黄芩苷抗金黄色葡萄球菌α-溶血素作用靶位的确证
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金黄色葡萄球菌(Staphylococcus aureus,简称为金葡菌)是常见的革兰氏阳性致病菌,是极其重要的人兽共患病原体。金葡菌所导致的疾病范围非常广,从普通的皮肤软组织感染到危及生命的肺炎、心内膜炎和毒素休克综合症等,具有非常高的发病率和死亡率。在兽医临床上,金葡菌是奶牛和羊乳房炎的主要病原,造成极大的经济损失以及公共卫生问题。金葡菌的耐药性非常严重,几乎对所有的抗生素都产生了耐药性,尤其是MRSA菌株的传播和蔓延,已经成为人类及动物健康的重要威胁。90%的MRSA菌株具有多药耐药特征,表现为对多种抗菌药物如β-内酰胺类、喹诺酮类、大环内酯类和四环素类等多种抗菌药物同时耐药。长期以来,糖肽类抗生素万古霉素被认为是治疗MRSA感染的首选药物,但随着万古霉素对金葡菌敏感性的降低甚至耐药,使得临床上对MRSA感染面临一种无药可用的局面。因此,临床上迫切需要开发新的抗金葡菌感染药物。
     随着人们对金葡菌致病机制和信号传导通路研究的深入,有一些新的抗感染策略获得了广泛的关注。众所周知,金葡菌分泌大量的细胞表面蛋白和外毒素,参与细菌的致病过程,因此,以毒力因子为靶标的抗感染药物的开发成为非常有前景的控制金葡菌感染的策略。α-溶血素是金葡菌在对数生长后期分泌的主要外毒素之一,为33.2kDa的可溶性蛋白,包含293个氨基酸残基,可导致多种细胞的裂解死亡,包括红细胞、淋巴细胞、上皮细胞、巨噬细胞和单核细胞等。α-溶血素需要在敏感细胞的细胞膜表面自组装形成七聚体,引起细胞内容物的渗漏,进而导致细胞的死亡。α-溶血素在金葡菌感染中所起的作用已研究的非常透彻,缺乏α-溶血素表达的金葡菌菌株在多种实验动物疾病模型中表现致病性显著降低,如乳房炎、腹膜炎、角膜炎和肺炎等。基于α-溶血素的细胞裂解机制及其在疾病过程的关键作用,α-溶血素有望成为抗金葡菌感染药物开发的重要靶标。
     天然化合物是新药发现的重要资源,而抗毒力药物的研发依赖于具有抗毒力特性的半合成或天然化合物的发现。本研究通过溶血试验、western-blot和荧光定量PCR试验,从表型功能、蛋白水平和基因水平三个层面上研究了22种天然化合物对金葡菌α-溶血素的影响。发现异土木香内酯、甘草查尔酮A、杜鹃素、辣椒碱、麝香草酚、丁香酚、木犀草素、白杨黄素和薄荷脑通过抑制α-溶血素编码基因hla的转录,从而降低α-溶血素的表达,进而抑制其溶血活性。α-溶血素的表达受到由多个调控子组成的调控网络的控制,其中Agr二元调控系统处于核心的地位。为此,本研究进一步通过荧光定量PCR证明了上述九种天然化合物均可显著地抑制agrA的转录,提示这些化合物抑制α-溶血素的表达可能部分地依赖于Agr二元调控系统,但是不排除其它调控子也受到这些化合物的影响。黄芩苷是传统中药黄芩的主要有效成分,属黄酮类化合物,具有非常广泛的药理活性,包括抗炎、抗病毒、抗肿瘤、抗过敏和解热等作用。与上述9种化合物不同,黄芩苷作用于金葡菌后,能够剂量依赖性地抑制金葡菌培养物上清对兔红细胞的溶血活性,但western-blot结果显示α-溶血素的表达量并没有变化,提示黄芩苷可能直接作用α-溶血素结构本身,随后应用纯化的α-溶血素与黄芩苷作用后,其溶血作用显著降低,从而证明了这种可能性。
     本研究应用理论化学的方法,应用分子对接和分子动力学模拟技术,以阐明黄芩苷抑制α-溶血素的机制。通过同源模建获得α-溶血素的初始结构,应用AutoDock4.0对α-溶血素与黄芩苷进行对接,能量的算法使用拉马克遗传算法(LGA),全面搜索最优化构象。随后应用GROMACS4.5.3程序包对分子对接的结果进行分子动力学模拟,应用MM-GBSA方法计算结合自由能。结果表明,黄芩苷可结合与α-溶血素结构的“三角区”,Tyr148、Pro151和Phe153为其结合的主要残基,结合方式主要是通过疏水作用;黄芩苷与α-溶血素的结合使α-溶血素“三角区”两边的构象变化受到束缚,无法进行自由伸缩,从而不能形成七聚体。
     本研究应用定点残基突变和荧光淬灭试验验证黄芩苷与α-溶血素的结合位点。通过将α-溶血素氨基酸序列中的Tyr148、Pro151和Phe153突变为丙氨酸(Ala),表达和纯化野生型α-溶血素及突变体α-溶血素,应用荧光淬灭试验测定结合常数,结果表明,突变后的α-溶血素与黄芩苷的结合明显降低,结合常数大小为野生型> F153A> P151A> Y148A。通过脱氧胆酸诱导的寡聚化和SDS-PAGE验证了黄芩苷对α-溶血素七聚体形成的影响。结果显示,黄芩苷作用后α-溶血素七聚体的量显著降低,该作用呈现剂量依赖性。
     本研究将金葡菌与肺泡上皮细胞A549共培养体系中加入黄芩苷,进行激光共聚焦观察和LDH含量测定,结果表明黄芩苷能够显著保护由α-溶血素介导的A549细胞的损伤。提示黄芩苷对金葡菌肺炎的潜在治疗作用。
     本研究进一步应用高效液相色谱法考察了黄芩苷在小鼠体内的药代动力学特征。小鼠分别皮下注射25、50和100mg/kg黄芩苷后,Cmax分别为4.5、14.81和24.74μg/ml,半衰期为1.29h,符合一级吸收的开放一室模型。
     通过建立小鼠金葡菌肺炎模型,根据黄芩苷在小鼠体内的药动学参数设计给药方案,考察黄芩苷对金葡菌肺炎的治疗作用。结果显示,黄芩苷治疗后显著降低金葡菌肺炎小鼠的死亡率,降低小鼠肺脏金葡菌的定殖数量;肺脏湿重/干重比降低,提示肺水肿症状的减轻;组织病理学显示黄芩苷治疗后显示肺组织充血减轻,肺泡腔炎性细胞浸润明显减少,肺泡结构相对完整,提示肺部炎症的缓解。肺泡灌洗液分析试验结果表明,黄芩苷治疗显著抑制感染小鼠肺部嗜中性粒细胞的聚集,主要炎症因子TNF-α、IL-1β和IL-6的含量降低。
     综上所述,黄芩苷体外可通过阻碍金葡菌α-溶血素七聚体的自组装,从而抑制其细胞溶解活性;黄芩苷可保护α-溶血素介导的A549细胞的损伤;实验治疗学显示黄芩苷可有效地治疗小鼠金葡菌肺炎。本研究为阐明黄芩苷抗感染的机制以及创新性抗感染药物的研发奠定了坚实的基础。
Staphylococcus aureus is a gram-positive zoonotic pathogen, causing a broadrange of diseases, ranging from relative minor skin and soft tissue infections tolife-threatening pneumonia, endocarditis, meningitis, septicemia and toxic shocksyndrome. In the veterinary clinic, S. aurues is the major pathogen that causedmastitis of cows and sheep, resulting in great economic losses and public health issues.The antibiotic resistance of S. aurues is pretty serious. Actually, it has been resistant toall clinically used antibiotics. Particularly, the dissemination and wide spread ofmethicillin-resistant S. aurues (MRSA) isolates have become a major threat to thehuman and animal health.90%of MRSA isolates have multi-drug resistant featurethat are simultaneously resistant to many antimicrobial agents, such as β-lactams,quinolones, macrolides and tetracyclines. The glycopeptides antibiotic vancomycin ispreviously considered to be the preferred drug for the treatment of MRSA infections.However, the emergence of vancomycin-insensitive S. aurues (GISA) andvancomycin-resistant S. aurues strains (VRSA) has made it difficult to controlstaphylococcal infections. Consequently, there is an urgent need to develop moreeffective antimicrobial agents or alternative therapeutic strategies.
     With increasing understanding of bacterial pathogenesis and intercellularcommunication has revealed many potential strategies to develop novel drugs for thetreatment of S. aurues-mediated diseases. S. aurues produces a number of virulencefactors, including cell surface proteins and exotoxins, which participated inpathogenesis. Presently, targeting virulence factors has become a promising strategyfor the treatment of S. aurues illnesses. α-hemolysin (Hla) is one of the majorexotoxins of S. aurues that is produced in the post-exponential growth phase. It issecreted as a33.2kDa water-soluble extracellular protein which contains293aminoacids. A wide range of mammalian cells, including erythrocytes, monocytes,lymphocytes, macrophages and epithelial cells, are influenced by Hla. Hla is a self-assembling, channel-forming toxin. Upon binding to the membrane of asusceptible cell, the membrane-bound monomer oligomerizes to form a232.4-kDamembrane-inserted heptamer. The heptameric pore leads to leakage of ions, water,and low molecular weight molecules out of and into the cell, and ultimately causingcell lysis and death. The roles of Hla in S. aurues infections have beenwell-investigated. Strains lacking Hla displayed less virulent in animal models ofdiseases, such as mastitis, peritonitis, keratitis and pneumonia. Based on the cell lyticmechanism and the key roles of Hla in S. aurues infections, Hla could be an importanttarget for the development of anti-S. aurues drugs.
     Natural compounds are important resources for drug discovery, while thedevelopment of anti-virulence drug relies on newly discovered synthetic or naturalsmall organic compounds that possess anti-virulence characteristics. In the study, weapplied hemolysis assay, western-blot and real-time RT-PCR to investigate theinfluence of22natural compounds on the production of Hla. The results indicated thatisoalantolactone, licochanlcone A, farrerol, capsaicin, thymol, eugenol, luteolin,chrysin and menthol could inhibit the transcription of hla gene (encoding Hla),decrease the production of Hla, and thereby inhibiting the hemolytic activity. Theexpression of Hla is controlled by a network of regulators, among which the Agrtwo-component system is the most important and well-characterized one. The data ofreal-time RT-PCR showed that the transcription of agrA was significantly inhibited bythese compounds, suggesting that the decreased production of Hla may partiallydepend on the inhibition of Agr regulator, although other regulators may also beinfluenced. Baicalin is the major component of Scutellaria baicalensis Georgi (HuangQin), which belongs to the flavonoids. It has various biological effects, includinganti-inflammatory, anti-viral, anti-tumor, anti-allergy and anti-pyretic characteristics.Treatment with baicalin could also inhibit the hemolytic activities of S. aurues culturesupernatants; however, the western-blot results showed that the expression of Hlawere not affected, suggesting that baicalin may directly inhibit Hla. Subsequently, wedemonstrated the possibility by hemolysis assay using purified Hla.
     Further, we used the theoretical chemistry methods to investigate the mode ofaction that baicalin inactivates Hla. Molecular docking and molecular dynamics (MD) simulations were employed. The initial structure of Hla was obtained from thehomology modeling. A standard docking procedure for Hla and baicalin wasperformed with AutoDock4.0, while the Lamarckian genetic algorithm (LGA) wasapplied in the docking calculations to obtain optimal conformation. MD simulationswere performed with the Gromacs4.5.3software package to analyze the moleculardocking data. The binding free energies were calculated using MM-GBSA approachsupplied by Amber10package. The results showed that baicalin could bind to the“triangle region” of the Hla monomer, while Tyr148, Pro151and Phe153were themajor binding sites. The hydrophobic interaction was the principal binding mode; thebinding of bacicalin restrained the conformational change of “triangle region”,thereby inhibiting the self-assembly of the heptameric transmembrane pore.
     Site-directed mutagenesis and fluorescence quenching assays were applied toverify the binding sites of baicalin on Hla. The Tyr148, Pro151and Phe153in Hlawere mutated to Alanine (Ala). We constructed plasmids encoding wild-type(WT)-Hla, Y148A-Hla, P151A-Hla and F153A-Hla. Further, WT-Hla, Y148A-Hla,P151A-Hla and F153A-Hla were expressed and purified. The purified proteins wereused for determination of fluorescence quenching constants. The results showed thatmutations of Hla led to reduction of baicalin binding. The binding constants of theinteraction between baicalin and Hla decrease in the following order: WT-Hla>F153A-Hla> P151A-Hla> Y148A-Hla. Moreover, we used thedeoxycholate-induced oligomerization assay and sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) to assess the influence ofbaicalin on the formation of Hla heptamer. Apparently, the addition of baicalinresulted in concentration-dependent reduction of Hla heptamer formation.
     Alveolar epithelial cells (A549) were co-cultured with S. aurues. Followingtreatment with baicalin, cell viability was measured either using the confocal laserscanning microscope or by measuring LDH. The data indicated that baicalin couldprotect Hla mediated injury of A549cells, suggesting the potential therapeutic effectof baicalin in staphylococcal pneumonia.
     The pharmacokinetic characteristics of baicalin in mice were determined by highperformance liquid chromatography (HPLC). The maximum concentrations of baicalin in plasma (Cmax) were4.5,14.81and24.74μg/ml for single subcutaneousdoses of25,50and100mg/kg, respectively. The half-time (t1/2) is about1.29h. Thepharmacokinetics of baicalin conformed to one-compartment open model with firstorder absorption.
     The mouse model of S. aurues pneumonia was established to assess the in vivoperformance of baicalin, and the dosage regimen was designed according to thepharmacokinetic characteristics of baicalin in mice. The results showed that treatedmice with baicalin significantly decreased the mortality and the colony forming units(CFUs) in the lung tissues. The lung wet-dry ratio was also reduced, indicating thatthe pulmonary edema was alleviated. Histopathologic analysis revealed extenuatedhyperemia, decreased inflammatory cell infiltration and normal alveolar architectureof lung tissue following treatment with baicalin. Analysis of bronchoalveolar lavage(BAL) fluid revealed that treated mice with baicalin led to significantly lessneutrophil influx into the airway, a marked reduction in IL-1β, TNF-α and IL-6concentrations in BAL fluids.
     In summary, baicalin inhibits the cell lytic activity of Hla via preventing theself-assembling of Hla heptameric pore; baicalin prevents Hla mediated A549cellinjury; baicalin protects mice from S. aurues pneumonia. Our study will lay thefoundation for clarifying the anti-infective mechanism of baicalin and developmentof innovative anti-infective drugs.
引文
[1] Lowy FD. Staphylococcus aureus infections [J]. N Engl J Med,1998,339(8):520-32.
    [2] Wang D, Yu L, Xiang H, et al. Global transcriptional profiles of Staphylococcusaureus treated with berberine chloride[J]. FEMS Microbiol Lett,2008,279(2):217-225.
    [3] Barber M. Methicillin-resistant staphylococci [J]. J Clin Pathol,1961,14:385-393.
    [4] Eriksen KR.["Celbenin"-resistant staphylococci][J]. Ugeskr Laeger,1961,123:384-386.
    [5]任成山,赵晓晏.“超级细菌”的由来和未来[J].中华肺部疾病杂志(电子版),2010,(05):378-383.
    [6] Diekema DJ, Climo M. Preventing MRSA infections: finding it is not enough [J].JAMA,2008,299(10):1190-1192.
    [7] Cosgrove SE, Sakoulas G, Perencevich EN, et al. Comparison of mortalityassociated with methicillin-resistant and methicillin-susceptible Staphylococcusaureus bacteremia: a meta-analysis [J]. Clin Infect Dis,2003,36(1):53-59.
    [8] Hiramatsu K, Hanaki H, Ino T, et al. Methicillin-resistant Staphylococcus aureusclinical strain with reduced vancomycin susceptibility [J]. J AntimicrobChemother,1997,40(1):135-136.
    [9] Bartley J. First case of VRSA identified in Michigan [J]. Infect Control HospEpidemiol,2002,23(8):480.
    [10]廖康,陈冬梅,曾燕,陈求刚.异质性万古霉素中介金黄色葡萄球菌的检测与分析[J].中国临床实用医学,2008,2(12):4-5.
    [11] Wunderink RG, Rello J, Cammarata SK, et al. Linezolid vs vancomycin:analysis of two double-blind studies of patients with methicillin-resistantStaphylococcus aureus nosocomial pneumonia [J]. Chest,2003,124(5):1789-1797.
    [12] Ghuysen JM. Molecular structures of penicillin-binding proteins andbeta-lactamases[J]. Trends Microbiol,1994,2(10):372-80.
    [13]谭艳,方治平.抗菌药物的作用机制及细菌耐药性机制的研究进展[J].国外医药(抗生素分册),2003,(02):65-69.
    [14] Lowy FD. Antimicrobial resistance: the example of Staphylococcus aureus [J]. JClin Invest,2003,111(9):1265-1273.
    [15] Gregory PD, Lewis RA, Curnock SP, et al. Studies of the repressor (BlaI) ofbeta-lactamase synthesis in Staphylococcus aureus [J]. Mol Microbiol,1997,24(5):1025-1037.
    [16] Zhang HZ, Hackbarth CJ, Chansky KM, et al. A proteolytic transmembranesignaling pathway and resistance to beta-lactams in staphylococci [J]. Science,2001,291(5510):1962-1965.
    [17] Georgopapadakou NH, Liu FY. Binding of beta-lactam antibiotics topenicillin-binding proteins of Staphylococcus aureus and Streptococcus faecalis:relation to antibacterial activity [J]. Antimicrob Agents Chemother,1980,18(5):834-836.
    [18] Kondo N, Ito T, Hiramatsu K.[Genetic basis for molecular epidemiology ofMRSA][J]. Nihon Saikingaku Zasshi,1997,52(2):417-434.
    [19] Katayama Y, Ito T, Hiramatsu K. A new class of genetic element,staphylococcus cassette chromosome mec, encodes methicillin resistance inStaphylococcus aureus [J]. Antimicrob Agents Chemother,2000,44(6):1549-1555.
    [20] Hiramatsu K, Cui L, Kuroda M, et al. The emergence and evolution ofmethicillin-resistant Staphylococcus aureus [J]. Trends Microbiol,2001,9(10):486-493.
    [21] Noto MJ,Archer GL. A subset of Staphylococcus aureus strains harboringstaphylococcal cassette chromosome mec (SCCmec) type IV is deficient inCcrAB-mediated SCCmec excision [J]. Antimicrob Agents Chemother,2006,50(8):2782-2788.
    [22] de ATP, Pacheco RL, Costa SF, et al. Prevalence of SCCmec type IV innosocomial bloodstream isolates of methicillin-resistant Staphylococcus aureus[J]. J Clin Microbiol,2005,43(7):3435-3437.
    [23] Berger-Bachi B. Insertional inactivation of staphylococcal methicillin resistanceby Tn551[J]. J Bacteriol,1983,154(1):479-487.
    [24] Murakami K, Tomasz A. Involvement of multiple genetic determinants inhigh-level methicillin resistance in Staphylococcus aureus [J]. J Bacteriol,1989,171(2):874-879.
    [25] Ramirez MS, Tolmasky ME. Aminoglycoside modifying enzymes [J]. DrugResist Updat,2010,13(6):151-171.
    [26] Fluit AC, Visser MR, Schmitz FJ. Molecular detection of antimicrobialresistance [J]. Clin Microbiol Rev,2001,14(4):836-871, table of contents.
    [27] Leclercq R. Mechanisms of resistance to macrolides and lincosamides: nature ofthe resistance elements and their clinical implications [J]. Clin Infect Dis,2002,34(4):482-492.
    [28] Ardic N, Ozyurt M, Sareyyupoglu B, et al. Investigation of erythromycin andtetracycline resistance genes in methicillin-resistant staphylococci [J]. Int JAntimicrob Agents,2005,26(3):213-218.
    [29] Putman M, van Veen HW, Konings WN. Molecular properties of bacterialmultidrug transporters [J]. Microbiol Mol Biol Rev,2000,64(4):672-693.
    [30] Leclercq R, Derlot E, Duval J, et al. Plasmid-mediated resistance tovancomycin and teicoplanin in Enterococcus faecium [J]. N Engl J Med,1988,319(3):157-161.
    [31] Uttley AH, Collins CH, Naidoo J, et al. Vancomycin-resistant enterococci [J].Lancet,1988,1(8575-6):57-58.
    [32] Showsh SA, De Boever EH, Clewell DB. Vancomycin resistance plasmid inEnterococcus faecalis that encodes sensitivity to a sex pheromone also producedby Staphylococcus aureus [J]. Antimicrob Agents Ch,2001,45(7):2177-2178.
    [33] Noble WC, Virani Z,Cree RG. Co-transfer of vancomycin and other resistancegenes from Enterococcus faecalis NCTC12201to Staphylococcus aureus [J].FEMS Microbiol Lett,1992,72(2):195-198.
    [34] McAleese F, Wu SW, Sieradzki K, et al. Overexpression of genes of the cellwall stimulon in clinical isolates of Staphylococcus aureus exhibitingvancomycin-intermediate-S. aureus-type resistance to vancomycin [J]. JBacteriol,2006,188(3):1120-1133.
    [35] Hanaki H, Kuwahara-Arai K, Boyle-Vavra S, et al. Activated cell-wall synthesisis associated with vancomycin resistance in methicillin-resistant Staphylococcusaureus clinical strains Mu3and Mu50[J]. J Antimicrob Chemother,1998,42(2):199-209.
    [36] Cui L, Ma XX, Sato K, et al. Cell wall thickening is a common feature ofvancomycin resistance in Staphylococcus aureus [J]. Journal of ClinicalMicrobiology,2003,41(1):5-14.
    [37] Moreira B, Boyle-Vavra S, deJonge BL, et al. Increased production ofpenicillin-binding protein2, increased detection of other penicillin-bindingproteins, and decreased coagulase activity associated with glycopeptideresistance in Staphylococcus aureus [J]. Antimicrob Agents Chemother,1997,41(8):1788-1793.
    [38] Finan JE, Archer GL, Pucci MJ, et al. Role of penicillin-binding protein4inexpression of vancomycin resistance among clinical isolates of oxacillin-resistantStaphylococcus aureus [J]. Antimicrob Agents Ch,2001,45(11):3070-3075.
    [39] Wootton M, Avison MB, Bennett PM, et al. Genetic analysis of17genes inStaphylococcus aureus with reduced susceptibility to vancomycin (VISA) andheteroVISA [J]. J Antimicrob Chemother,2004,53(2):406-407.
    [40] Eliopoulos GM. Quinupristin-dalfopristin and linezolid: evidence and opinion[J]. Clin Infect Dis,2003,36(4):473-481.
    [41] Goldstein EJ, Citron DM, Merriam CV, et al. Comparative in vitro activities ofXRP2868, pristinamycin, quinupristin-dalfopristin, vancomycin, daptomycin,linezolid, clarithromycin, telithromycin, clindamycin, and ampicillin againstanaerobic gram-positive species, actinomycetes, and lactobacilli [J]. AntimicrobAgents Chemother,2005,49(1):408-413.
    [42] Muthaiyan A, Silverman JA, Jayaswal RK, et al. Transcriptional profilingreveals that daptomycin induces the Staphylococcus aureus cell wall stressstimulon and genes responsive to membrane depolarization [J]. AntimicrobAgents Ch,2008,52(3):980-990.
    [43] Wang J, Kodali S, Lee SH, et al. Discovery of platencin, a dual FabF and FabHinhibitor with in vivo antibiotic properties [J]. P Natl Acad Sci USA,2007,104(18):7612-7616.
    [44] Majerczyk CD, Sadykov MR, Luong TT, et al. Staphylococcus aureus CodYnegatively regulates virulence gene expression [J]. Journal of Bacteriology,2008,190(7):2257-2265.
    [45] M. BF. The exotoxins of Staphylococcus pyogenes aureus [J]. J Pathol Bacteriol,1929,32(1):717-734.
    [46] Bhakdi S,Tranum-Jensen J. Alpha-toxin of Staphylococcus aureus [J].Microbiol Rev,1991,55(4):733-751.
    [47] Gray GS, Kehoe M. Primary sequence of the alpha-toxin gene fromStaphylococcus aureus wood46[J]. Infect Immun,1984,46(2):615-618.
    [48] Holden MT, Feil EJ, Lindsay JA, et al. Complete genomes of two clinicalStaphylococcus aureus strains: evidence for the rapid evolution of virulence anddrug resistance [J]. Proc Natl Acad Sci U S A,2004,101(26):9786-9791.
    [49] Song L, Hobaugh MR, Shustak C, et al. Structure of staphylococcalalpha-hemolysin, a heptameric transmembrane pore [J]. Science,1996,274(5294):1859-1866.
    [50] Vandana S, Raje M, Krishnasastry MV. The role of the amino terminus in thekinetics and assembly of alpha-hemolysin of Staphylococcus aureus [J]. J BiolChem,1997,272(40):24858-24863.
    [51] Dinges MM, Orwin PM, Schlievert PM. Exotoxins of Staphylococcus aureus[J]. Clin Microbiol Rev,2000,13(1):16-34, table of contents.
    [52] Sangha N, Kaur S, Sharma V, et al. Importance of the carboxyl terminus in thefolding and function of alpha-hemolysin of Staphylococcus aureus [J]. J BiolChem,1999,274(14):9193-9199.
    [53] Novick RP, Ross HF, Projan SJ, et al. Synthesis of staphylococcal virulencefactors is controlled by a regulatory RNA molecule [J]. EMBO J,1993,12(10):3967-3975.
    [54] Rechtin TM, Gillaspy AF, Schumacher MA, et al. Characterization of the SarAvirulence gene regulator of Staphylococcus aureus [J]. Mol Microbiol,1999,33(2):307-316.
    [55] Said-Salim B, Dunman PM, McAleese FM, et al. Global regulation ofStaphylococcus aureus genes by Rot [J]. J Bacteriol,2003,185(2):610-619.
    [56] Giraudo AT, Mansilla C, Chan A, et al. Studies on the expression of regulatorylocus sae in Staphylococcus aureus [J]. Curr Microbiol,2003,46(4):246-250.
    [57] Bronner S, Monteil H, Prevost G. Regulation of virulence determinants inStaphylococcus aureus: complexity and applications [J]. FEMS Microbiol Rev,2004,28(2):183-200.
    [58] Recsei P, Kreiswirth B, O'Reilly M, et al. Regulation of exoprotein geneexpression in Staphylococcus aureus by agar [J]. Mol Gen Genet,1986,202(1):58-61.
    [59] Dunman PM, Murphy E, Haney S, et al. Transcription profiling-basedidentification of Staphylococcus aureus genes regulated by the agr and/or sarAloci [J]. Journal of Bacteriology,2001,183(24):7341-7353.
    [60] Seeger W, Birkemeyer RG, Ermert L, et al. Staphylococcal alpha-toxin-inducedvascular leakage in isolated perfused rabbit lungs [J]. Lab Invest,1990,63(3):341-349.
    [61] Bhakdi S, Muhly M, Mannhardt U, et al. Staphylococcal alpha toxin promotesblood coagulation via attack on human platelets [J]. J Exp Med,1988,168(2):527-542.
    [62] Bantel H, Sinha B, Domschke W, et al. alpha-toxin is a mediator ofStaphylococcus aureus-induced cell death and activates caspases via the intrinsicdeath pathway independently of death receptor signaling [J]. Journal of CellBiology,2001,155(4):637-647.
    [63] Dragneva Y, Anuradha CD, Valeva A, et al. Subcytocidal attack bystaphylococcal alpha-toxin activates NF-kappaB and induces interleukin-8production [J]. Infect Immun,2001,69(4):2630-2635.
    [64] Patel AH, Nowlan P, Weavers ED, et al. Virulence of protein A-deficient andalpha-toxin-deficient mutants of Staphylococcus aureus isolated by allelereplacement [J]. Infect Immun,1987,55(12):3103-3110.
    [65] Nilsson IM, Hartford O, Foster T, et al. Alpha-toxin and gamma-toxin jointlypromote Staphylococcus aureus virulence in murine septic arthritis [J]. InfectImmun,1999,67(3):1045-1049.
    [66] O'Callaghan RJ, Callegan MC, Moreau JM, et al. Specific roles of alpha-toxinand beta-toxin during Staphylococcus aureus corneal infection [J]. Infect Immun,1997,65(5):1571-1578.
    [67] Bramley AJ, Patel AH, O'Reilly M, et al. Roles of alpha-toxin and beta-toxin invirulence of Staphylococcus aureus for the mouse mammary gland [J]. InfectImmun,1989,57(8):2489-2494.
    [68] Bubeck Wardenburg J, Patel RJ,Schneewind O. Surface proteins and exotoxinsare required for the pathogenesis of Staphylococcus aureus pneumonia [J]. InfectImmun,2007,75(2):1040-1044.
    [69] McElroy MC, Harty HR, Hosford GE, et al. Alpha-toxin damages the air-bloodbarrier of the lung in a rat model of Staphylococcus aureus-induced pneumonia[J]. Infect Immun,1999,67(10):5541-5544.
    [70] Bartlett AH, Foster TJ, Hayashida A, et al. Alpha-toxin facilitates the generationof CXC chemokine gradients and stimulates neutrophil homing inStaphylococcus aureus pneumonia [J]. J Infect Dis,2008,198(10):1529-1535.
    [71] Glenny AT,Stevens NF. Staphylococcal toxins and antitoxins [J]. J PatholBacteriol,1935,40(48):201-210.
    [72] Projan SJ, Kornblum J, Kreiswirth B, et al. Nucleotide sequence: thebeta-hemolysin gene of Staphylococcus aureus [J]. Nucleic Acids Res,1989,17(8):3305.
    [73] Coleman DC, Arbuthnott JP, Pomeroy HM, et al. Cloning and expression inEscherichia coli and Staphylococcus aureus of the beta-lysin determinant fromStaphylococcus aureus: evidence that bacteriophage conversion of beta-lysinactivity is caused by insertional inactivation of the beta-lysin determinant [J].Microb Pathog,1986,1(6):549-564.
    [74] R LDK, H FJ. The purification of beta-lysin (sphingomyelinaseC) fromStaphylococcus aureus [J]. FEMS Lett,1977,2(3):139-143.
    [75] Calvinho LF, Donnelly WJ, Dodd K. Effect of partially purified Staphylococcusaureus beta-haemolysin on the mammary gland of the mouse [J]. ZentralblVeterinarmed B,1993,40(8):559-568.
    [76] Prevost G, Couppie P, Prevost P, et al. Epidemiological data on Staphylococcusaureus strains producing synergohymenotropic toxins [J]. J Med Microbiol,1995,42(4):237-245.
    [77] Kaneko J,Kamio Y. Bacterial two-component and hetero-heptamericpore-forming cytolytic toxins: structures, pore-forming mechanism, andorganization of the genes [J]. Biosci Biotechnol Biochem,2004,68(5):981-1003.
    [78] Prevost G, Cribier B, Couppie P, et al. Panton-Valentine leucocidin andgamma-hemolysin from Staphylococcus aureus ATCC49775are encoded bydistinct genetic loci and have different biological activities [J]. Infect Immun,1995,63(10):4121-4129.
    [79] Konig B, Prevost G,Konig W. Composition of staphylococcal bi-componenttoxins determines pathophysiological reactions [J]. J Med Microbiol,1997,46(6):479-485.
    [80] Siqueira JA, Speeg-Schatz C, Freitas FI, et al. Channel-forming leucotoxinsfrom Staphylococcus aureus cause severe inflammatory reactions in a rabbit eyemodel [J]. J Med Microbiol,1997,46(6):486-494.
    [81] Dajcs JJ, Thibodeaux BA, Girgis DO, et al. Corneal virulence ofStaphylococcus aureus in an experimental model of keratitis [J]. DNA Cell Biol,2002,21(5-6):375-382.
    [82] Otto M. Basis of virulence in community-associated methicillin-resistantStaphylococcus aureus [J]. Annu Rev Microbiol,2010,64:143-162.
    [83] Voyich JM, Otto M, Mathema B, et al. Is panton-valentine leukocidin the majorvirulence determinant in community-associated methicillin-resistantStaphylococcus aureus disease?[J]. Journal of Infectious Diseases,2006,194(12):1761-1770.
    [84] Dhople VM,Nagaraj R. Delta-toxin, unlike melittin, has only hemolytic activityand no antimicrobial activity: rationalization of this specific biological activity[J]. Biosci Rep,1993,13(4):245-250.
    [85] Mellor IR, Thomas DH, Sansom MS. Properties of ion channels formed byStaphylococcus aureus delta-toxin [J]. Biochim Biophys Acta,1988,942(2):280-294.
    [86] Omoe K, Ishikawa M, Shimoda Y, et al. Detection of seg, seh, and sei genes inStaphylococcus aureus isolates and determination of the enterotoxinproductivities of S. aurues isolates Harboring seg, seh, or sei genes [J]. J ClinMicrobiol,2002,40(3):857-862.
    [87] Tristan A, Ferry T, Durand G, et al. Virulence determinants in community andhospital meticillin-resistant Staphylococcus aureus [J]. J Hosp Infect,2007,65Suppl2:105-109.
    [88] Marrack P,Kappler J. The staphylococcal enterotoxins and their relatives [J].Science,1990,248(4956):705-711.
    [89] Smith-Palmer A, Stewart J,Fyfe L. Influence of subinhibitory concentrations ofplant essential oils on the production of enterotoxins A and B and alpha-toxin byStaphylococcus aureus [J]. J Med Microbiol,2004,53(Pt10):1023-1027.
    [90] Hamad AR, Marrack P,Kappler JW. Transcytosis of staphylococcalsuperantigen toxins [J]. J Exp Med,1997,185(8):1447-1454.
    [91] Keane WF, Gekker G, Schlievert PM, et al. Enhancement of endotoxin-inducedisolated renal tubular cell injury by toxic shock syndrome toxin1[J]. Am JPathol,1986,122(1):169-176.
    [92] Balaban N,Rasooly A. Staphylococcal enterotoxins [J]. Int J Food Microbiol,2000,61(1):1-10.
    [93] Lindsay JA, Ruzin A, Ross HF, et al. The gene for toxic shock toxin is carriedby a family of mobile pathogenicity islands in Staphylococcus aureus [J]. MolMicrobiol,1998,29(2):527-543.
    [94] Suzuki T, Itakura J, Watanabe M, et al. Inactivation of staphylococcalenterotoxin-A with an electrolyzed anodic solution [J]. J Agric Food Chem,2002,50(1):230-234.
    [95] Schlievert PM, Bohach GA, Ohlendorf DH, et al. Molecular structure ofstaphylococcus and streptococcus superantigens [J]. J Clin Immunol,1995,15(6Suppl):4S-10S.
    [96] Le Loir Y, Baron F, Gautier M. Staphylococcus aureus and food poisoning [J].Genet Mol Res,2003,2(1):63-76.
    [97] Newbould MJ, Malam J, McIllmurray JM, et al. Immunohistologicallocalisation of staphylococcal toxic shock syndrome toxin (TSST-1) antigen insudden infant death syndrome [J]. J Clin Pathol,1989,42(9):935-939.
    [98] Leung DY, Meissner HC, Fulton DR, et al. Toxic shock syndrome toxin-secretingStaphylococcus aureus in Kawasaki syndrome [J]. Lancet,1993,342(8884):1385-8.
    [99] Schwab JH, Brown RR, Anderle SK, et al. Superantigen can reactivate bacterialcell wall-induced arthritis [J]. J Immunol,1993,150(9):4151-4159.
    [100] Jett M, Brinkley W, Neill R, et al. Staphylococcus aureus enterotoxin Bchallenge of monkeys: correlation of plasma levels of arachidonic acid cascadeproducts with occurrence of illness [J]. Infect Immun,1990,58(11):3494-3499.
    [101] Todd J, Fishaut M, Kapral F, et al. Toxic-shock syndrome associated withphage-group-I Staphylococci [J]. Lancet,1978,2(8100):1116-1118.
    [102] McNamara PJ, Syverson RE, Milligan-Myhre K, et al. Surfactants, aromaticand isoprenoid compounds, and fatty acid biosynthesis inhibitors suppressStaphylococcus aureus production of toxic shock syndrome toxin1[J].Antimicrob Agents Chemother,2009,53(5):1898-1906.
    [103] Li HH, Wang YQ, Ding L, et al. Staphylococcus sciuri Exfoliative Toxin C(ExhC) is a Necrosis-Inducer for Mammalian Cells [J]. PLoS One,2011,6(7):
    [104] Staskawicz BJ, Mudgett MB, Dangl JL, et al. Common and contrasting themesof plant and animal diseases [J]. Science,2001,292(5525):2285-2289.
    [105] Werner G, Strommenger B, Witte W. Acquired vancomycin resistance inclinically relevant pathogens [J]. Future Microbiol,2008,3(5):547-562.
    [106] Hanson MR, Chung CL. Antibiotic selection for MRSA: case presentations andreview of the literature [J]. J Drugs Dermatol,2009,8(3):281-286.
    [107] Quadri LE. Strategic paradigm shifts in the antimicrobial drug discoveryprocess of the21st century [J]. Infect Disord Drug Targets,2007,7(3):230-237.
    [108] Rasko DA,Sperandio V. Anti-virulence strategies to combat bacteria-mediateddisease [J]. Nat Rev Drug Discov,2010,9(2):117-128.
    [109] Lee YM, Almqvist F, Hultgren SJ. Targeting virulence for antimicrobialchemotherapy [J]. Curr Opin Pharmacol,2003,3(5):513-519.
    [110] Rasko DA, Moreira CG, Li de R, et al. Targeting QseC signaling and virulencefor antibiotic development [J]. Science,2008,321(5892):1078-1080.
    [111] Cegelski L, Marshall GR, Eldridge GR, et al. The biology and future prospectsof antivirulence therapies [J]. Nat Rev Microbiol,2008,6(1):17-27.
    [112] Paul M, Leibovici L. Combination antimicrobial treatment versus monotherapy:the contribution of meta-analyses [J]. Infect Dis Clin North Am,2009,23(2):277-293.
    [113] Hung DT, Shakhnovich EA, Pierson E, et al. Small-molecule inhibitor of Vibriocholerae virulence and intestinal colonization [J]. Science,2005,310(5748):670-674.
    [114] Proft T,Baker EN. Pili in Gram-negative and Gram-positive bacteria-structure,assembly and their role in disease [J]. Cell Mol Life Sci,2009,66(4):613-635.
    [115] Wright KJ, Hultgren SJ. Sticky fibers and uropathogenesis: bacterial adhesins inthe urinary tract [J]. Future Microbiol,2006,1(1):75-87.
    [116] Lane MC, Mobley HLT. Role of P-fimbrial-mediated adherence inpyelonephritis and persistence of uropathogenic Escherichia coli (UPEC) in themammalian kidney [J]. Kidney Int,2007,72(1):19-25.
    [117] Shrivastava R, Miller JF. Virulence factor secretion and translocation byBordetella species [J]. Curr Opin Microbiol,2009,12(1):88-93.
    [118] Schiavo G,van der Goot FG. The bacterial toxin toolkit [J]. Nat Rev Mol CellBiol,2001,2(7):530-537.
    [119] Kaper JB, Nataro JP,Mobley HL. Pathogenic Escherichia coli [J]. Nat RevMicrobiol,2004,2(2):123-140.
    [120] Galan JE,Cossart P. Host-pathogen interactions: a diversity of themes, a varietyof molecular machines [J]. Curr Opin Microbiol,2005,8(1):1-3.
    [121] Filloux A, Hachani A, Bleves S. The bacterial type VI secretion machine: yetanother player for protein transport across membranes [J]. Microbiol-Sgm,2008,154:1570-1583.
    [122] DiRita VJ, Engleberg NC, Heath A, et al. Virulence gene regulation inside andoutside [J]. Philos T Roy Soc B,2000,355(1397):657-665.
    [123] Rumbaugh KP. Convergence of hormones and autoinducers at the host/pathogeninterface [J]. Anal Bioanal Chem,2007,387(2):425-435.
    [124] Hughes DT, Sperandio V. Inter-kingdom signalling: communication betweenbacteria and their hosts [J]. Nature Reviews Microbiology,2008,6(2):111-120.
    [125] Welkos SL, Friedlander AM. Comparative safety and efficacy against Bacillusanthracis of protective antigen and live vaccines in mice [J]. Microb Pathog,1988,5(2):127-139.
    [126] Bradley KA, Young JAT. Anthrax toxin receptor proteins [J]. BiochemPharmacol,2003,65(3):309-314.
    [127] Scobie HM, Thomas D, Marlett JM, et al. A soluble receptor decoy protects ratsagainst anthrax lethal toxin challenge [J]. Journal of Infectious Diseases,2005,192(6):1047-1051.
    [128] Chen ZC, Moayeri M, Zhou YH, et al. Efficient neutralization of anthrax toxinby chimpanzee monoclonal antibodies against protective antigen [J]. Journal ofInfectious Diseases,2006,193(5):625-633.
    [129] Karginov VA, Nestorovich EM, Moayeri M, et al. Blocking anthrax lethal toxinat the protective antigen channel by using structure-inspired drug design [J]. PNatl Acad Sci USA,2005,102(42):15075-15080.
    [130] Boyd B, Lingwood C. Verotoxin receptor glycolipid in human renal tissue [J].Nephron,1989,51(2):207-10.
    [131] Armstrong GD, Rowe PC, Goodyer P, et al. A phase I study of chemicallysynthesized verotoxin (Shiga-like toxin) Pk-trisaccharide receptors attached tochromosorb for preventing hemolytic-uremic syndrome [J]. J Infect Dis,1995,171(4):1042-1045.
    [132] Trachtman H, Cnaan A, Christen E, et al. Effect of an oral Shiga toxin-bindingagent on diarrhea-associated hemolytic uremic syndrome in children: arandomized controlled trial [J]. JAMA,2003,290(10):1337-1344.
    [133] Svensson A, Larsson A, Emtenas H, et al. Design and evaluation of pilicides:potential novel antibacterial agents directed against uropathogenic Escherichiacoli [J]. Chembiochem,2001,2(12):915-918.
    [134] Berg V, Sellstedt M, Hedenstrom M, et al. Design, synthesis and evaluation ofpeptidomimetics based on substituted bicyclic2-pyridones-targeting virulence ofuropathogenic E. coli [J]. Bioorg Med Chem,2006,14(22):7563-7581.
    [135] Bailey L, Gylfe A, Sundin C, et al. Small molecule inhibitors of type IIIsecretion in Yersinia block the Chlamydia pneumoniae infection cycle [J]. FEBSLett,2007,581(4):587-595.
    [136] Muschiol S, Bailey L, Gylfe A, et al. A small-molecule inhibitor of type IIIsecretion inhibits different stages of the infectious cycle of Chlamydiatrachomatis [J]. Proc Natl Acad Sci U S A,2006,103(39):14566-14571.
    [137] Matson JS, Withey JH,DiRita VJ. Regulatory networks controlling Vibriocholerae virulence gene expression [J]. Infect Immun,2007,75(12):5542-5549.
    [138] Shakhnovich EA, Hung DT, Pierson E, et al. Virstatin inhibits dimerization ofthe transcriptional activator ToxT [J]. Proc Natl Acad Sci U S A,2007,104(7):2372-2377.
    [139] Suga H, Smith KM. Molecular mechanisms of bacterial quorum sensing as anew drug target [J]. Curr Opin Chem Biol,2003,7(5):586-591.
    [140] Dong YH, Wang LH, Xu JL, et al. Quenching quorum-sensing-dependentbacterial infection by an N-acyl homoserine lactonase [J]. Nature,2001,411(6839):813-817.
    [141] Rasmussen TB, Manefield M, Andersen JB, et al. How Delisea pulchrafuranones affect quorum sensing and swarming motility in Serratia liquefaciensMG1[J]. Microbiol-Uk,2000,146:3237-3244.
    [142] Hentzer M, Wu H, Andersen JB, et al. Attenuation of Pseudomonas aeruginosavirulence by quorum sensing inhibitors[J]. Embo Journal,2003,22(15):3803-3815.
    [143] Muh U, Schuster M, Heim R, et al. Novel Pseudomonas aeruginosaquorum-sensing inhibitors identified in an ultra-high-throughput screen [J].Antimicrob Agents Ch,2006,50(11):3674-3679.
    [144] Rasko DA, Moreira CG, Li DR, et al. Targeting QseC signaling and virulencefor antibiotic development [J]. Science,2008,321(5892):1078-1080.
    [145] Clarke MB, Hughes DT, Zhu C, et al. The QseC sensor kinase: A bacterialadrenergic receptor [J]. P Natl Acad Sci USA,2006,103(27):10420-10425.
    [146] Liu CI, Liu GY, Song YC, et al. A cholesterol biosynthesis inhibitor blocksStaphylococcus aureus virulence [J]. Science,2008,319(5868):1391-1394.
    [147] George EA, Novick RP,Muir TW. Cyclic peptide inhibitors of staphylococcalvirulence prepared by Fmoc-based thiolactone peptide synthesis [J]. Journal ofthe American Chemical Society,2008,130(14):4914-4924.
    [148] O'Reilly M, de Azavedo JC, Kennedy S, et al. Inactivation of thealpha-haemolysin gene of Staphylococcus aureus8325-4by site-directedmutagenesis and studies on the expression of its haemolysins [J]. Microb Pathog,1986,1(2):125-38.
    [149] Ragle BE, Karginov VA, Bubeck Wardenburg J. Prevention and treatment ofStaphylococcus aureus pneumonia with a beta-cyclodextrin derivative [J].Antimicrob Agents Chemother,2010,54(1):298-304.
    [150] Bubeck Wardenburg J, Schneewind O. Vaccine protection againstStaphylococcus aureus pneumonia [J]. J Exp Med,2008,205(2):287-294.
    [151] Ragle BE, Bubeck Wardenburg J. Anti-alpha-hemolysin monoclonal antibodiesmediate protection against Staphylococcus aureus pneumonia [J]. Infect Immun,2009,77(7):2712-2718.
    [152]宋立人.现代中药学大词典[M].北京:人民卫生出版,2001,1865-1869.
    [153]徐玉田.黄芩的化学成分及现代药理作用研究进展[J].光明中医,2010,25(3):544-545.
    [154]张小伟,张会敏,石俊英.近五年黄芩药理学研究进展[J].齐鲁药事,2008,27(03):165-167.
    [155]张建春,张华,施瑛.黄芩苷的研究近况[J].时珍国医国药,2005,16(3):247-249.
    [156]欧阳昌汉,吴基良,陈金和.黄芩甙抗实验性心律失常的作用[J].咸宁医学院学报,2002,5(1):7-10.
    [157]黑爱连,孙颂三.黄芩甙对大鼠主动脉条收缩的影响[J].首都医科大学学报,1997,18(02):114-117.
    [158]黑爱莲,徐平湘,孙颂三,等.黄芩甙对异丙肾上腺素诱导大鼠心肌损伤的保护作用[J].首都医科大学学报,1999,20(02):86-88.
    [159] Conti B, Tabarean I, Andrei C, et al. Cytokines and fever [J]. Front Biosci,2004,1(9):1433-49.
    [160]李倩楠,葛晓群.黄芩苷的解热作用及对细胞因子的影响[J].中国中药杂志,2010,35(08):1068-1071.
    [161]赵红艳,张璠,范书铎,孙丽华.黄芩甙对发热大鼠下丘脑PGE2和cAMP含量的影响[J].中国应用生理学杂志,2002,18(02):139-141
    [162]李敬,刘云海,陈新,等.黄芩中黄芩苷的抗内毒素作用[J].医药导报,2006,25(12):1237-1240.
    [163]杨奎,张德波,史焱,等.含黄芩血清及黄芩甙影响内生致热原产生的研究[J].中药药理与临床,1994,(6):13-14.
    [164]程国强,冯年平,唐琦文,等.黄芩苷对眼科常见病原菌的体外抗菌作用[J].中国医院药学杂志,2001,21(6):347-348.
    [165]陈勇川,谢林利,熊丽蓉,等.黄芩苷/黄芩素对耐甲氧西林金黄色葡萄球菌抗药性的逆转作用研究[J].中国药房,2008,19(09):644-646.
    [166] Kitamura K, Honda M, Yoshizaki H, et al. Baicalin, an inhibitor of HIV-1production in vitro [J]. Antiviral Res,1998,37(2):131-140.
    [167]高雷,陈鸿珊.黄芩苷体外对流感病毒、单纯疱疹病毒和柯萨奇病毒的抑制作用[J].中国新药杂志,2008,17(06):474-477.
    [168]张丽亚,董琳,陈小芳,等.黄芩苷抗呼吸道合胞病毒感染作用的体外研究[J].浙江临床医学,2008,10(12):1528-1530.
    [169]张文平,熊英,傅颖媛.黄芩苷对白念珠菌DNA合成的抑制作用[J].赣南医学院学报,2004,24(05):501-502.
    [170]熊英,傅颖媛,况南珍,等.黄芩苷抗白念珠菌作用及机制研究[J].中国药理学通报,2004,20(12):1404-1407.
    [171]吴秀珍,傅颖媛,李剑平,等.黄芩苷对白色念珠菌超微结构的影响[J].江西医学院学报,2007,47(04):89-90.
    [172]邝枣园,符林春,罗海燕,等.从受体角度探讨黄芩苷对肺炎衣原体感染细胞的干预机理[J].广州中医药大学学报,2005,22(03):210-214.
    [173]邝枣园,黄衍寿,吴伟,等.黄芩苷对肺炎衣原体诱导的内皮细胞粘附因子表达的影响[J].广州中医药大学学报,2004,21(06):544-546.
    [174]周泠,周必英.黄芩苷对卡氏肺孢子虫肺炎大鼠TNF-α和sICAM-1的调节作用[J].中国寄生虫学与寄生虫病杂志,2009,27(02):144-148.
    [175]杨婧,傅颖媛.黄芩苷、黄连素体外杀灭阴道毛滴虫的实验研究[J].中国中医药信息杂志,2006,13(04):37-40
    [176]刘晓,温瑞兴.中药抗肿瘤作用的研究进展[J].现代生物医学进展,2011,11(24):4978-4983.
    [177]洪铁,杨振,绳娟,等.黄芩苷抗肿瘤作用及机制的研究[J].中国药理学通报,2008,24(12):1676-1678.
    [178] Chen S, Ruan Q, Bedner E, et al. Effects of the flavonoid baicalin and itsmetabolite baicalein on androgen receptor expression, cell cycle progression andapoptosis of prostate cancer cell lines [J]. Cell Prolif,2001,34(5):293-304.
    [179]冯正权,沈敏鹤,吴良村.黄芩苷体外调控乳腺癌细胞表达TI MP2的实验研究[J].中国临床药理学与治疗学,2005,10(6):705-708
    [180]李宏捷,谢文利,朱江.黄芩苷对人口腔上皮癌KB细胞端粒酶活性和细胞周期的影响[J].中药药理与临床,2007,23(04):19-21.
    [181]薛洪源,侯艳宁,刘会臣,等.黄芩苷对异烟肼和利福平肝损害小鼠的保护作用[J].解放军药学学报,2003,19(6):414-416.
    [182]康辉,李强,王丽.黄芩提取物、黄芩苷抗氧化和保肝作用研究[J].中医研究,2010,23(4):27-30.
    [183]宁康健,吕锦芳,姜锦鹏,等.黄芩苷对小鼠四氯化碳肝损伤保护作用的研究[J].畜牧与饲料科学,2009,30(1):4-5.
    [184] Krakauer T, Li BQ, Young HA. The flavonoid baicalin inhibitssuperantigen-induced inflammatory cytokines and chemokines [J]. FEBS Lett,2001,500(1-2):52-55.
    [185] Li BQ, Fu T, Gong WH, et al. The flavonoid baicalin exhibits anti-inflammatoryactivity by binding to chemokines [J]. Immunopharmacology,2000,49(3):295-306.
    [186]饶利佳,卢嘉健,吕芳丽,等.黄芩甙对牙周炎小鼠血清白细胞介素-6和白细胞介素-4水平的影响[J].中国病理生理杂志,2011,27(3):550-554.
    [187]侯艳宁,朱秀媛,程桂芳.黄芩苷的抗炎机理[J].药学学报,2000,35(3):161-164.
    [188] Chou TC, Chang LP, Li CY, et al. The antiinflammatory and analgesic effects ofbaicalin in carrageenan-evoked thermal hyperalgesia [J]. Anesth Analg,2003,97(6):1724-1729.
    [189]杨春根.黄芩苷对小鼠腹腔巨噬细胞功能的影响[J].现代中药研究与实践,2010,24(5):35-37.
    [190]郭少英,程发峰,钟相根,等.黄芩苷的体外抗氧化研究[J].时珍国医国药,2011,22(1):9-11.
    [191]呼海娟,韩梅,孙荣华,等.黄芩苷抑制大鼠血管平滑肌细胞增殖和新生内膜肥厚[J].基础医学与临床,2010,30(12):1252-1256.
    [192]周峻伟.栀子苷、黄芩苷对大鼠局灶性脑缺血模型缺血脑组织单核细胞趋化蛋白(MCP-1)的影响[J].中医药学刊,2004,22(4):1016-1020.
    [193]纪相福,史道华.黄芩苷的心脑血管作用研究进展[J].海峡药学,2006,18(05):7-10.
    [194] Yang J, Yang X, Chu Y, et al. Identification of Baicalin as an immunoregulatorycompound by controlling T(H)17cell differentiation [J]. PLoS One,2011,6(2):e17164.
    [195]佟佟丽,黄添友,刘玉生,等.黄芩甙对NK杀伤活性的影响[J].中药药理与临床,1993,(2):37-39.
    [196]李会英,刘学聪.中药黄芩苷对脂多糖介导人牙周膜细胞增殖的时间效应和细胞周期的影响[J].实用口腔医学杂志,2008,24(05):724-726.
    [197]戴德.黄芩苷抑制庆大霉素致小鼠听神经细胞损伤的实验研究[J].山东大学基础医学院学报,2004,18(5):257-259.
    [198] Alksne LE, Projan SJ. Bacterial virulence as a target for antimicrobialchemotherapy [J]. Curr Opin Biotech,2000,11(6):625-636.
    [199] Alksne LE, Projan SJ. Bacterial virulence as a target for antimicrobialchemotherapy (vol11, pg625,2000)[J]. Curr Opin Biotech,2001,12(1):112-112.
    [200] Alksne LE. Virulence as a target for antimicrobial chemotherapy [J]. ExpertOpin Inv Drug,2002,11(8):1149-1159.
    [201] Escaich S. Antivirulence as a new antibacterial approach for chemotherapy [J].Curr Opin Chem Biol,2008,12(4):400-408.
    [202] Rasko DA, Sperandio V. Novel approaches to bacterial infection therapy byinterfering with cell-to-cell signaling [J]. Curr Protoc Microbiol,2009, Chapter17: Unit17.3.
    [203] Cheung AL, Bayer AS, Zhang G, et al. Regulation of virulence determinants invitro and in vivo in Staphylococcus aureus [J]. FEMS Immunol Med Microbiol,2004,40(1):1-9.
    [204] Cheung AL, Zhang G. Global regulation of virulence determinants inStaphylococcus aureus by the SarA protein family [J]. Front Biosci,2002,(7):1825-1842.
    [205] Altschul SF, Gish W, Miller W, et al. Basic local alignment search tool [J]. JMol Biol,1990,215(3):403-410.
    [206] Morris GM, Huey R, Lindstrom W, et al. AutoDock4and AutoDockTools4:Automated docking with selective receptor flexibility [J]. J Comput Chem,2009,30(16):2785-2791.
    [207] Hu RJ, Barbault F, Maurel F, et al. Molecular Dynamics Simulations of2-Amino-6-arylsulphonylbenzonitriles Analogues as HIV Inhibitors: InteractionModes and Binding Free Energies [J]. Chem Biol Drug Des,2010,76(6):518-526.
    [208] Hu RJ, Barbault F, Delamar M, et al. Receptor-and ligand-based3D-QSARstudy for a series of non-nucleoside HIV-1reverse transcriptase inhibitors [J].Bioorgan Med Chem,2009,17(6):2400-2409.
    [209] Lindahl E, Hess B, van der Spoel D. GROMACS3.0: a package for molecularsimulation and trajectory analysis [J]. J Mol Model,2001,7(8):306-317.
    [210] Cornell WD, Cieplak P, Bayly CI, et al. A second generation force field for thesimulation of proteins,nucleic acids, and organic molecules [J]. J Am Chem Soc,1995,7(117):5179-5197.
    [211] Berendsen HJC, Postma JPM, Van Gunsteren WF, et al. Molecular dynamicswith coupling to an external bath [J]. J Chem Phys,1984,81(1):3684-3690.
    [212] Hess B, Bekker H, Berendsen HJC, et al. LINCS: A linear constraint solver formolecular simulations.[J]. J Comp Chem,1997,18(6):1463-1472.
    [213] Miyamoto S, Kollman PA. An analytical version of the SHAKE and RATTLEalgorithm for rigid water models [J]. J Comp Chem,1992,13(8):952-962.
    [214] Sagui C, Darden TA. Molecular dynamics simulations of biomolecules:long-range electrostatic effects [J]. Annu Rev Biophys Biomol Struct,1999,(28):155-79.
    [215] Wang JM, Wolf RM, Caldwell JW, et al. Development and testing of a generalamber force field (vol25, pg1157,2004)[J]. Journal of ComputationalChemistry,2005,26(1):114-114.
    [216] Jakalian A, Bush BL, Jack DB, et al. Fast, efficient generation of high-qualityatomic Charges. AM1-BCC model: I. Method [J]. Journal of ComputationalChemistry,2000,21(2):132-146.
    [217] Duan Y, Wu C, Chowdhury S, et al. A point-charge force field for molecularmechanics simulations of proteins based on condensed-phase quantummechanical calculations [J]. Journal of Computational Chemistry,2003,24(16):1999-2012.
    [218] Kollman PA, Massova I, Reyes C, et al. Calculating structures and free energiesof complex molecules: combining molecular mechanics and continuum models[J]. Acc Chem Res,2000,33(12):889-897.
    [219] Smith KC,Honig B. Evaluation of the conformational free energies of loops inproteins [J]. Proteins,1994,18(2):119-132.
    [220] Yang AS, Honig B. Free energy determinants of secondary structure formation:II. Antiparallel beta-sheets [J]. J Mol Biol,1995,252(3):366-376.
    [221] Yang AS, Hitz B, Honig B. Free energy determinants of secondary structureformation: III. beta-turns and their role in protein folding [J]. J Mol Biol,1996,259(4):873-882.
    [222] Weiser J, Shenkin PS, Still WC. Approximate atomic surfaces from linearcombinations of pairwise overlaps (LCPO)[J]. Journal of ComputationalChemistry,1999,20(2):217-230.
    [223] Onufriev A, Bashford D,Case DA. Modification of the generalized Born modelsuitable for macromolecules [J]. J Phys Chem B,2000,104(15):3712-3720.
    [224] Sanner MF, Olson AJ,Spehner JC. Reduced surface: an efficient way tocompute molecular surfaces[J]. Biopolymers,1996,38(3):305-20.
    [225] Ishima R, Freedberg DI, Wang YX, et al. Flap opening and dimer-interfaceflexibility in the free and inhibitor-bound HIV protease, and their implicationsfor function [J]. Struct Fold Des,1999,7(9):1047-1055.
    [226] Walker B, Bayley H. Key residues for membrane binding, oligomerization, andpore forming activity of staphylococcal alpha-hemolysin identified by cysteinescanning mutagenesis and targeted chemical modification [J]. J Biol Chem,1995,270(39):23065-23071.
    [227] Frauenfelder H, Parak F, Young RD. Conformational substates in proteins [J].Annu Rev Biophys Biophys Chem,1988,(17):451-479.
    [228] Freire E. Can allosteric regulation be predicted from structure?[J]. P Natl AcadSci USA,2000,97(22):11680-11682.
    [229] Schuler GD, Altschul SF, Lipman DJ. A workbench for multiple alignmentconstruction and analysis [J]. Proteins,1991,9(3):180-190.
    [230] Karplus M, Petsko GA. Molecular dynamics simulations in biology [J]. Nature,1990,347(6294):631-639.
    [231] Karplus M, McCammon JA. Molecular dynamics simulations of biomolecules[J]. Nat Struct Biol,2002,9(9):646-652.
    [232]徐筱杰,侯廷军,乔学斌,章威.计算机辅助药物分子设计[M].北京:化学工业出版社,2004,15-124.
    [233] Adcock SA, McCammon JA. Molecular dynamics: survey of methods forsimulating the activity of proteins [J]. Chem Rev,2006,106(5):1589-1615.
    [234] Bea I, Cervello E, Kollman PA, et al. Molecular recognition bybeta-cyclodextrin derivatives: FEP vs MM/PBSA study [J]. Comb Chem HighThroughput Screen,2001,4(8):605-11.
    [235] Horng ML, Gardecki JA, Maroncelli M. Rotational dynamics of coumarin153:Time-dependent friction,dielectric friction, and other nonhydrodynamic effects[J]. Journal of Physical Chemistry A,1997,101(6):1030-1047.
    [236] Brandsdal BO. Free energy calculations and ligand binding, in ProteinSimulations[M]. Academic Press Inc: San Diego.2003, p.123.
    [237] Chen JZ, Zhang SL, Liu XG, et al. Insights into drug resistance of mutationsD30N and I50V to HIV-1protease inhibitor TMC-114: Free energy calculationand molecular dynamic simulation [J]. J Mol Model,2010,16(3):459-468.
    [238] Gohlke H, Kiel C,Case DA. Insights into protein-protein binding by bindingfree energy calculation and free energy decomposition for the Ras-Raf andRas-RaIGDS complexes [J]. Journal of Molecular Biology,2003,330(4):891-913.
    [239] Hou TJ, Yu R. Molecular dynamics and free energy studies on the wild-type anddouble mutant HIV-1protease complexed with amprenavir and twoamprenavir-related inhibitors: Mechanism for binding and drug resistance [J]. JMed Chem,2007,50(6):1177-1188.
    [240] Luo C, Xu LF, Zheng SX, et al. Computational analysis of molecular basis of1:1interactions of NRG-1beta wild-type and variants with ErbB3and ErbB4[J].Proteins-Structure Function and Bioinformatics,2005,59(4):742-756.
    [241] Swanson JMJ, Henchman RH, McCammon JA. Revisiting free energycalculations: A theoretical connection to MM/PBSA and direct calculation of theassociation free energy [J]. Biophysical Journal,2004,86(1):67-74.
    [242] Huang Y, Zhang Z, Zhang D, et al. Flow-injection analysis chemiluminescencedetection combined with microdialysis sampling for studying protein binding ofdrug [J]. Talanta,2001,53(4):835-41.
    [243] Yan CN, Shangguan YF, Pan ZT, et al. Thermodynamics studies on the reactioncharacteristics between piroxican and bovine serum albumin [J]. Chinese J AnalChem,2004,32(3):317-319.
    [244]胡美浩.定点突变及非定点突变技术的新进展[J].生物工程进展,1993,13(06):1-4.
    [245]谭开秀,刘承杰,唐军.基因体外定点突变技术的研究进展[J].前卫医药杂志,2000,17(04):256-257.
    [246]张春艳,胡胜标,单世平,等.定点突变技术研究苏云金杆菌Cry1类晶体蛋白结构与功能的进展[J].生命科学研究,2007,11(02):95-99.
    [247]张浩,毛秉智.定点突变技术的研究进展[J].免疫学杂志,2000,16(4):S108-S110.
    [248]尹燕霞,向本琼,佟丽.荧光光谱法在蛋白质研究中的应用[J].实验技术与管理,2010,02):
    [249]陈小睿,徐沉思,王平,等.荧光猝灭法研究大黄酚与牛血清白蛋白的相互作用[J].世界科学技术(中医药现代化),2011,13(06):999-1004.
    [250]谭非,张胜建.氟罗沙星与人血清白蛋白相互作用研究[J].化学研究与应用,2009,21(02):184-188.
    [251]韩雪莲,高军峰,王小明,等.白藜芦醇类似物与人血清白蛋白的相互作用[J].化学研究与应用,2012,24(01):48-53.
    [252]邢惟青,黄鹏翔,丘玉昌,等.现代荧光光谱法在药物与蛋白相互作用研究中的应用[J].华西药学杂志,2011,26(05):503-507.
    [253]陈国珍.荧光分析法[M].北京:科技出版社,2006,第三版,124-135.
    [254] Bhakdi S, Fussle R, Tranum-Jensen J. Staphylococcal alpha-toxin:oligomerization of hydrophilic monomers to form amphiphilic hexamers inducedthrough contact with deoxycholate detergent micelles [J]. Proc Natl Acad Sci U SA,1981,78(9):5475-5479.
    [255] McNiven AC, Owen P, Arbuthnott JP. Multiple forms of staphylococcalalpha-toxin [J]. J Med Microbiol,1972,5(1):113-122.
    [256] Walker B, Bayley H. Restoration of pore-forming activity in staphylococcalalpha-hemolysin by targeted covalent modification [J]. Protein Eng,1995,8(5):491-495.
    [257] Kawate T,Gouaux E. Arresting and releasing Staphylococcal alpha-hemolysin atintermediate stages of pore formation by engineered disulfide bonds [J]. ProteinSci,2003,12(5):997-1006.
    [258] Bubeck Wardenburg J, Bae T, Otto M, et al. Poring over pores: alpha-hemolysinand Panton-Valentine leukocidin in Staphylococcus aureus pneumonia [J]. NatMed,2007,13(12):1405-1406.
    [259] Liang X, Yan M, Ji Y. The H35A mutated alpha-toxin interferes withcytotoxicity of staphylococcal alpha-toxin [J]. Infect Immun,2009,77(3):977-983.
    [260] Karginov VA, Nestorovich EM, Schmidtmann F, et al. Inhibition of S. auruesalpha-hemolysin and B. anthracis lethal toxin by beta-cyclodextrin derivatives [J].Bioorg Med Chem,2007,15(16):5424-5431.
    [261]陈杖榴.兽医药理学[M].北京:中国农业出版社,2001,第二版,13-249.
    [262]郭宗儒.药物分子设计的策略:药理活性与成药性[J].药学学报,2010,45(05):539-547.
    [263]王本祥.现代中药药理学[M].天津:科技出版社,1997.301.
    [264]朱英.国内黄芩甙的研究概况[J].中国中西医结合杂志,1993,13(09):567-569.
    [265]张喜平,程琪辉,沈培红,等.黄芩苷类注射剂安全性与急性毒性实验研究[J].医学研究杂志,2007,36(07):15-21.
    [266]何心,石跃辉,石春伟,等.黄芩苷在大鼠体内的药动学研究[J].中国药学杂志,1998,33(04):232-234.
    [267]阴健,任天池,曹春林.黄芩甙及其在清开灵注射液中的药代动力学研究[J].中国实验方剂学杂志,1998,4(04):31-33.
    [268]高荣,龚涛,符垚,等.银黄注射液及口服液中绿原酸和黄芩苷在大鼠体内的药动学比较[J].华西药学杂志,2007,22(03):283-285.
    [269] Akao T, Kawabata K, Yanagisawa E, et al. Baicalin, the predominant flavoneglucuronide of scutellariae radix, is absorbed from the rat gastrointestinal tract asthe aglycone and restored to its original form [J]. J Pharm Pharmacol,2000,52(12):1563-1568.
    [270] Kim DH, Jung EA, Sohng IS, et al. Intestinal bacterial metabolism of flavonoidsand its relation to some biological activities [J]. Arch Pharm Res,1998,21(1):17-23.
    [271]张志荣,胡晓颖,蒋大义,等.银黄冲剂中黄芩甙在家兔体内的代谢动力学研究[J].中成药,1996,16(06):1-3.
    [272]赵玉男,石钺,邢东明,等. YL-2000中黄芩苷在正常大鼠体内的药物动力学研究[J].中国中医基础医学杂志,2002,8(09):59-60.
    [273]郭晓宇,杨琳,陈颖,等.黄芩素与黄芩苷大鼠体内药动学比较研究[J].中国药学杂志,2008,43(07):524-526.
    [274] Klevens RM, Morrison MA, Nadle J, et al. Invasive methicillin-resistantStaphylococcus aureus infections in the United States [J]. JAMA,2007,298(15):1763-1771.
    [275] Frei CR, Makos BR, Daniels KR, et al. Emergence of community-acquiredmethicillin-resistant Staphylococcus aureus skin and soft tissue infections as acommon cause of hospitalization in United States children [J]. J Pediatr Surg,2010,45(10):1967-1974.
    [276] Hidron AI, Edwards JR, Patel J, et al. NHSN annual update:antimicrobial-resistant pathogens associated with healthcare-associatedinfections: annual summary of data reported to the National Healthcare SafetyNetwork at the Centers for Disease Control and Prevention,2006-2007[J]. InfectControl Hosp Epidemiol,2008,29(11):996-1011.
    [277] Kollef MH, Shorr A, Tabak YP, et al. Epidemiology and outcomes ofhealth-care-associated pneumonia: results from a large US database ofculture-positive pneumonia [J]. Chest,2005,128(6):3854-3862.
    [278] Lee MH, Arrecubieta C, Martin FJ, et al. A postinfluenza model ofStaphylococcus aureus pneumonia [J]. J Infect Dis,2010,201(4):508-515.
    [279] Weinke T, Schiller R, Fehrenbach FJ, et al. Association between Staphylococcusaureus nasopharyngeal colonization and septicemia in patients infected with thehuman immunodeficiency virus [J]. Eur J Clin Microbiol Infect Dis,1992,11(11):985-989.
    [280] Roubicek C, Brunet P, Mallet MN, et al.[Nasal carriage of Staphylococcusaureus: prevalence in a hemodialysis center and effect on bacteremia][J].Nephrologie,1995,16(3):229-232.
    [281] Herold BC, Immergluck LC, Maranan MC, et al. Community-acquiredmethicillin-resistant Staphylococcus aureus in children with no identifiedpredisposing risk [J]. JAMA,1998,279(8):593-598.
    [282] Kazakova SV, Hageman JC, Matava M, et al. A clone of methicillin-resistantStaphylococcus aureus among professional football players [J]. N Engl J Med,2005,352(5):468-475.
    [283] Kuehnert MJ, Hill HA, Kupronis BA, et al. Methicillin-resistant-Staphylococcusaureus hospitalizations, United States [J]. Emerg Infect Dis,2005,11(6):868-872.
    [284] Gu LQ, Braha O, Conlan S, et al. Stochastic sensing of organic analytes by apore-forming protein containing a molecular adapter [J]. Nature,1999,398(6729):686-690.
    [285] Gu LQ, Bayley H. Interaction of the noncovalent molecular adapter,beta-cyclodextrin, with the staphylococcal alpha-hemolysin pore[J]. Biophys J,2000,79(4):1967-1975.
    [286] Menzies BE,Kernodle DS. Passive immunization with antiserum to a nontoxicalpha-toxin mutant from Staphylococcus aureus is protective in a murine model[J]. Infect Immun,1996,64(5):1839-1841.
    [287] Menzies BE,Kernodle DS. Site-directed mutagenesis of the alpha-toxin gene ofStaphylococcus aureus: role of histidines in toxin activity in vitro and in a murinemodel [J]. Infect Immun,1994,62(5):1843-1847.
    [288]文敏,李雪,付守廷.黄芩苷药理作用研究新进展[J].沈阳药科大学学报,2008,25(02):158-162.
    [289]张喜平,周田美,董晓勤,等.黄芩苷注射液体外抗菌作用实验研究[J].医学研究杂志,2006,35(08):39-41.
    [290] Ohlsen K, Ziebuhr W, Koller KP, et al. Effects of subinhibitory concentrationsof antibiotics on alpha-toxin (hla) gene expression of methicillin-sensitive andmethicillin-resistant Staphylococcus aureus isolates [J]. Antimicrob AgentsChemother,1998,42(11):2817-2823.
    [291] Stevens DL, Ma Y, Salmi DB, et al. Impact of antibiotics on expression ofvirulence-associated exotoxin genes in methicillin-sensitive andmethicillin-resistant Staphylococcus aureus [J]. J Infect Dis,2007,195(2):202-211.
    [292] Kernodle DS, McGraw PA, Barg NL, et al. Growth of Staphylococcus aureuswith nafcillin in vitro induces alpha-toxin production and increases the lethalactivity of sterile broth filtrates in a murine model [J]. J Infect Dis,1995,172(2):410-419.
    [293] Novy P, Urban J, Leuner O, et al. In vitro synergistic effects of baicalin withoxytetracycline and tetracycline against Staphylococcus aureus [J]. J AntimicrobChemother,2011,66(6):1298-300.
    [294] Liu IX, Durham DG, Richards RM. Baicalin synergy with beta-lactamantibiotics against methicillin-resistant Staphylococcus aureus and otherbeta-lactam-resistant strains of S. aurues [J]. J Pharm Pharmacol,2000,52(3):361-366.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700