菌丝生长抑制的IC_(50);2、观察紫外线和Co~(60)辐射对金针菇粉孢子致死效应;3、利用AEC选择培养基,筛选出经紫外线诱变,具有AEC抗性的金针菇单核菌株,纯化后做抗性的稳定性试验,并通过液体发酵比较抗性菌株和出发菌株菌丝体游离氨基酸和总氨基酸的含量。4、将出发菌株IM02、抗性菌株与金针菇单核菌丝IS02杂交,通过观察有无锁状联合来鉴定菌株。
     [结果] 1、AEC浓度在3000 mg.L~(-1)以上,金针菇单核菌丝的生长被完全抑制;在基本培养基上,AEC对金针菇单核菌丝(IM02),白色茶树菇,榆黄蘑,虎奶菇,杏鲍菇和姬松茸的半数抑制浓度分别为24.8,5754.1,159.4,21.7,1158.8和361.8 mg.L~(-1);在完全培养基上,AEC对金针菇单核菌丝(IM02),白色茶树菇,榆黄蘑,虎奶菇和杏鲍菇的半数抑制浓度分别为2792.3,379751.1,402.2,244.9和1576.7 mg.L~(-1),具有显著的不同;2、紫外线和Co~(60)对金针菇单核菌丝产生粉孢子致死效应分别较符合二次方程Y=3.7833-7.7874X-0.1481X~2和Y=0.4315+0.5768X-0.0008X~2;3、从AEC选择培养基中筛选到一株AEC抗性稳定的突变株A1。氨基酸测定表明,突变株A1在基础培养基发酵的菌丝体游离的异亮氨酸、苏氨酸和天冬氨酸族氨基酸总量分别比出发菌株IM02提高了49.4%、11.1%和17.6%;在完全培养基发酵的菌丝体的游离氨基酸总含量提高了38.3%,其中,异亮氨酸、甲硫氨酸、苏氨酸、赖氨酸和天冬氨酸族氨基酸总量分别提高了78.8%、63.6%、31.3%、14.3%和33.3%。4、杂交试验表明,出发菌株IM02、突变株A1与金针菇单核菌丝IS02均形成了锁状联合。
     [结论] 1、所试验的6种食用菌对AEC抗性的显著不同,反映出其代谢途径中相关酶受终产物反馈抑制的敏感程度显著不同,值得对其相关酶(如AK等)作进一步研究。2、AEC抗性菌株的相关游离氨基酸和总氨基酸含量的相应提高,表明利用突变和筛选程序可以选育出高天冬氨酸族含量的食用菌新品种。3、本研究为食用菌氨基酸代谢途径和氮基酸品种改良奠定了理论与实验基础。
Improving amino acids quality is major work of agricultural plants breeding.Threonine, lysine, methionine, and Isoleusine which are biosynthesized through the aspartate family pathway are 4 of 8 essential amino acids for humans and monogastric animals and usually lysine is the first limiting amounts amino acids in many agricultural products. S-(2-aminoethyl)-L-cysteine which is lysine analogue plays a vital role in the study of metobolism of asparate-derived amino acids and elevations of these amino acid content. Edible fungi are abundant in nutritions such as amino acids. Firstly, in this thesis, .inhibitions of lysine analogue S-2-Aminoethyl-L-Cysteine(AEC) on mycelial growth of Agrocybe chaxingufwhitej , Pleurotus citrinopileatus, Pleurotus eryngii, Plewrotus tuber-regium, Agaricus blazi and Flammulina velutipes(IM02)were tested and the relativity of inhibitions effect and amino acids content of above edible fungi was also established. Secondly, a selection scheme based on AEC inhibition was applied to is
    olating AEC resistant strains from UV-irradiated oidida of Flammulina velutipes and comparision of free and total amino acids content was conducted. The work was expected to be the theoretical and practical basis of the study of breeding of aspartate family amino acids-rich strain of edible fungi and metobolism of amino acids. 1 .Mycelial growth rate of Agrocybe chaxingufwhite) , Pleurotus citrinopileatus, Pleurotus tuber-regium, Pleurotus eryngii, Agaricus blazei and Flammulina velutipes (IMQ2) was measured when they grow in the minimal medium and complete medium which comprised different concentrations of AEC and ICso of inhibition of AEC on mycelial growth rate were calculated .
    2.The death rates of UV-irradiated and Co60 -irradiated oidida of Flammulina velutipes were tested.
    3.A selection scheme based on AEC inhibition was applied to isolating AEC resistant strains from UV-irradiated oidida of Flammulina velutipes and free and total amino acids content were determined.
    4.The hybridation of AEC-resistant strains and the wild strains with IS02 were conducted to examine the authenticity of these strains.
    1 .The results showed that ICso of inhibition of AEC on mycelial growth rate of Agrocybe chaxingufwhite) , Pleurotus citrinopileatus, Pleurotus tuber-regium, Pleurotus eryngii, Agaricus blazei and Flammulina velutipes (IMQ2) in the minimal medium was 5754.1 ? 159.4, 21.7, 1158.8, 361.8 and 24.8mg.L~1 respectively and IC50 of inhibition of AEC on mycelial growth rate of Agrocybe chaxingufwhite , Pleurotus citrinopileatus, Pleurotus tuber-regium, Pleurotus eryngii and Flammulina velutipes(lM02) in the complete medium was 379751.1, 402.2, 244.9,1576.7 and 2792.3mg.L~1, respectively .which were different significantly.
    
    
    2.The death rates of UV-irradiated and Co60 -irradiated oidida of Flammulina velutipes were in conformity with the quadratic equation Y=3.7833+7.7874X-0.1481X2 and Y=0.4315+ 0.5768X-0.0008X2 through curve estimation.
    3. One AEC resistant strain was isolated by screening UV-irradiated oidida of Flammulina velutipes and were confirmed after five replicates. The resistant strain contained much higher concentrations of free threonine, methionine and alanine than the wild strain of IM02.
    4.The authenticity of the mutant strain was confirmed by the hybridation test. [Conclusions]
    It was estimated that sensitivity of enzymes on end products in the feedback pathway of aspartate family amino acids biosynthesis were different significantly in the edible fungi. The results would cast a promising perspectives on strain improvement work of edible fungi to high aspartate family amino acids.
引文
[1] 王镜岩,朱圣庚,徐长法,主编.生物化学(第三版)[M].北京:高等教育出版社,2002,8(3):340-377.
    [2] 郑云兰,郭砚翠.黑木耳和金针菇氨基酸组成研究[J].生物技术,1995,5(2):38-41.
    [3] 李学梅,单广福.金针菇蛋白质及氨基酸含量的测定与分析[J].中国食用菌,1999,18(6):20-22.
    [4] 郁建强,殷戎一.10个平菇品种的氨基酸分析及蛋白质营养价值比较研究[J].上海农学院学报,1998,16(1):75-78.
    [5] 吴三桥,周选围,李新生.松乳菇中氨基酸及其它营养素含量的测定[J].氨基酸和生物资源,2001,23(3):5-6,12.
    [6] 卢宪,吴文礼.金针菇高游离氨基酸菌株选育[J].中国食用菌,1990,9(4):17-18.
    [7] 胡瑞瑶,胡晃.提高香菇和银耳蛋白质氨基酸含量的研究[J].福建林学院学报,1990,10(4):363-367.
    [8] 高树仁,王振华.关于高赖氨酸玉米选育方法的探讨[J].玉米科学,1998,6(2):35-37,43.
    [9] 张秀君,刘俊起,赵倩,等.用基因枪将高赖氨酸基因导入玉米及转基因植株的检测[J].农业生物技术学报,1999,7(4):363-367.
    [10] 谢启光,黄占景,沈银柱.基因工程改良小麦品质的研究进展和展望[J].河北师范大学学报:自然科学版,2001,25(2):251-255.
    [11] GAO YF,邱敦莲,等.转移到水稻中的富赖氨酸蛋白基因的初步研究[J].国外作物育种,2002,21(5):2-2.
    [12] 王弘,齐秀兰,李福德.紫外诱变原生质体选育赖氨酸高产菌株[J].生物工程学报,1990,6(1):32—38.
    [13] 周东坡,平文祥,贾树彪,等.原生质体融合选育赖氨酸高产菌种的研究[J].微生物学报,1991,31(4):287—292.
    [14] 齐秀兰,阎浩林.L—赖氨酸高产菌株选育的研究[J].微生物学杂志,1997,17(2):12-16.
    [15] 孙雪雁,金世芳,张文悦.高赖氨酸酵母菌的辐照选育[J].科学通报,1998,14(6):429-432.
    [16] 梁运祥,李兆文,郝勃.以抗结构类似物筛选高产L-赖氨酸酵母突变株[J].微生物学杂志,1999,19(4):15-16,21.
    [17] 张惠展,编著.途径工程——第三代基因工程[M].北京:中国轻工业出版社,2002,1(1):117-126.
    [18] TEIXEIRA CMG, GAZIOLA SA, LUGLI J, et al.Isolation, partial purification and characterization of isoenzymes of aspartate kinase from rice seeds[J]. Journal of Plant Physiology, 1998, 153(3-4):281-289.
    [19] KOCHHAR VK, KOCHHAR S, SANE PV. Studies on the regulation of aspartate kinase in plants..Advance in Plant Science Research[J], 1997(5-6): 138-153.
    [20] MIFLIN BJ, LEA PJ, MILLS WR, et al. Amino acid biosynthesis in chloroplasts[J].
    
    Photosynthesis. Volume Ⅳ. Regulation of carbon metabolism. Proceedings of the Fifth International Congress on Photosynthesis[J]. September 7-13, 1980, Halkidiki, Greece. 1981, 731-743.
    [21] WALLSGROVE RM, LEA PJ, MIFLIN BJ.Intracellular localization of aspartate kinase and the enzymes of threonine and methionine biosynthesis in green leaves[J]. Plant Physiology, 1983,71 (4):780-784.
    [22] BONNIER PLR, RELTON JM, WALLSGROVE RM,et al. Partial purification and some properties of the lysine sensitive plant aspartate kinase[J]. Proceedings of the international congress of plant physiology. New Delhi, India, 15-20 February 1988. 1990(2):1050-1053. New Delhi, India, Society for Plant Physiology and Biochemistry.
    [23] KOCHHAR S, KOCHHAR VK, SANE PV. Calmodulin is a subunit of lysine sensitive isoenzyme of aspartate kinase from plants[J]. Proceedings of the International Congress of Plant Physiology, New Delhi, India. 15-20 February, 1988. 1990(1):700-704.New Delhi, India, Society for Plant Physiology and Biochemistry.
    [24] DOTAON SB, SOMERS DA, GENGENBACH BG. Purification and characterization of lysine-sensitive aspartate kinase from maize cell cultures[J]. Plant Physiology,1989,91(4):1602-1608.
    [25] AARNES H, ROGNES SE. Threonine-sensitive aspartate kinase and homoserine dehydrogenase from Pisum sativum[J]. Phytochemistry, 1974,13(12):2717-2724.
    [26] CHESHIRE RM, MIFLIN BJ. The control of lysine biosynthesis in maize[J]. Phytochemistry. 1975, 14: 3, 695-698.
    [27] YAMADA Y, KUMPAISAL R, HASHIMOTO T, et al. Growth and aspartate kinase activity in wheat cell suspension culture: effects of lysine analogs and aspartate-derived amino acids[J]. Plant and Cell Physiology, 1986,27(4):607-617.
    [28] ZHU S JX, GALILI G. Expression of an Arabidopsis aspartate kinase/homoserine dehydrogenase gene is metabolically regulated by photosynthesis-related signals but not by nitrogenous compounds[J]. Plant Physiology, 1998,116(3): 1023-1028.
    [29] RAO SS, KOCHHAR S, KOCHHAR VK. Analysis of photocontrol of aspartate kinase in barley (Hordeum vulgare L.) seedlings[J]. Biochemistry and Molecular Biology International, 1999, 47(3):347-360.
    [30] MADHUSUDAN D, GUAHA MS, DEY M,et al. Phytochrome activation of aspartate kinase in etiolated chickpea (Cicer arietinum) seedling[J]. Journal of Plant Physiology, 1999,154(4):454-458.
    [31] LUGLI J, GAZIOLA SA, AZEVEDO RA. Effects of calcium, S-adenosylmethionine, S-(2-aminoethyl)-L-cysteine, methionine, valine and salt concentration on rice aspartate kinase isoenzymes[J]. Plant Science Limerick,2000,150(1):51-58.
    [32] MADHUSUDAN D, .GUAHA MS, DEY M. Aspartate metabolism in Cicer immature seeds requires Ca2+, protein phosphorylation and dephosphorylation[J]. Plant Science
    
    Limerick,2000,150(1):85-91.).
    [33] PARIS S, VIEMON C, CURIEN G, et al. Mechanism of control of Arabidopsis thaliana aspartate kinase-homoserine dehydrogenase by threonine[J]. Journal of Biological Chemistry,2003, 278(7):5361-5366.
    [34] YOSHIOKA Y, KUREI S, MACHIDA Y. Identification of a monofunctional aspartate kinase gene of Arabidopsis thaliana with spatially and temporally regulated expression[J]. Genes and Genetic Systems,2001,76(3): 189-198.
    [35] 刘阳剑,张英姿,王绛,等.钝齿棒杆菌天冬氨酸激酶基因的克隆和序列分析[J].微生物学报,2002,42(4):395-399.
    [36] 赵倩,刘俊起.大肠杆菌天冬氨酸激酶lysC基因的克隆及定点突变[J].农业生物技术学报.1999,7(4):348-352.
    [37] FRANKARD V, VAUTERIN M, JACOBS M. Molecular characterization of an Arabidopsis thaliana cDNA coding for a monofunctional aspartate kinase[J]. Plant Molecular Biology, 1997,34(2):233-242.
    [38] TANG G, ZHU S JX, AMIR R,et al. Cloning and expression of an Arabidopsis thaliana cDNA encoding a monofunctional aspartate kinase homologous to the lysine-sensitive enzyme of Escherichia coli[J]. Plant Molecular Biology, 1997,34(2):287-294.
    [39] CATTOIR RA, DEGRYSE E, JACOBS M. Selection and analysis of mutants over-producing amino acids of the aspartate family in barley, Arabidopsis and carrot. Induced mutations-a tool in plant research[J]. Proceedings of an international symposium(Vienna, 9-13 March 1981). 1981:353-361.
    [40] BRIGHT SWJ, MIFLIN B J, ROBNES SE. Threonine accumulation in the seeds of a barley mutant with an altered aspartate kinase[J].Biochemical Genetics,1982,20(3-4):229-243.
    [41] CATTOIR RA, DEGRYSE E, VERBRUGGEN I,et al. Selection and characterization of carrot embryoid cultures resistant to inhibition by lysine plus threonine[J]. Biochemie und Physiologie der Pflanzen, 1983,178(2-3):81-90.
    [42] NEGRUTIU I, CATTOIR RA, VERBRUGGEN l,et al. Lysine overproducer mutants with an altered dihydrodipicolinate synthase from protoplast culture of Nicotiana sylvestris (Spegazzini and Comes) [J]. Theoretical and Applied Genetics,1984,68(1/2): 11-20.
    [43] GONZALES RA, DAS PK, WIDHOLM JM. Characterization of cultured tobacco cell lines resistant to ethionine, a methionine analog[J].Plant Physiology, 1984,74(3):640-644.
    [44] CURTISS CD, WIDHOLM JM, GONZALES RA. Selection and characterization of methionine and tryptophan analog resistant asparagus cells[J]. Journal of Plant Physiology, 1987, 130(2-3): 125-135.
    [45] KUMPAISAL R, HASHIMOTO T, YAMADA Y. Selection and characterization of
    
    S-(2-aminoethyl)-L-cysteine-resistant wheat cell cultures[J]. Journal of Plant Physiology, 1988,133(5):608-614.
    [46] HEREMANS B, VERNAILLEN S, JACOBS M. The threonine overproduction of a biochemical mutant in Arabidopsis thaliana (L.) Heynh. is due to an aspartate kinase less sensitive to lysine[j].Mededelingen van de Faculteit Landbouwwetenschappen,Rijksuniversiteit Gent, 1988,53(4a): 1747-1749.
    [47] HEREMANS B, JACOBS M. Biochemistry and genetics of Arabidopsis thaliana mutants characterized by lysine or threonine overproduction[J]. Mededelingen van de Faculteit Landbouwwetenschappen,Rijksuniversiteit Gent, 1989,54(4a): 1257-1265.Proceeding, Third Forum for Applied Biotechnology, 28 September 1989.
    [48] BINAROVA P, NOVOTNY F, NEDBALKOVA B. Selection and characterization of alfalfa cell lines resistant to lysine + threonine and/or ethionine[J]. Biochemie und Physiologie der Pflanzen, 1989,185(1-2):99-107.
    [49] DOTSON SB, FRISCH DA, SOMERS DA,et al. Lysine-insensitive aspartate kinase in two threonine-overproducing mutants of maize[J]. Planta, 1990,182(4):546-552.
    [50] DIEDRICK TJ, FRISCH DA, GENGENBACH BG. Tissue culture isolation of a second mutant locus for increased threonine accumulation in maize[J]. Theoretical and Applied Genetics, 1990,79(2):209-215.
    [51] FRANKARD V, GHISLAIN M, NEGRUTIU I,et al. High threonine producer mutant of Nicotiana sylvestris (Spegg. and Comes) [J]. Theoretical and Applied Genetics,1991, 82(3):273-282.
    [52] HEREMANS B, JACOBS M. Selection of Arabidopsis thaliana (L.) Heynh. mutants resistant to aspartate-derived amino acids and analogues[J]. Plant Science Limerick,1994,101(2):151-162.
    [53] MUEHLBAUER GJ, GENGENBACH BG, SOMERS DA,et al. Genetic and amino-acid analysis of two maize threonine-overproducing, lysine-insensitive aspartate kinase mutants[J]. Theoretical and Applied Genetics,1994,89(6):767-774.
    [54] HEREMANS B, JACOBS M. Threonine accumulation in a mutant of Arabidopsis thaliana (L.) Heynh. with an altered aspartate kinase[J]. Journal of Plant Physiology, 1995,146(3):249-257.
    [55] HEREMANS B, JACOBS M. A mutant of Arabidopsis thaliana (L.) Heynh. with modified control of aspartate kinase by threonine[J]. Biochemical Genetics,1997, 35(3-4):139.
    [56] SHAUL O, GALILI G. Threonine overproduction in transgenic tobacco plants expressing a mutant desensitized aspartate kinase of Escherichia coli[J]. Plant-Physiology, 1992,100(3): 1157-1163.
    [57] PERL A, SHAUL O, GALILI G. Regulation of lysine synthesis in transgenic potato
    
    plants expressing a bacterial dihydrodipicolinate synthase in their chloroplasts[J]. Plant Molecular Biology, 1992,19(5):815-823.
    [58] SHAUL O, GALILI G. Increased lysine synthesis in tobacco plants that express high levels of bacterial dihydrodipicolinate synthase in their chloroplasts[J]. Plant Journal, 1992, 2(2):203-209.
    [59] PERL A, GALILI G, SHAUL O, et al. Bacterial dihydrodipicolinate synthase and desensitized aspartate kinase: two novel selectable markers for plant transformation[J]. Bio-Technology, 1993,11 (6):715-718.
    [60] KARCHI H, SHAUL O, GALILI G. Seed-specific expression of a bacterial desensitized aspartate kinase increases the production of seed threonine and methionine in transgenic tobacco[J]. Plant Journal, 1993,3(5):721-727.
    [61] FALCO SC, GUIDA T, LOCKE M, et al. Transgenic canola and soybean seeds with increased lysine. Bio-Technology, 1995,13(6):577-582.
    [62] KWON T, SASAHARA T, ABE T. Lysine accumulation in transgenic tobacco expressing dihydrodipicolinate synthase of Escherichia coli[J]. Journal of Plant Physiology,1995, 146(5-6):615-621
    [63] BRINCH PH, GALILI G, KNUDSEN S,et al. Engineering of the aspartate family biosynthetic pathway in barley (Hordeum vulgare L.) by transformation with heterologous genes encoding feed-back-insensitive aspartate kinase and dihydrodipicolinate synthase[J]. Plant Molecular Biology, 1996, 32(4):611-620.
    [64] BEN TTI, PERL A, GALILI G. Lysine and threonine metabolism are subject to complex patterns of regulation in Arabidopsis[J]. Plant Molecular Biology,1996, 32(4):727-734.
    [65] BITTEL DC, SHAVER JM, SOMERS DA,et al. Lysine accumulation in maize cell cultures transformed with a lysine-insensitive form of maize dihydrodipicolinate synthase[J]. Theoretical and Applied Genetics, 1996, 92(1):70-77.
    [66] MUHITCH MJ.Effects of expressing E. coli threonine synthase in tobacco (Nicotiana tabacum L.) suspension culture cells on free amino acid levels, aspartate pathway enzyme activities and uptake of aspartate into the cells[J]. Journal of Plant Physiology,1997,150(1-2):16-22
    [67] BRINCH PH, OLSEN O, KNUDSEN S,et al.An evaluation of feed-back insensitive aspartate kinase as a selectable marker for barley (Hordeum vulgare L.) transformation[J]. Hereditas Landskrona, 1999, 131 (3):239-245.
    [68] GAZIOLA SA, ALESSI ES, GUIMARAES PEO,et al.Quality protein maize: a biochemical study of enzymes involved in lysine metabolism[J]. Journal of Agricultural and Food Chemistry, 1999, 47(3): 1268-1275.
    [69] GALILI S, GUENOUNE D, WININGER S, et al. Enhanced levels of free and protein-bound threonine in transgenic alfalfa (Medicago sativa L.) expressing a bacterial
    
    feedback-insensitive aspartate kinase gene[J]. Transgenic Research,2000,9(2): 137-144.
    [70] 沈琼.苏氨酸操纵子的克隆表达及天冬氨酸激酶的测活[J].药物生物技术,2003,10(3):133-136.
    [71] KOMATSUBARA S, KISUMI M, CHIBATA I.Participation of lysine-sensitive aspartokinase in threonine production by S-2-aminoethyl cysteine-resistant mutants of Serratia marcescens[J]. Appl Environ Microbiol, 1979, 38(7):77-82.
    [72] SANDS DC, HANKIN L. Selecting lysine-excreting mutants of lactobacilli for use in food and feed enrichment[J]. Applied Microbiology, 1974, 28(3):523-524.
    [73] KUMPAISAL R, HASHIMOTO T, YAMADA Y.Selection and characterization of S-(2-aminoethyl)-L-cysteine-resistant wheat cell cultures[J]. Journal of Plant Physiology, 1988, 133(5):608-614.
    [74] 齐秀兰,万秀玉,张秋霞,等.L-赖氨酸高产菌株筛选[J].沈阳药学院学报,1994,11(03):195-200
    [75] AZEVEDO RA, ARRUDA R Dominant and recessive mutations conferring resistance to S-2-aminoethyl-L-cysteine in maize[J].Journal of Plant Physiology,1995,145(3): 321-326.
    [76] 雷建军,曹必好,郭余龙,等.用茎瘤芥再生芽离体筛选抗S-(2-氨乙基)-L-半胱氨酸变异体研究[J].西南农业大学学报,1995,17(02):98-101.
    [77] 梁运祥,李兆文,郝勃.以抗结构类似物筛选高产L-赖氨酸酵母突变株[J].微生物学杂志,1999,19(4):15-16,21.
    [78] 张伟国,顾正华.L—赖氨酸高产菌选育的研究[J].食品与发酵工业,2001,27(8):17-20.
    [79] 邓红梅.利用原生质体融合提高酿酒酵母赖氨酸含量的研究[J].贵州大学学报:自然科学版,2002,19(3):227-231.
    [80] SANDS DC, HANKIN L. Selecting lysine-excreting mutants of lactobacilli for use in food and feed enrichment[J]. Applied Microbiology,1974, 28(3):523-524.
    [81] WELCH RW, DALE PJ.The effect of S-(2-aminoethyl) L-cysteine on the growth of embryos from normal and high lysine barley genotypes[J]. Cereal Research Communications, 1980,8(3):453-459.
    [82] YAMADA Y, KUMPAISAL R, HASHIMOTO T, et al. Growth and AK activity in wheat cell suspension culture: effects of lysine analogs and aspartate-derived amino acids[J]. Plant and Cell Physiology, 1986,27(4):607-617.
    [83] ROGER M, WALLSGROVE, MENDEL M.Spinach leaf DHDPS: Partial purification and characterization[J]. Phytochemistry, 1981,20(12):2651-2655.
    [84] ASRI PW, JUNICHI M, NOBUYUKI K,et al. Characterization of bacterial homocitrate synthase involved in lysine biosynthesis[J]. Metabolic Engineering,2002,522(3):35-40.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700