Ag/C复合电极材料的制备及其对甲醛电催化性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
相对于传统材料而言,纳米材料在力学、电学、热学、光学、催化等方面有着特殊的特性,所以受到了人们的广泛关注,成为具有特殊性能的功能材料理论研究和应用开发的重要课题。在金属纳米材料中,由于银纳米材料形貌、尺寸的可控性和表面性质的特殊性,显示出广阔的应用前景,近年来也是金属纳米材料研究的焦点。本论文以XC-72和CMK-3为载体,成功制备了Ag/XC-72和Ag/CMK-3复合电极材料,并研究了复合电极材料的微观结构和电化学性能。主要内容如下:
     1.以柠檬酸二氢钠为络合剂,价格低廉的硼氢化钠为还原剂,采用化学还原法成功制备出Ag/XC-72复合电极材料,对其微观结构进行了表征,并研究比较了柠檬酸二氢钠与AgNO_3不同摩尔比对Ag/XC-72电化学性能的影响。结果表明:该法制备的Ag纳米颗粒粒径较为均一,平均粒径约为23nm;当柠檬酸二氢钠与AgNO_3的摩尔比为10:1时,Ag/XC-72复合纳米催化剂材料呈现出最高的电催化活性和最佳的稳定性。
     2.本文采用一种新的电沉积方法—方波电位法,成功地将Ag纳米颗粒沉积到CMK-3表面,制备了Ag/CMK-3复合电极材料,并研究了其对甲醛的电催化性能。结果表明:方波电位法沉积制备的Ag纳米颗粒粒径约为50nm;Ag/CMK-3电极峰值电流值可达到102mA·cm~(-2),是相同条件下制备的Ag/XC-72复合电极材料的1.4倍左右,Ag/CMK-3复合电极材料的电催化活性和稳定性都优于Ag/XC-72复合电极材料。
Nano-materials have been became the topic for studying and developing functional materialsdue to they, compared with traditional, have special properties in mechanical, electricity,thermology, catalysis and other aspects. Silver nano-materials show wide application in metalnano-materials because of the controllability of its morphology and size and special surfaceproperties. In recent years, it becomes the focus of research on metallic nano-materials. In thisthesis, Ag/XC-72and Ag/CMK-3nano-composite catalysts were synthesized with XC-72andCMK-3as the support respectively. Their structure and electrochemical performance were studied.The details are as follows.
     (1)Ag/XC-72composite electrode materials were prepared by chemical methodwith sodium citrate monobasic as the complexing agent and low-cost sodiumborohydride as the reducing agent, respectively. The structure of the Ag/XC-72wasstudied. Meanwhile, the molar ratio of sodium citrate manobasic and silver nitratefor catalytic performance of formaldehyde was discussed. The results showed that,the nano-particle size of Ag was uniform and the average size was about20nm.The composite showed the highest electrocatalytic activity and best stability whenthe molar ratio of sodium citrate monobasic and silver nitrate is10:1.
     (2)Ag/CMK-3catalyst was synthesized through square-wave potential method,and Ag nano-particles were deposited on the surface of CMK-3successfully. Itsstructure and catalytic performance for formaldehyde oxidation were studied.Transmission electron microscopy(TEM) images indicated that the electro-emically synthesized Ag nanoparticles were homogeneously dispersed on thesurface of CMK-3with a mean size50nm. The peak current of Ag/CMK-3canreach to102mA·cm-2, that is about1.4times as many as Ag/XC-72electrodematerial prepared through the same method. The electrocatalytic activity andstability of Ag/CMK-3electrode material was much better than Ag/XC-72.
引文
[1] Zhou W J, Li W Z, Song S Q, et al. Bi-and tri-metallic Pt-based Anode Catalystsfor Direct Ethanol Fuel Cells. Journal of Power Sources,2004,131(1-2):217-223
    [2] Gotz M, Wendt H. Binary and ternary anode catalyst formulations including theelements W, Sn and Mo for PEMFCs operated on methanol or reformate gas.Electrochemical Acta,1998,43:3637-3644
    [3] Lima A, Coutanceau C, Leger J M,et al. Investigation of ternary catalysts formethanol electrooxidation. Journal of Applied Electrochemisty,2001,31:379-386
    [4]魏子栋,郭鹤桐,唐致远.氧在Pt-Fe-Co/C合金催化剂上的还原.催化学报,1995,16(2):141-144
    [5] Tamizhmani G, Gapuano G A. Improved electro-catalytic oxygen reductionperformance of platinum ternary alloy-oxide in SPFCs. Journal of theElectrochemical Society,1994,14(4):968-970
    [6]曹殿学,王贵龄,吕艳卓,等.燃料电池系统,北京:北京航空航天大学出版社,2009:6-10
    [7]刘凤君.高效环保的燃料电池发电系统及其应用,北京:机械工业出版社,2006:318-321
    [8] Chen Q S, Sun S G, Zhou Z Y. CoPt nanoparticles and their catalytic properties inelectrooxidation of CO and CH3OH studied by in situ FTIRS. Journal of Physical Chemistry,2008,10:3645-3654
    [9] Byungkwon L, Majiong J, Pedro H C,et al. Pd-Pt Bimetallic Nanodendrites withHigh Activity for Oxygen Reduction. Science,2009,324(5932):1302-1305
    [10] SuSan E H, Hyunjoo L, Velimir R, et al. Shaping binary metal nanocrystalsthrough epitaxial seeded growth. Nature materials,2007,6:692-697
    [11] Drillet J F, Dittmeyer R, Jüttner K. Activity and long-term stability of PEDOT asPt catalyst support for the DMFC anode. Journal of Applied Electrochemisty,2007,37:1219-1226
    [12] Cui X Z, Shi J L, Zhang L X, et al. PtCo supported on ordered mesoporouscarbon as an electrode catalyst for methanol oxidation. Carbon,2009,47(1):186-194
    [13] Habibi B, Pournaghi-Azar M H, Abadolmohammad-Zadeh H, et al. Electro-catalytic oxidation of methanol on mono and bimetallic composite films: Pt andPt-M (M=Ru, Ir and Sn) nano-particles in poly(o-aminophenol). InternationalJournal of Hydrogen energy,2009,34(7):2880-2892
    [14] Park I S, Lee K S, Jung D S, et al. Electrocatalytic activity of carbon-supportedPt-Au nanoparticles for methanol electro-oxidation. Electrochimica Acta,2007,52(18):5599-5605
    [15] Geng J L, Bi Y P, Lu G X. Morphology-dependent activity of silver nano-structures towards the electro-oxidation of formaldehyde. ElectrochemistryCommunications,2009,11:1255
    [16] Mohammad Hasanzadeh, Balal Khalilzadeh, Nasrin Shadjou, et al. A NewKinetic-Mechanistic Approach to Elucidate Formaldehyde Electroo-xidationonCopper Electrode. Electroanlysis,2010,22(2):168-176
    [17] Bhaskar R S, Dhanraj B S, Vijayamohanan K P. Preparation and Characterizationof Rhodium Nanostructures through the Evolution of Microgalvanic Cells andTheir Enhanced Electrocatalytic Activity for Formaldehyde Oxidation. TheJournal of Physical Chemistry C,2009,13:9616-9622
    [18] Sungho P, Xie Y, Michael J W. Electrocatalytic Pathways on Carbon-SupportedPlatinum Nanoparticles: Comparison of Particle-Size-Dependent Rates ofMethanol, Formic Acid, and Formaldehyde Electrooxidation. Langmuir,2002,18,5792-5798
    [19] Cho K H, Park J E, Osaka T, et al. The study of antimicrobial activity andpreservative effects of nanosilver ingredient. Electrochimica Acta,2005,51(5):956-960
    [20] Sun S H, Murray C B, Weller D, et al. Monodisperse Fe Pt nanoparticles andferromagnetic Fe Pt nanocrystal superlattices. Science,2000,287(5460):1989-1992
    [21] Cao Y W C, Jin R C, Mirkin C A. Nanoparticles with Raman spectroscopicfingerprints for DNA and RNA detection. Science,2002,297(5586):1536-1540
    [22] Wang J F, Gudiksen M S, Duan X F, et al. Highly polarized photoluminescenceand photodetection from single indium phosphide nanowires. Science,2001,293(5534):1455-1457
    [23]王悦辉,周济,王婷.纳米银与表面吸附荧光素的荧光性能的影响.光谱学与光谱分析,2007,27(8):1555-1559
    [24] Kawasaki M, Mine S. Enhanced molecular fluorescence near thick Ag island filmof large pseudotabular nanoparticles. Journal of Physical Chemistry B,2005,109(36):17254-17261
    [25] Lesniak W, Bielinska A U, Sun K, et al. Silver/dendrmier nanocomposites asbiomarkers Fabrication, characterization, in vitro toxicity, and intracellulardetection. Nano Letters,2005,5(11):2123-2130
    [26] Yasui S, Tsujimoto M, Itoh K, et al. Quenching of a photosensitized dye throughsingle-electron transfer from trivalent phosphorus compounds. Journal of OrganicChemistry,2000,65(15):4715-4720
    [27] Li Y N, Wu Y L, Ong B S. Facile synthesis of silver nanoparticles useful forfabrication of high-conductivity elements for printed electronics. Journal of theAmerican Chemical Society,2005,127(10):3266-3267
    [28] Nickel U, Castell A, Poppl K, et al. A silver colloid produced by reduction withhydrazine as support for highly sensitive surface-enhanced Raman spectroscopy.Langmuir,2000,16(23):9087-9091
    [29] Endo T, Yomokazu T, Esumi K. Synthesis and catalytic activity of gold-silverbinary nanoparticles stabilized by PAMAM dendrimer. Journal of Collold andInterface Science,2005,286(2):602-609
    [30] Rivas L, Schchez-Cortes S, Garcia-Ramos J V, et al. Preparation and opticalabsorption spectra of dye-coated Au, Ag, and Au/Ag colloidal nanoparticles inaqueous solutions and in alternate assemblies. Langmuir,2001,17(3):578-580
    [31]徐光年,乔学亮,邱小林,等.单分散球形纳米银粒子的制备新方法及其抗菌性能.稀有金属材料与工程,2008,37(9):1669-1672
    [32] Morones J R, Elechiguerra J L, Camacho A, et al. The bactericidal effect of silvernanoparticles. Nanotechnology,2005,16(10):2346-2353
    [33]华明扬,翁永珍,梅成国,等.新型纳米银系列抗菌剂的制备及性能研究.安徽化工,2008,34(5):29-31
    [34] Giorgetti E, Muniz-Miranda M, Margheri G, et al. UV polymerization ofself-assembled monolayers of a novel diacetylene on silver: A spectroscopicanalysis by surface plasmon resonance and surface enhanced Raman scattering.Langmuir,2006,22(3):1129-1134
    [35] Xu J, Yin J S, Ma E. Nanocrystaline Ag formed by low-temperature high-energymechanical attrition. Nanostructured Materials,1997,8(1):91-100
    [36] Sendova M, Sendova-Vassileva M, Pivin J C, et al. Experimental study ofinteraction of laser radiation with silver nanoparticles in SiO2matrix. Nanoscienceand Nanotechnol,2006,6(3):748-755
    [37] Baker C, Pmdhan A, Pakstis L, et a1. Synthesis and antibacterial properties ofsilver nanoparticles. Nanoscience and Nanotechnol,2005,5(2):244-249
    [38]魏智强,马军,冯旺军,等.等离子体制备银纳米粉末的研究.贵金属,2004,25(3):33-36
    [39]刘春华,杨秀培,吴莉宇,等.纳米银胶体粒子的制备及对牛血清蛋白的检测.化学研究与应用,2008,20(6):786-789
    [40] Zhu J J, Liao X H, Zhao X N, et al. Preparation of silver nanorods byelectrochemical methods. Materials Letters,2001,49(2):91-95
    [41]姚素薇,曹艳蕊,张卫国.光还原法制备不同形貌银纳米粒子及其形成机理.应用化学,2006,23(4):438-440
    [42] Wang Z H, Liu J W, Chen X Y, et al. A simple hydrothermal route to large-scalesynthesis of uniform silver nanowires. Chemistry-a European Journal,2004,11(1):160-163
    [43] Wang Z H, Chen X Y, Liu J W, et al. Glucose reduction route synthesis ofuniform silver nanowires in large-scale. Chemistry Letters,2004,33(9):1160-1161
    [44]路林波,陈建中,高绍康,等.反相微乳液法制备纳米金属银粉.福州大学学报,2004,32(2):208-211
    [45]王振阳,关晓,何洪,等.超声膜扩散法制备纳米银粒子.高等学校化学学报,2007,28(9):1756-1758
    [46]和俊,司民真.纳米银的制备及其应用.光散射学报,2008,20(1):42-46
    [47] Wang D T, Song C X, Hu Z S, et al. Synthesis of silver anoparticles withflake-like shapes. Materials Letters,2005,59(14-15):1760-1763
    [48] Xu B, Wu F, Chen S, et al. Activated carbon fiber cloths as electrodes for highperformance electric double layer capacitors, Electrochimica Acta,2007,52(131):4595-4598
    [49] Kim C. Electrochemical characterization of electrospun activated carbonnanofibres as an electrode in supercapacitors. Journal of Power Sources,2005,142(1-2):382-388
    [50] Tanahashi I, Yoshida A, Nishino A. Activated carbon fiber sheets as polarizableelectrodes of electric double layer capacitors. Carbon,1990,28(4):477-482
    [51] Manual of symbols and terminology. Pure and Applied Chemistry,1972,31(4):578-599
    [52] Jinwoo L, Jaeyun K, Taeghwan H. Recent progress in the synthesis of porouscarbon materials. Advanced materials,2006,18:2073-2094
    [53] Rupesh Khare, Suryasarathi Bose. Carbon nanotube based composite-a review.Journal of Minerals&Materials Characterization&Eenineering,2005,4:31-46
    [54] Batista E A, Iwasita T. Adsorbed Intermediates of Formaldehyde Oxidation andTheir Role in the Reaction Mechanism. Langmuir,2006,22(18):7912-7916
    [55] Gao G Y, Guo D J, Wang C, et al. Electrocrystallized Ag nanoparticle onfunctional multi-walled carbon nanotube surfaces for hydrazine oxidation.Electrochemistry Communications,2007,9:1582-1586
    [56] Sanli E, Celikkan H, Uysal B Z, Aksu M L. Anodic behavior of Ag metalelectrode in direct borohydride fuel cells. International Journal of HydrogenEnergy,2006,31(13):1920-1924
    [57] Geng J L, Bi Y P, Lu G X. Morphology-dependent activity of silver nanostru-ctures towards the electro-oxidation of formaldehyde. Electro-chemistryCommunications,2009,11:1255-1258
    [58] Coker E N, Steen W A, Miller J T, et al. Nanostructured Pt/C electrocatalystswith high platinum dispersions through zeolite-templating. Microporous andMesoporous Materials,2007,101:440-444
    [59] Zhang S Z, Ni W H, Kou X S, et al. Formation of Gold and Silver NanoparticleArrays and Thin Shells on Mesostructured Silica Nanofibers. AdvancedFunctional Materials,2007,17:3258-3266
    [60]张晶.基于介孔碳载体的高容量超级电容器复合电极材料的制备及性能研究:[兰州理工大学博士学位论文].甘肃:兰州理工大学,2010,36-38

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700