用户名: 密码: 验证码:
人脐血源基质细胞促进巨核细胞增殖作用及机制探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
造血功能障碍是恶性肿瘤化学药物治疗和大剂量放射线治疗、放射源意外泄漏和核战争条件下急性放射损伤的主要并发症之一。其中,巨核细胞损伤导致的血小板减少除输注血小板外,尚缺乏有效的治疗手段。血小板生成素(thrombopoietin,TPO)作为刺激巨核细胞增殖和血小板生成的重要细胞因子仍存在治疗后产生抗凝血抗体、加重出血的危险性。如何安全有效地促进血小板数量和功能的恢复,尚需探索。
     造血微环境(hematopoietic inductive microenvironment,HIM)是支持和调节造血细胞生长发育的内环境,具有促进巨核细胞增殖分化、成熟产板的作用。因此,从修复或重建骨髓造血微环境正常功能入手治疗巨核细胞损伤,是一个值得探索的领域。
     骨髓基质细胞(human bone marrow stromal cells,hBMSCs)是造血微环境的主要成分,自1977年Dexter在体外培养出骨髓基质细胞获得成功后,人们对BMSCs进行了深入的研究。目前,骨髓基质细胞体外培养扩增联合造血干细胞回输经实验和临床验证是重建造血功能损伤的有效方法。由于自体移植中患者自身造血微环境异常,而异体移植又存在组织相容性的问题,限制了骨髓基质细胞在临床上的广泛运用。人脐血中的细胞成分丰富且较骨髓和外周血更原始,具有来源广泛,采集方便,免疫原性弱和长期造血重建的特点,已成为新的造血干细胞来源。本课题组长期从事人脐血源基质细胞(human umbilical cord blood-derived stromal cells,hUCBDSCs)及脐血造血微环境的研究,前期研究经体外培养扩增获得hUCBDSCs,证明其具备造血基质细胞的基本特征和造血调控功能的物质基础,以hUCBDSCs为滋养层的体外扩增体系促进巨核细胞集落(colony forming unit-megakaryocte,CFU-Meg)形成的作用明显优于hBMSCs,提示hUCBDSCs在促进巨核细胞增殖分化方面可能具有特殊的意义,对其作用特点和机制的深入研究可为巨核细胞损伤修复治疗提供新的思路。
     鉴于此,本课题在构建巨核细胞/hUCBDSCs共培养模型和裸鼠造血微环境损伤模型的基础上,观察hUCBDSCs体外促进巨核细胞增殖和体内重建造血微环境、促进巨核细胞生成和血小板数量恢复的作用。从TPO途径、SDF-1途径和间隙连接细胞间通`讯三个方面深入探讨hUCBDSCs促进巨核细胞增殖和移植裸鼠血小板恢复的可能机制,为安全有效促进血小板功能和数量恢复提供新的辅助治疗措施。
     方法:
     1.观察人脐血源基质细胞促进巨核细胞系HEL增殖的体外研究
     实验分组:①HEL细胞悬浮培养组;②HEL细胞/hBMSCs共培养组;③HEL细胞/hUCBDSCs共培养组。倒置显微镜和扫描电镜观察HEL细胞和基质细胞的位象关系;CCK8法绘制HEL细胞生长曲线;流式细胞仪检测HEL细胞的细胞周期和凋亡坏死情况,透射电镜观察HEL细胞超微结构。
     2.观察人脐血源基质细胞移植重建造血微环境促进巨核细胞生成的在体研究
     对裸鼠实施不同辐照剂量照射,观察裸鼠辐照后不同时相点血象、骨髓象、CFU-F等指标变化,探索适宜本研究的造血微环境损伤动物模型的辐照剂量。根据上述实验结果,选定5.0Gy作为造血微环境损伤动物模型的辐照剂量;实验分组:①生理盐水组;②hBMSCs组;③hUCBDSCs组。观察不同移植组造血微环境重建和巨核细胞、血小板数量恢复情况。动态观察CM-DiI标记hUCBDSCs裸鼠体内迁移情况。
     3.人脐血源基质细胞促进巨核细胞增殖的机制研究
     3.1 TPO途径在人脐血源基质细胞促进巨核细胞增殖中的作用
     ELISA法动态检测hBMSCs和hUCBDSCs培养上清TPO浓度;激光共聚焦、流式细胞仪检测不同培养条件下HEL细胞C-mpl蛋白表达,RT-PCR检测HEL细胞C-mpl mRNA表达水平。
     3.2 SDF-1途径在人脐血源基质细胞促进巨核细胞增殖中的作用
     ELISA法动态检测hBMSCs和hUCBDSCs培养上清SDF-1浓度;激光共聚焦、流式细胞仪检测不同培养条件下HEL细胞CXCR4蛋白表达,RT-PCR检测HEL细胞CXCR4 mRNA表达水平。
     3.3间隙连接细胞间通讯在人脐血源基质细胞促进巨核细胞增殖中的作用
     荧光漂白恢复(FRAP)技术检测细胞间通讯功能;激光共聚焦显微镜观察共培养条件下HEL细胞和hUCBDSCs Cx43蛋白表达;RT-PCR法检测共培养条件下HEL细胞和hUCBDSCs Cx43 mRNA水平表达情况。透射电镜观察共培养条件下HEL细胞和hUCBDSCs细胞连接处超微结构。
     结果:
     1.倒置显微镜观察,HEL细胞粘附在hUCBDSCs表面,呈球形,随培养时间的延长,HEL细胞数量逐渐增多;扫描电镜观察发现HEL细胞可通过伪足粘附于hUCBDSCs表层,或龛于hUCBDSCs融合所形成的“网眼”中,甚至移行到hUCBDSCs层下,部分hUCBDSCs胞膜突起与多个HEL细胞粘附,形成“放射状”排列。HEL细胞生长曲线显示HEL/hUCBDSCs组细胞生长速度最快;细胞周期结果显示HEL/hUCBDSCs组S+G2/M期细胞比例最高(P<0.05),突显出hUCBDSCs在巨核细胞增殖中的特殊促进作用。凋亡率结果显示三组之间无显著性差异(p>0.05)。
     2.裸鼠接受不同剂量辐照所表现出来的血象变化程度不同,5.0Gy组裸鼠有明显骨髓抑制和CFU-F计数降低,且在照射后自行恢复,是裸鼠造血微环境损伤的理想辐照剂量。移植裸鼠实验结果显示:基质细胞有明显的促进血小板恢复的作用,其中hUCBDSCs作用最强。采用CM-DiI标记hUCSDCs移植裸鼠,激光共聚焦显微镜观察发现:hUCSDCs在肝脏、脾脏和肺脏组织间隙短暂“停留”后,迅速“归巢”至骨髓重建损伤造血微环境。
     3.人脐血源基质细胞促进巨核细胞增殖的机制研究
     3.1 ELISA检测结果显示hUCBDSCs分泌表达TPO水平明显高于hBMSCs,分泌高峰稍迟于hBMSCs,传代后hUCBDSCs培养上清中的TPO浓度仍高于hBMSCs。流式细胞仪和激光共聚焦检测均显示其C-mpl蛋白的表达明显增强;RT-PCR检测不同培养条件下HEL细胞C-mpl mRNA表达情况,结果显示无显著性差异;
     3.2 ELISA结果显示:体外液体培养前6天,hUCBDSCs和hBMSCs SDF-1分泌水平相当,6天后hUCBDSCs SDF-1分泌水平明显高于hBMSCs,传代后hUCBDSCs培养上清中的SDF-1浓度仍高于hBMSCs;流式细胞仪和激光共聚焦检测均显示与hUCBDSCs和hBMSCs共培养的HEL细胞CXCR4蛋白表达明显减弱,且可在部分HEL细胞胞浆中发现红色点状荧光;RT-PCR检测不同培养条件下HEL细胞CXCR4 mRNA表达情况,结果显示无显著性差异;
     3.3在本试验条件下,荧光漂白恢复技术检测结果提示hUCBDSCs和HEL细胞之间无明显荧光物质交换,而相互粘连的hUCBDSCs的荧光强度在淬灭后荧光迅速恢复;激光共聚焦显微镜观察共培养条件下HEL细胞Cx43表达较弱,呈均匀分布,hUCBDSCs Cx43表达较强,可见呈点状群聚分布的高亮斑块;RT-PCR检测在HEL/hUCBDSCs共培养体系中,HEL细胞Cx43 mRNA的表达明显低于hUCBDSCs。
     结论:
     1.人脐血源基质细胞具有促进巨核细胞增殖的作用:①生长曲线――细胞扩增速度加快;②细胞周期――S+G2/M期细胞比例明显增多;③扫描电镜――可见hUCBDSCs粘附、龛合、包裹HEL细胞;④透射电镜――可见大量增殖旺盛的HEL细胞和核分裂相;
     2.人脐血源基质细胞具有重建移植裸鼠造血微环境和促进巨核细胞和血小板数量和功能恢复的作用;
     3. hUCBDSCs通过分泌高水平TPO,上调巨核细胞C-mpl蛋白的表达,促进巨核细胞增殖、分化、产板;
     4. hUCBDSCs通过分泌高水平SDF-1,促进巨核细胞的迁移和增殖,在迁移的过程中巨核细胞表面CXCR4表达降低,形成“内吞小泡”,调控巨核细胞的迁移;
     5.本试验条件下,hUCBDSCs和HEL细胞间未检测到间隙连接细胞间通讯,提示GJIC功能对hUCBDSCs促进巨核细胞增殖的作用不明显。
Dysfunction of hematogenesis is a main complication under the condition of chemotherapy, radiotherapy, unexpected leakage of radioactive material and nuclear warfare. Thrombocytopenia caused by the injury of megakaryocyte is to be a formidable puzzle to solve till recently. Many risks, such as bleeding caused by the anticoagulated antibody, might be caused by the application of thrombopoietin (TPO), which is used as a tool to deal with the thrombocytopenia. So, the methods to restore the quantity and function of platelets efficiently and securely are remained to explore.
     Hematopoietic inductive microenvironment (HIM), the internal environment for sustaining and regulating the growth and development of hematopoietic cell, acts as an important role in the proliferation, differentiation and maturation of megakaryocytes. So, it is worth finding some methods to cope with the injury of megakaryocytes start with the reconstruction of HIM.
     Bone marrow stromal cells(BMSCs) is the main component of hematopoietic inductive microenvironment, BMSCs was researched systematically since it was cultured in vitro by Dexter in 1977. Infusion of the suspension containing BMSCs expanded in vitro and hemapoietic stem cells is thought to be an effective method to restore the normal function of hematopoiesis previously. But, it can’t be applied extensively in clinical practices for some reasons, such as the dysfunction of HIM in autotransplantation and histocompatibility in allograft. Based on some advantages, such as easy-to-obtain, convenient to collect and low immunogenicity, cord blood is now used as a new source of haemopoietic stem cells. Our group also has studied the human umbilical cord blood-derived stromal cells (hUCBDSCs) and the cord blood associated HIM for many years. After the successful acquirement of hUCBDSCs in vitro in our preliminary experiments, bio-characteristics and hematopoietic supporting-capacity of these cells were observed. Interestingly, it was found that many stromal cell specific features was possessed by hUCBDSCs. Moreover, as compared with the alternative expansion system, which human bone marrow stromal cells (hBMSCs) were used as the trophoblastic cells, the colony forming unit-megakaryocte rate was much higher in the co-culture system with hUCBDSCs to be trophoblastic cells. It is hinted that hUCBDSCs might act as a special role for the proliferation of megakaryocytes. Thus, some therapeutic improvements on the megakaryocytic injury might be made if the further understanding of this phenomenon could be reached.
     Accordingly, based on the construction of megakaryocyte/hUCBDSCs co-culture model and nude mice HIM injury model, the mechanisms of hUCBDSCs to promote the proliferation of megakaryocytes and to reconstruct the HIM in vivo, especially, to restore the quantity of platelet were explored in this study, which were mainly focused on the following three aspects: TPO pathway, SDF-1 pathway and gap junction communication. Some experimental data might be obtained for the improvement of megakaryocytic injury therapy.
     Methods:
     1. To observe the influence of hUCBDSCs on the proliferation of megakaryocytic cell line HEL.
     Groups: HEL suspended culture group; HEL/hBMSCs co-culture group; HEL/ hUCBDSCs co-culture group. The spatial relationship between the HEL cells and stromal cells was observed under the inverted microscope and scanning electron microscope, then, CCK8 assay was used to determine the proliferation of HEL cells. After this, the cell cycle distribution and the rate of apoptosis/necrosis of these cells were assessed by flow cytometry. At last, the ultrastructure of HEL cells was revealed under the transmission electron microscope.
     2. To observe the reconstruction of HIM, especially the recovery of megakaryocytes caused by the implantation of hUCBDSCs into nude mice.
     To observe the changes of hemogram, bone marrow biopsy and CFU-F in nude mice at different phases after irradiation in order to explore the proper irradiation dose to apply in this study. At last, 5.0 Gy was used as the experimental dose in the following experiments.
     Groups: Isotonic Na chloride group; hBMSCs group; hUCBDSCs group. After ionizing radiation, the reconstruction of HIM and the recovery of megakaryocytes in ` different groups were determined in the nude mice with transplantation.
     3. Possible mechanisms for hUCBDSCs to promote the proliferation of megakaryocytes.
     3.1 Possible role performed by the TPO pathway.
     The concentration of TPO in the culture supernatant of hBMSCs and hUCBDSCs was detected by ELISA assay. The expression of C-mp1 at mRNA and protein levels in HEL cells was determined by RT-PCR, confocal microscopy and flow cytometry under the different culture conditions.
     3.2 Possible role performed by the SDF-1 pathway.
     The concentration of SDF-1 in the culture supernatant of hBMSCs and hUCBDSCs was detected by ELISA assay. The expression of CXCR4 at mRNA and protein levels in HEL cells was determined by RT-PCR, laser confocal microscopy and flow cytometry under the different culture conditions.
     3.3 Possible role performed by the gap conjunction communication.
     The gap conjunction communication between HEL cells and hUCBDSCs was assessed by fluorescence recovery after photobleaching assay (FRAP). The expression of Connexin-43 (Cx43) at mRNA and protein levels in HEL cells and hUCBDSCs under co-culture condition was determined by RT-PCR and laser confocal microscopy, respectively.
     Results:
     1. It was revealed under the inverted microscopy that many HEL cells attached on the hUCBDSCs. Under the inverted microscopy, some of them adhered to the hUCBDSCs surface by pseudopodia, the others inserted into the meshes formed by several fused hUCBDSCs. The quantity of attached-HEL cells increased significantly as the culturing time prolonged. As compared with the other groups, HEL cells in the HEL/hUCBDSCs co-culture group grew faster. But, the rate of apoptosis/necrosis in different groups was the same. It is indicated that some special roles might be performed by hUCBDSCs in the proliferation of HEL cells.
     2. Different degrees of myelosuppression and CFU-F decreasing could be found in the mice, which were administrated with different dose of radiation. The 5.0 Gy was selected as the proper dose in the following studies. It was revealed by the in vivo assay that the two kinds of stromal cells, especially hUCBDSCs, possessed the capacity of promoting the proliferation of platelets. After processed a transient retention at liver, spleen and lung, hUCSDCs homing quickly to bone marrow to reconstruct the impaired HIM.
     3. The mechanisms of hUCBDSCs to promote the proliferation of megakaryocytes
     3.1 It was revealed by ELISA assay that the concentration of TPO secreted by hUCBDSCs was higher than that of the hBMSCs did, even though the passage was done. But, the appearance of secretion peak in hUCBDSCs group was late. The expression of C-mpl protein was enhanced as determined by flow cytometry and laser confocal microscopy. But, there was no significant differences of the C-mpl mRNA level between different groups.
     3.2 The concentration of SDF-1 in different groups was the same at the early stage of culturing. But, 6 days after seeding, it increased significantly in the hUCBDSCs group, even though the passage was done. The expression of CXCR4 protein was weaken as determined by flow cytometry and laser confocal microscopy. Red punctiform fluorescence was detected in endochylema by laser confocal microscopy after HEL cell line co-cultured with hUCBDSCs. But, there was no significant differences of the CXCR4 mRNA level between different groups.
     3.3 Between the hUCBDSCs and hUCBDSCs, it was revealed by FRAP assay that the fluorescence intensity was recovered quickly in the photobleached cells. But, this phenomenon was not found between the hUCBDSCs and HEL cells. Moreover, under the co-culture condition, the expression level of Cx43 was much weaker in HEL cells than that in hUCBDSCs. The spatial distribution of this protein was also quite different in these two cells. Under laser confocal microscopy, fluorescence displayed as a homogeneous distribution in HEL cells but a plaquelike distribution in hUCBDSCs.
     Conclusion:
     1. The proliferation of megakaryocytes can be enhanced by the hUCBDSCs in vitro.
     2. The impaired HIM, especially the decreasing and aberrant platelets, can be restored after the hUCBDSCs has been implanted into the nude mice.
     3. High level of TPO is secreted by hUCBDSC. Meanwhile, the expression of C-mpl protein, the receptor of TPO on megakaryocyte also can be upregulated by hUCBDSC. This might be one of the reasons for the hUCBDSC to promote the proliferation, differentiation and maturation of megakaryocytes.
     4. High level of SDF-1 is secreted by hUCBDSCs to promote the proliferation and migration of megakaryocyte. With migration, the expression of CXCR4 protein on megakaryocyte was decreased and formed“internalized vesic”, that regulate the migration of megakaryocyte.
     5. There is no obvious gap junction communication can be found between the hUCBDSCs and HEL cells. It is indicated that this kind of interaction might not be the main cause of the hUCBDSCs to promote the proliferation of megakaryocytes.
引文
1. Timmer-Bonte JN, Adang EM, Termeer E, et al. Modeling the cost effectiveness of secondary febrile neutropenia prophylaxis during standard-dose chemotherapy. J Clin Oncol, 2008, 26(2): 290-296.
    2. Zheng C, Yang R, Han Z, et al.TPO-independent megakaryocytopoiesis.Crit Rev Oncol Hematol, 2008, 65: 212-222.
    3. Li J, Yang C, Xia Y, et al.Thrombocytopenia caused by the development of antibodies to thrombopoietin.Blood, 2001, 98: 3241-3248.
    4. Méndez-Ferrer S, Frenette PS. Hematopoietic stem cell trafficking: regulated adhesion and attraction to bone marrow microenvironment. Ann N Y Acad Sci, 2007, 1116: 392-413.
    5. Epperly MW, Cao S, Zhang X, et al.Increased longevity of hematopoiesis in continuous bone marrow cultures derived from NOS1 (nNOS, mtNOS) homozygous recombinant negative mice correlates with radioresistance of hematopoietic and marrow stromal cells.Exp Hematol, 2007, 35(1): 137-145.
    6. Ito Y, Hasauda H, Kitajima T, et al.Ex vivo expansion of human cord blood hematopoietic progenitor cells using glutaraldehyde-fixed human bone marrow stromal cells.J Biosci Bioeng, 2006, 102(5): 467-469.
    7. Su RJ, Li K, Zhang XB, et al.Platelet-derived growth factor enhances expansion of umbilical cord blood CD34+ cells in contact with hematopoietic stroma.Stem Cells Dev, 2005, 14(2): 223-230.
    8. Hubin F, Humblet C, Belaid Z, et al.Murine bone marrow stromal cells sustain in vivo the survival of hematopoietic stem cells and the granulopoietic differentiation of more mature progenitors.Stem Cells, 2005, 23(10):1626-1633.
    9. Papadaki HA, Tsagournisakis M, Mastorodemos V, et al.Normal bone marrow hematopoietic stem cell reserves and normal stromal cell function support the use of autologous stem cell transplantation in patients with multiple sclerosis.Bone Marrow Transplant, 2005, 36(12):1053-1063.
    10. Maeda T, Shiozawa E, Mayumi H, et al.Histopathology of bone marrow reconstitution after umbilical cord blood transplantation for hematological diseases.Pathol Int, 2008,58(2): 126-132.
    11. Gao L,Chen XH,Zhang X,et al.Human Umbilical Cord Blood-derived Stromal Cell, a New Resourse of Feeder Layer to Expand Human Umbilical Cord Blood CD34+ Cells in vitro.Blood cells,Mol and Dis, 2006, 36(2): 322-327.
    12.高蕾,陈幸华,张曦,等.VCAM-1修饰人脐血基质细胞对造血干/祖细胞扩增作用的试验研究.中国病理生理杂志,2007,23(10):1923-1926.
    13. Dexter TM, Allen TG, Latjtha LG . Conditions controlling the proliferation of haemopoietic stem cells in vitro.J Cell Physiol, 1997, 91: 335-344.
    14.司徒镇强主编.细胞培养.第一版,北京.广州.上海.西安:世界图书出版公司. 1996,186-187;299-301.
    15.郑得先,吴克复,褚建新主编.现代实验血液学研究方法与技术.第一版,北京:北京医科大学中国协和医科大学联合出版社. 1999,5-36
    16.蔡文琴主编.现代实用细胞与分子生物学实验技术.第一版,北京:人民军医出版社. 2003,223-235.
    17. Kohler T, Plettig R, Wetzstein W, et al. Defining optimum conditions for the ex vivo expansion of human umbilical cord blood cells, influences of progenitor enrichment, interference with feeder layers, early-acting cytokines and agitation of culture vessels. Stem cell, 1999, 17(1): 19-24.
    18. Despars G, Tan J, Periasamy P, O’Neill HC. The role of stroma in hematopoiesis and dendritic cell development. Curr Stem Cell Res Ther, 2007, 2(1): 23-29.
    19. Tse KF, Inavat MS, Morrow JK, et al. Reconstitution of erythroid, megakaryocyte and myeloid hematopoietic support function with neutralizing antibodies against IL-4 and TGFbeta1 in long-term bone marrow cultures infected with LP-BM5 murine leukemia virus. Virus Res, 2005, 113(1): 1-15.
    20. Zweegman S, Kessler FL, Kerkhoven RM, et al. Reduced supportive capacity of bone marrow stroma upon chemotherapy is mediated via changes in glycosaminoglycan profile. Matrix Biol, 2007, 26(7): 561-571.
    21. Schmidmaier R, Baumann P, Emmerich B, et al. Evaluation of chemosensitivity of human bone marrow stromal cells--differences between common chemotherapeutic drugs. Anticancer Res, 2006, 26(1A): 347-350.
    22. Borojevic R, Roela RA, Rodarte RS, et al. Bone marrow stroma in childhoodmyelodysplastic syndrome: composition, ability to sustain hematopoiesis in vitro, and altered gene expression. Leuk Res, 2004, 28(8):831-844.
    23. Narendran A, Hawkins LM, Ganjavi H, et al. Characterization of bone marrow stromal abnormalities in a patient with constitutional trisomy 8 mosaicism and myelodysplastic syndrome. Pediatr Hematol Oncol, 2004, 21(3): 209-221.
    24.张曦,陈幸华,刘林,等.外周血干细胞移植患者骨髓基质细胞粘附功能的变化.医学研究生学报,2003,16(8):590-593.
    25.陈幸华,罗成基.骨髓基质细胞对造血调控作用的研究进展.国外医学临床生物化学与检验学分册,2000,21(1):20-22.
    26. Nazareth MR, Broderick L, Simpson-Abelson MR, et al.Characterization of human lung tumor-associated fibroblasts and their ability to modulate the activation of tumor-associated T cells.J Immunol, 2007, 178(9): 5552-5562.
    27. Tamiolakis D, Venizelos I, Nikolaidou S, et al.Normal development of fetal hepatic haematopoiesis during the second trimester of gestation is upregulated by fibronectin expression in the stromal cells of the portal triads.Rev Esp Enferm Dig, 2007, 99(10): 576-580.
    28. Chen CP, Lee MY, Huang JP, et al.Trafficking of multipotent mesenchymal stromal cells from maternal circulation through the placenta involves vascular endothelial growth factor receptor-1 and integrins.Stem Cells, 2008, 26(2): 550-561.
    29. Kaushansky K.Historical review: megakaryopoiesis and thrombopoiesis.Blood, 2008 111: 981-986.
    30.邓家栋,杨崇礼,杨天楹,王振义主编.邓家栋临床血液学.上海;上海科学技术出版社(第一版),2001:1220-1223.
    31.许铭炎,石小玉,李文林.白细胞介素-13对巨核细胞系- HEL细胞原癌基因c-mpl表达的影响.中国病理生理杂志,2001,17(12):1193-1195.
    32.宋玉华.骨髓巨核细胞.见:陈文杰主编.血液分子生物学.北京:中国医药科技出版社(第一版),1993:368 -387.
    33.王嘉宁,郭宁.细胞凋亡的检测技术与方法.中国药理学与毒理学杂志,2005,19(6): 466-470.
    34.浦权主编.白血病骨髓组织病理学彩色图谱.第一版,上海:上海科学技术文献出版社:4-6.
    35. Timmer-Bonte JN, Adang EM, Termeer E, et al. Modeling the cost effectiveness of secondary febrile neutropenia prophylaxis during standard-dose chemotherapy. J Clin Oncol, 2008, 26(2): 290-296.
    36. Sanchez-Guijo FM, Sanchez-Abarca LI, Villaron E, et al. Posttransplant hematopoiesis in patients undergoing sibling allogeneic stem cell transplantation reflects that of their respective donors although with a lower functional capability. Exp Hematol, 2005, 33(8): 935-943.
    37. Chung NG, Jeong DC, Park SJ, et al. Cotransplantation of marrow stromal cells may prevent lethal graft-versus-host disease in major histocompatibility complex mismatched murine hematopoietic stem cell transplantation. Int J Hematol, 2004, 80(4): 370-376.
    38.陈幸华,罗成基,王苹,等.放射复合伤对骨髓基质细胞粘附功能影响的初步观察.中华放射医学与防护杂志,1999,19(3):186-190.
    39.张曦,王苹,陈幸华,等.外周血干细胞移植患者骨髓基质细胞形态学改变的观察.中国临床医学,2004,11(4):473-474.
    40. Takahashi K, Monzen S, Eguchi-Kasai K, et al. Severe damage of human megakaryocyto -poiesis and thrombopoiesis by heavy-ion beam radiation. Radiat Res, 2007, 168(5): 545-551.
    41.周永,弥漫天,朱俊东.三羟异黄酮对小鼠辐射损伤后造血功能的影响.第三军医大学学报,2007,29(10):866-868.
    42.罗成基,裴雪涛主编.造血微环境――基础与临床.江苏:世界医药出版社(第一版),2001:193-203.
    43. Hérodin F, Roy L, Grenier N, et al. Antiapoptotic cytokines in combination with pegfilgrastim soon after irradiation mitigates myelosuppression in nonhuman primates exposed to high irradiation dose. Exp Hematol, 2007, 35(8):1172-1181.
    44.吴端生,张健主编.现代实验动物学技术.北京:化学工业出版社/现代生物技术与医药科技出版中心(第一版),2007:74-75.
    45.李府,沈柏均,刘星霞,等.不同细胞浓度及细胞因子对骨髓基质成纤维细胞集落形成的影响.实用医学杂志,2004,20(5):504-505.
    46. Dhanjal TS, Pendaries C, Ross E, et al. A novel role for PECAM-1 in megakaryocytokine -sis and recovery of platelet counts in thrombocytopenic mice.Blood, 2007, 109: 4237-4244.
    47. Wu Y, Welter T, Michaud M, et al . PECAM-1: a multifaceted regulator of megakaryocyto -poiesis. Blood, 2007, 110(3): 851-859.
    48. 46.Zweegman S, Veenhof MA, Huijgens PeterC, et al. Regulation of megakaryocyto -poiesis in an in vitro stroma model: Preferential adhesion of megakaryocytic progenitors and subsequent inhibition of maturation. Exp Hemato, 2000, 28: 401-410.
    49.陈幸华,王苹,刘林,等.外周血干细胞移植患者骨髓微环境细胞粘附分子的临床研究.重庆医学,2004,32(10):1283-1285.
    50. Hubin F, Humblet C, Belaid Z, et al. Murine bone marrow stromal cells sustain in vivo the survival of hematopoietic stem cells and the granulopoietic differentiation of more mature progenitors. Stem Cells, 2005, 23(10): 1626-1633.
    51. Janczewska S , Wisniewski M, Stepkowski SM, et al. Fast hematopoietic recovery after bone marrow engraftment needs physiological proximity of stromal and stem cells. Cell Transplant, 2003, 12 (4): 399-406.
    52. Almeida-Porada G, Porada CD, Tran N, et al. Cotransplantation of human stromal cell progenitors into preimmune fetal sheep results in early appearance of human donor cells in circulation and boosts cell levels in bone marrow at later time points after transplantation. Blood, 2000, 95 (11): 3620-3627.
    53. Mankani MH, Kuznetsov SA, Robey PG. Formation of hematopoietic territories and bone by transplanted human bone marrow stromal cells requires a critical cell density. Exp Hematol, 2007, 35(6): 995-1004.
    54. Fu JR, Liu WL, Zhou WF, et al. Expansive effects of aorta-gonad-mesonephros-derived stromal cells on hematopoietic stem cells from embryonic stem cells. Chin Med J (Engl), 2005, 118(23): 1979-1986.
    55. Witherspoon RP, Goehle S, Kretschmer M, et al. Regulation of immunogolbulin production after human marrow grafting: the role of helper and suppressor Tcells inacute graft-versus-host disease. Transplantation, 1986, 41(3): 328-335.
    56. Koenig JM, Ballantyne CM, Kumar AG, et al. Vascular cell adhesion molecule-1 expression and hematopoietic supportive capacity of immortalized murine stromal cell lines derived from fetal liver and adult bone marrow. In Vitro Cell Dev Biol Anim, 2002, 38(9): 538-543.
    57. Anklesaria P, Greenberger JS, Fitzgerald TJ, et al. Hemonectin mediates adhesion of engrafted murine progenitors to a clonal bone marrow stromal cell line from Sl/Sld mice. Blood, 1991, 77(8):1691-1698.
    58. Keating A, Berkahn L, Filshie R. A Phase I study of the transplantation of genetically marked autologous bone marrow stromal cells. Hum Gene Ther, 1998, 9(4): 591-600.
    59.岳欣,李慧,于津浦,等.不同输注途径对CIK细胞治疗后的体内分布的影响.中国免疫学杂志,2007,23(3):224-228.
    60.李冰燕,洪承皎,张保国,等.激光共聚焦显微镜观察细胞在丝素纤维织物上的生长情况.激光杂志,2006,27(4):70-71.
    61. Sungaran R, Markovic B, Chong BH, et al. Localization and regulation of thrombopoietin mRNA expression in human kidney, liver, bone marrow, and spleen using in situ hybridization. Blood, 1997, 89(1): 101-107.
    62. Guerrieo A, Worford L, Holland HK, et al. Thrombopoietin is synthesized by bone marrow stromal cells. Blood, 1997, 90(9): 3444-3455.
    63. Tong W,Lodish HF. Lnk Inhibits Tpo-mpl Signaling and Tpo-mediated Megakaryocyto -poiesis. Exp Hematol, 2004, 200(5): 569-580.
    64. Mohamed AA, Ibrahim AM, El-Masry MW, et al. Ex vivo expansion of stem cells: defining optimum conditions using various cytokines. Lab Hematol, 2006, 12(2): 86-93.
    65.赵新燕,王光清,周伟国,等.人血小板生成素受体C-mpl膜内部分的聚合作用.生物化学与生物物理学报,1998,30(6):565-569.
    66. Fishley B,Alexander WS. Thrombopoietin signalling in physiology and disease. Growth Factors, 2004, 22(3): 151-155.
    67.李启明,程天民,粟永萍.巨核细胞生长发育因子及其受体研究进展.重庆医学,2005,34(6):927-932.
    68.刘耀,陈幸华,张曦,等.人脐血基质细胞自发分泌多种造血生长因子的试验研究.第三军医大学报,2005,27(7):643-645.
    69.张晓泉,杨耀明,陆爱丽,等.血小板生成素是人红白血病HEL细胞自分泌因子的证据.中国实验血液学杂志,1998,6(1):14-18.
    70.吴东,梁标.基质细胞衍生因子-1(SDF-1)及其受体CXCR4的研究新进展.海南医学,2005,16(12):154-155.
    71. Horuk R. Chemok ine receptors. Cytokine Growth Factor Rev, 2001, 12 (4) : 313-335.
    72. Wang JF, Liu ZY, Groopman JE. The a-Chemokine Receptor CXCR4 Is Expressed on the Megakaryocytic Lineage From Progenitor to Platelets and Modulates Migration and Adhesion. Blood, 1998, 92(3): 756-764.
    73.周银莉,刘文励,孙汉英.基质细胞衍生因子及其受体对造血作用的研究作用.临床血液学杂志,2002,15(3):140-142.
    74. Broxmeyer HE.Chemokines in hematopoiesis.Curr Opin Hematol, 2008, 15(1): 49-58.
    75. Nagasawa T.The chemokine CXCL12 and regulation of HSC and B lymphocyte development in the bone marrow niche.Adv Exp Med Biol, 2007, 602: 69-75.
    76. Nagasawa T, Hirota S, Tachibana K, et al. Defects of B-cell lymphopo iesis and bone marrow myelopo iesis in m ice lack ing the CXC chemok ine PBSF/SDF-1.Nature, 1996, 382 (6592) : 635-638.
    77. Zou YR, Kottmann AH, Kuroda M , et al. Function of the chemokine recepto r CXCR4 in haematopoiesis and cerebellar development.Nature, 1998, 393 (6685): 595-599.
    78. Lane WJ., Dias S, Hattori K, et al. Stromal-derived factor 1–induced megakaryocyte migration and platelet production is dependent on matrix metalloproteinases.Blood, 2007, 96(13): 4152-4159.
    79. Dhanjal TS, Pendaries C, Ross E, et al. A novel role for PECAM-1 in megakaryocyto -kinesis and recovery of platelet counts in thrombocytopenic mice. Blood, 2007, 109: 4237-4244.
    80. Wu Y, Welter T, Michaud M, et al . PECAM-1: a multifaceted regulator of megakaryocyto -poiesis. Blood, 2007, 110(3): 851-859.
    81. Perez LE,Alpdogan O,Shieh JH,et al. Increased plasma levels of stromal-derived factor-1 (SDF-1/CXCL12) enhance human thrombopoiesis and mobilize human colony-forming cells (CFC) in NOD/SCID mice. Exp Hematol, 2004, 32(3): 300-307.
    82. Guerriero R, Mattia G, Testa U, et al. Stromal cell–derived factor 1a increases polyploidization of megakaryocytes generated by human hematopoietic progenitor cells. Blood, 2001, 97(9): 2587-2595.
    83. Harissios V, Anne MH, Salahaddin, et al. Mast cells express connexins on their cytoplasmic membrane. Allergy Clinical Immunology, 1999, 103(4): 656-662.
    84. Cancelas JA, Koevoet WL, Koning, AE, et al. Connexin-43 gap junctions are involved in multiconnexin-expressing stromal support of hemopoietic progenitors and stem cells. Blood, 2000, 96(2): 498-505.
    85.吴克复,主编.细胞通讯与疾病.第一版,北京:科学出版社. 2006:63-67.
    86. Chen Q, Zeng QL, Lu DQ, et al. Millimeter wave exposure reverses TPA suppression of gap junction intercellular communication in HaCaT human keratinocytes. Bioelectro -magnetics, 2004, 25(1):1-4.
    87. Hurtado SP, Balduino A, B?di EC, et al. Connexin expression and gap-junction- mediated cell interactions in an in vitro model of haemopoietic stroma. Cell Tissue Res, 2004, 316(1): 65-76.
    88. Montecino-Rodriguez E, Dorshkind K. Regulation of hematopoiesis by gap junction- mediated intercellular communication. J Leukoc Biol, 2001, 70(3): 341-7.
    89. Oviedo Orta, E, Hoy, T, Evans, WH. Intercellular communication in the immune system: differential expression of connexin40 and 43, and perturbation of gap junction channel functions in peripheral blood and tonsil human lymphocyte subpopulations. Immunology, 2000, 99: 578-590.
    90. Dorshkind K, Green L, Godwin A, et al. Connexin-43-type gap junctions mediate communication between bone marrow stromal cells. Blood,1993, 82: 38-45.
    1. Dexter TM, Allen TG, Latjtha LG. Conditions controlling the proliferation of haemopoietic stem cells in vitro.J Cell Physiol, 1997, 91: 335-344.
    2. Mankani MH, Kuznetsov SA, Robey PG. Formation of hematopoietic territories and bone by transplanted human bone marrow stromal cells requires a critical cell density. Exp Hematol, 2007, 35(6): 995-1004.
    3. Pirrenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science, 1999, 284(4): 143-147.
    4. Sun J, Yang Y, Wang X, et al. Expression of Pdx-1 in bone marrow mesenchymal stem cells promotes differentiation of islet-like cells in vitro. Sci China C Life Sci, 2006, 49(5): 480-489.
    5. Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science, 1997, 276(4): 71-74.
    6. Friedenstein AJ, Deriglasova UF, Kulagina NN, et al. Precursors for fibroblasts in different population of hematopoitic cells as detected by the in vitro colony assay method. Exp Hematol, 1974, 2(1): 83-92.
    7. Piersma AH, Ploemacher RE, Brockbank KG. Transplantation of bone marrow fibroblastoid stromal cells in mice via the intravenous route. Br J Haematol, 1983, 54 ( 2): 285-290.
    8. Minguell JJ, Erices A, Conget P. Mesenchymal stem cells. Exp Biol Med, 2001, 226(6): 507-520.
    9. Ivan M, Venkantram PS, Robert FP, et al. Selective differentiation of mammalian bone marrow stromal cells cultured on three dimensioned polymerfoams. J Biomed Mater Res, 2001, 55(2): 229-235.
    10. Pittenger MF, Mackay AM, Beck SC, et al. Multineage poential of adult human mesenchymal stem cells. Science, 1999, 284(2):143.
    11. Robey PG. Collagenase-treated trabecular bone fragments: a reproducible source of cells in the osteoblastic lineage. Calcif Tissue Int, 1995, 56(2): 11– 12.
    12. Quirici N, Soligo D, Bossolasco P, et al. Isolation of bone marrow mesenchymal stem cells by anti-nerve growth factor receptor antibodies. Exp Hematol, 2002, 30 (7):783-791.
    13. Beresford JN, Bennett JH, Devlin C, et al. Evidence for aniverse relationship between the differentiation of adipocytic and osteogenic cells in rat marrow stromal cell cultrues. J Cell Sci, 1992, 102(2): 341.
    14. Colter DC, Sekiya I, Prockop DJ. Identification of a subpopulation of rapidly self-newing and multipotential adult stem cells in colonies of human marrow stromal cells. Proc Natl Acad Sci USA, 2001, 98(14): 7841-7845.
    15. Gimble JM, DorheimMA, Cheng Q, et al. Adipogenesis in a murine bone marrow stromal cell line capable of supporting B lineage lymphocyte growth and proliferation: biochemical and molecular characterization. Eur J Immunol, 1990, 20 (2): 379-387.
    16. Mets T, Verdonk G. In vitro aging of human bone marrow derived stromal cells. Mech Ageing Dev, 1981, 16(1): 81-89.
    17. Bianco P, Robey PG. Marrow stromal stem cells. J Clin Investigation, 2000, 105 (12): 1663-1668.
    18. Service RF. Tissue engineering build new bone. Science, 2000, 289(3): 1498.
    19. Hung SC, Chen NJ , Hsieh SL , et al . Isolation and characterization of size-sieved stem cells from human bone marrow. Stem Cells, 2002, 20(3): 249-258.
    20. Ueno H, Sakita Ishikawa M, Morikawa Y, et al. A stromal cell -erived membrane protein that supports hematopoietic stem cells. Natimmunol, 2003, 4(5): 457-463.
    21.罗成基,裴雪涛主编.造血微环境――基础与临床.江苏:世界医药出版社(第一版),2001:44
    22.高蕾,陈幸华,张曦,等.VCAM-1修饰人脐血基质细胞对造血干/祖细胞扩增作用的试验研究.中国病理生理杂志,2007,23(10):1923-1926.
    23. Gothot A, Giet O, Huygen S, et al. Binding and migration across fibronectin and VCAM-1 of cycling hematopoietic progenitor cells. Leuk Lymphoma, 2003,44(8): 1379-1383.
    24. Levesque JP, Takamatsu Y, Nilsson SK, et al.Vascular cell adhesion molecule-1 (CD106) is cleaved by neutrophil proteases in the bone marrow following hematopoietic progenitor cell mobilization by granulocyte colony-stimulating factor.Blood, 2001,98(5): 1289-1297.
    25. Vermeulen M, Pesteur FL, Gagnergault MC, et al.Role of adhesion molecules in thehoming and mobilization of murine hematopoietic stem and progenitor cells.Blood, 1998, 92(3): 894-900.
    26. Papayannopoulou T, Priestley GV, Nakamoto B, et al.Molecular pathways in bone marrow homing: dominant role of alpha(4)beta(1) over beta(2)-integrins and selectins.Blood, 2001,98(8): 2403-2411.
    27.陈幸华,罗成基.骨髓基质细胞在造血调控中的作用.解放军医学杂志,1999,24(3):232-234
    28. Maguer-Satta V, Forissier S, Bartholin L, et al. A novel role for fibronectin type I domain in the regulation of human hematopoietic cell adhesiveness through binding to follistatin domains of FLRG and follistatin.Exp Cell Res, 2006, 15, 312(4): 434- 442.
    29. Murphy JM, Young IG.IL-3, IL-5, and GM-CSF signaling: crystal structure of the human beta-common receptor.Vitam Horm, 2006, 74: 1-30.
    30. Friel J, Itoh K, Bergholz U, et al. Hierarchy of stroma-derived factors in supporting growth of stroma-dependent hemopoietic cells: membrane-bound SCF is sufficient to confer stroma competence toepithelial cells.Growth Factors, 2002, 20: 35-51.
    31. Yamaguchi M, Hirayama F, Kanai M, et al. Serum-free coculture system for ex vivo expansion of human cord blood primitive progenitors and SCID mouse-reconstituting cells using human bonemarrow primary stromal cells.Exp Hematol, 2001, 29(2): 174- 182.
    32. Yang M, Li K, Lam AC, et al. Platelet-derived growth factor enhances granulopoiesis via bone marrow stromal cells.Int J Hematol, 2001, 73(3): 327-334.
    33. Jiang J Y, Jin YZ, Hao J, et al. Accelerating hematopoietic recovery in allogeneic bone marrow transplantation mice by co-infusion of marrow stromal cells transduced with dual genes of IL-3/IL-6.中国实验血液学杂志, 2002, 10(5): 377-382.
    34. McNeel DG, Knutson KL, Schiffman K, et al. Pilot study of an HLA-A2 peptide vaccine using flt3 ligand as a systemic vaccine adjuvant..J Clin Immunol, 2003, 23(1):62-72.
    35. Yoshikawa Y, Hirayama F, Kanai M, et al. Stromal cell-independent differentiation of human cord blood CD34+CD38- lymphohematopoietic progenitors toward B cell lineage.Leukemia, 2000, 14(4): 727-734.
    36. Veiby OP, Jacobsen FW, Cui L, et al. The flt3 ligand promotes the survival of primitivehemopoietic progenitor cells with myeloid as well as B lymphoid potential. Suppression of apoptosis and counteraction by TNF-alpha and TGF-beta.J Immunol, 1996, 157(7):2953-2960.
    37. Lataillade JJ, Clay D, Dupuy C, et al. Chemokine SDF-1 enhances eireulating CD34+ cell proliferation in synergy with eytokines: possible role in progenitor survival.Blood, 2000, 95 (3): 756-768.
    38. Lataillade JJ, Clay D, Bourin P, et al. Stromal cell-derived factor 1 regulates primitive hematopoiesis by suppressing apoptosis and by promoting G(0) / G(1) transition in CD34+ cells: evidence for an autocrine/ paracrine mechanism.Blood, 2002, 99(4): 1117-1129.
    39. Egawa T, Kawabata K, Kawamoto H, et al. The earliest stages of B cell devolopment require a chemokine stromal cell-derived factor/pre-B cell growth stimulating factor.Immunity, 2001, 15(2): 323-334.
    40. Avecilla ST, Hattori K, Heissig B, et al. Chemokine-mediated interaction of hematopoietie progenitors with the bone marrow vascular niche is required for thrombopoiesis.Nat Med, 2004, 10(1): 64-71.
    41. Greenberger JS, Epperly MW, Jahroudi N, et al. Role of bone marrow stromal cells in irradiation leukemogenesis.Acta Haematol, 1996, 96(1):1-15.
    42. Weber MC, Tykocinski ML.Bone marrow stromal cell blockade of human leukemic cell differentiation.Blood, 1994, 83(8): 2221-2229.
    43.李忠俊,陈幸华.骨髓基质细胞与白血病细胞耐药、抗凋亡相关研究进展.中国实验血液学杂志,2004,13(3):529-533.
    44.陈幸华,张曦,刘林等.造血微环境异常与白血病研究进展.重庆医学,2002,31:1172-1184.
    45.付相建,王苹,彭贤贵等.急性白血病骨髓基质细胞对HL260细胞增殖、分化的影响.重庆医学,2003,32:1016-1018.
    46.张曦,王苹,陈幸华等.白血病骨髓基质增强HL-60细胞抵抗IDA化疗药物研究.中国实验血液学杂志,2004,12:163-165.
    47. Maniatopoulos C, Sodek J, Melcher AH.Bone formation in vitro by stromal cells obtained from bone marrow of young adult rats.cell tissue Res, 1988, 254(2): 317-330.
    48. Allampall K, et al. Effect of ascorbic acid and growth factors on collagen metabolismof flexor vetinaculum cells f rom individuals with and without carpal tunnel syndrome.J Occup Environ Med, 2000, 42(3): 251.
    49. Pitlenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells.Science, 1999, 284: 143-147.
    50. Weksler NB, Lunst rum GP, Reid ES, et al. Differential effects of fibroblast growt h factor on proliferation, differention and terminal differention of chondrocytic cells in vitro.Biochem J, 1999, 342: 677-682.
    51. Kamaguchi H, Kozo N, Yasuhiko T.Acceleration of f racture hearling in nonhuman primates by fibroblast growt h factors.JCM, 2001, 86(2): 875-880.
    52. Shuan Z, Karsten W, et al. Est rogen Modulates Est rogen Receptor a and b Expression, Osteogenic Activity, and Apoptosis in Mesenchymal Stem Cells (MSCs) of Osteoporotic Mice.Celluar Biochemist ry Supplement, 2001, 36: 144-155.
    53. Woodbury D, Schwarz EJ, Prockop DJ, et al. Adult rat and human bone marrow stromal cells differentiate into neurons.J Neurosci Res, 2000, 61(4): 364-370.
    54. Sanchez-Ramos J, Song S, Cardozo-Pelaez F.Adult bone marrow stromal cells differentiate into neural cells in vitro.Exp Neurol, 2000, 164(2): 247-256.
    55. Kohyama J, Abe H, Shimazaki T, et al. Brain from bone: efficient“meta-differentiation”of marrow stroma-derived mature osteoblasts to neuronswith Noggin or a demethylating agent.Differentiation, 2001, 68(4-5): 235-244
    56. Kopen GC, Prockop DJ, Phinney DG.Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains.Proc Natl Acad Sci USA, 1999, 96(19): 10711-10716.
    57. Mimura T, Dezawa M, Kanno H, et al. Peripheral nerve regeneration by transplantation of bone marrow stromal cell-derived Schwann cells in adult rats.J Neurosurg, 2004, 101(5): 806-812.
    58. Chiang GG, Rubin HL, Cherington V, et al. Bone marrow stromal cell-mediated gene therapy for hemophilia A: in vitro expression of human facrorⅧwith high biological activity requires the inclusion of the proteolytic site at amino acid 1648.Hum Gene Ther, 1999, 10(1): 61-76.
    59. Chuah MK, Var Damme A, Zwinnen H, et al. Long-term persistence of human bone marrow stromal cells transduced with facrorⅧ-retroviral vectors and transientproduction of therapeutic levels of human factorⅧin nonmyeloablated immunodeficient mice.Hum Gene Ther, 2000, 12(1): 729-738.
    60. Bahner I, Kearns K, Coutiho S, et al. Infection of human marrow stroma by human immunodeficiency virus-1 (HIV-1) is both required and sufficient for HIV-1-induced hematopoietic suppression in vitro: demonstration by gene modification of primary human stroma.Blood, 1997, 90:1787-1798.
    61. Brouard N, Chapel A, Thierry D, et al. Transplantation of gene-modified human bone marrow stromal cells into mouse-human bone chimeras.J Hematother Stem Cell Res, 2000, 9(2): 175-181.
    62. Wolf NS, Bertoncello I, Jiang D, et al. Developmental hematopoiesis from prenatal to young-adult life in the mouse model.Exp Hematol, 1995, 23: 142-146.
    63. Li Q, Congote LF.Bovine fetal-liver stromal cells support erythroid colony formation: enhancement by insulin-like growth factorⅡ. Exp Hematol, 1995,23: 66-73.
    64. Cappellini MD, Potter CG, Wood WG.Long-term haemopoiesis in human fetal liver cell cultures.Br J Haematol, 1984, 57: 61-70.
    65.邱灵华,马逢顺,高瑞兰,等.非转化集落来源的胎肝基质细胞系的建立及鉴定.中国实验血液学杂志,1999,7(1):34-38
    66.李栋,白增亮,李慧,等.小鼠胚胎基质细胞在体外培养中的动态演化.山东大学学报,2003,38(5):121-124.
    67. Seach N, Ueno T, Fletcher AL, et al.The lymphotoxin pathway regulates aire- independent expression of ectopic genes and chemokines in thymic stromal cells.J Immunol, 2008, 180(8): 5384-5392.
    68. Müller SM, Stolt CC, Terszowski G, et al.Neural crest origin of perivascular mesenchyme in the adult thymus.J Immunol, 2008, 180(8): 5344-5351.
    69. Gray DH, Fletcher AL, Hammett M, et al.Unbiased analysis, enrichment and purification of thymic stromal cells.J Immunol Methods, 2008, 329(1-2): 56-66.
    70. Ebner S, Ngnyen VA, Forstner M, et al.Thymic stromal lymphopoietin converts human epidermal Langerhans cells into antigen-presenting cells that induce proallergic T cells.J Allergy Clin Immunol, 2007, 119(4): 982-990.
    71. Pavlovi? V, Ceki? S, Koci? G, et al.Effect of monosodium glutamate on apoptosis and Bcl-2/Bax protein level in rat thymocyte culture.Physiol Res, 2007, 56(5): 619-626.
    72. Gray DH, Seach N, Ueno T, et al.Developmental kinetics, turnover, and stimulatory capacity of thymic epithelial cells.Blood, 2006, 108(12): 3777-3785.
    73. Maeda T, Shiozawa E, Mayumi H, et al.Histopathology of bone marrow reconstitution after umbilical cord blood transplantation for hematological diseases.Pathol Int, 2008, 58(2):126-132.
    74.张曦,王苹,陈幸华,等.人脐血贴壁细胞生物学特点的观察.中国实验血液学杂志,2005,13(1):59-64.
    75.刘耀,陈幸华,张曦,等.人脐血基质细胞自发分泌多种造血生长因子的实验研究.第三军医大学学报,2005,27(7):643-645.
    76. Gao L,Chen XH,Zhang X,et al.Human Umbilical Cord Blood-derived Stromal Cell, a New Resourse of Feeder Layer to Expand Human Umbilical Cord Blood CD34+ Cells in vitro.Blood cells,Mol and Dis, 2006, 36(2): 322-327.
    77.高蕾,陈幸华,张曦,等.人脐血基质细胞对脐血CD34+细胞体外扩增的作用.医学研究生学报,2005,18(6):486-489.
    78. Zhang M, Tang H, Guo Z, et al. Splenic stroma drivesmature dendritic cells to differentiate into regulatory dendritic cells.Nat Immunol, 2004, 5(11): 1124-1133.
    79. Svensson M, Mroof A, Ato M, et al. Stromal cells direct local differentiation of regulatory dendritic cells.Immunity, 2004, 21(6): 805-816.
    80. Tang H, Guo Z, ZhangM, et al. Endothelial stroma programs hematopoietic stem cells to differentiate into regulatory dendritic cells through IL-10.Blood, 2006 108 (4): 1189-1197.
    81. Till JE, McCulloch EA.A direct measurement of the radiation sensitivity of normal mouse bone marrow cells.Radiat Res, 1961, 62: 213-221.
    82.傅晋祥,张学光.小鼠脾集落形成期基质细胞在体外扩增脐带血CD34+细胞中的作用.中国医学科学院学报,2001,23(5):523-527.
    83. Rodbell M.Metabolism of isolated fat cells. I. Effect s of hormones on glucose metabolism and lipolysis.J Biol Chem, 1964, 239: 375–38.
    84. Gimble JM, Guilak F.Differentiation potential of adipose derived adult stem ADAS) cells.Curr Top Dev Biol, 2003, 58: 137-160.
    85. Zuk PA, Zhu M, Mizuno H, et al.Multilineage cells f rom human adipose tissue: implications for cell-based therapies.Tissue Eng, 2001, 7(2): 211-228.
    86. Zuk PA, Zhu M, Ashjian P, et al.Human adipose tissue is a source of multipotent stem cells.Mol Biol Cell, 2002, 13(12): 4279-4295.
    87. Kang SK, Lee DH, Bae YC, et al . Improvement of neurological deficits by intracerebral transplantation of human adipose tissue-derived stromal cells after cerebral ischemia in rats.Exp Neurol, 2003, 183(2): 355-366.
    88. TavianM, Coulombel L, Luton D, et al. Aorta-associated CD34+ hematopoietic cells in the early human embryo.Blood, 1996, 87(1): 67-72.
    89. Xu MJ, Tsuji K, Ueda T, et al. Stimulation of mouse and human primitive hematopoiesis by murine embryonic aorta-gonad-meso-nephros derived stromal cell lines.Blood, 1998, 92: 2032–2040.
    90. Oostendorp RA, Harvey KN, KusadasiN, et al. Stromal cell lines from mouse aorta-gonads-mesonephros subregions are potent supporters of hematopoietic stem cell activity.Blood, 2002, 99: 1183-1189.
    91.陈惠芹,张绪超,唐新意,等.体外培养的人AGM区基质细胞表达多种造血生长因子.中国实验血液学杂志,2006,14(5):999-1003.
    92.付劲蓉,刘文励,周玉峰,等.AGM区来源的基质细胞促进造血干细胞扩增的体外实验研究.中国病理生理杂志,2007,23(7):1373-1377.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700