耐热抗冲PVC复合材料的制备、结构与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
PVC树脂具有良好的综合性能,但耐热及抗冲击性能的不足大大限制了其应用。PVC的耐热改性往往导致材料的加工性能和力学性能劣化,而其增塑和抗冲改性提高了PVC材料韧性的同时,却牺牲了PVC材料的耐热性。如果将增塑剂分子通过化学反应或物理作用固定在无机粒子表面形成核-壳结构的粒子,将这种粒子与PVC复合,一方面可限制增塑剂的迁移,另一方面可提高无机粒子的分散性,可同时实现增塑、增强、增韧和提高耐热性的目的。本文采用类流体技术、插层镶嵌技术以及包覆交联技术制备出含增塑剂的具有核壳结构的高岭土粒子和碳酸钙粒子,用这两类核壳结构的无机粒子与PVC复合,制备出了高耐热抗冲PVC复合材料。
     本论文的主要研究内容与结果如下:
     (1)用3-(三甲氧基硅丙基)二甲基十八烷基氯化铵(DC5700)对高岭土进行表面修饰,用壬基酚聚氧乙烯醚硫酸钠(NPES)进行离子子交换,制备出高岭土类流体(SFKF)。用傅里叶红外光谱(FTIR)、 X射线衍射(XRD)、热重分析(TG)和透射电镜(TEM)分析了SFKF的结构,用电磁流变仪研究了SFKF的流变性能。结果发现所制备的SFKF表面接枝了43%的长链有机物,在加热至65℃时具有流动性,高岭土处于插层和部分剥离形态。
     (2)用机械共混技术将SFKF与PVC复合,制备出PVC/SFKF复合材料。用转矩流变仪、紫外光谱(UV-vis)、扫面电镜(SEM)、动态粘弹谱仪(DMA)和万能力学试验机研究了PVC/SFKF复合体系的加工性能,PVC/SFKF复合材料的微观结构、动态粘弹行为和力学性能。结果发现,SFKF对PVC具有很强的增塑作用,可抑制加工过程中PVC的降解;SFKF在PVC基体中分散均匀,且与PVC基体的界面粘结提高,PVC/SFKF复合材料的缺口冲击强度(4.08kJ/m2)较纯PVC的缺口冲击强度(3.07kJ/m2)提高33%,Tg达到93.6℃。
     (3)用一端富含腈基的液态高分子增塑剂(LMM-1)对高岭土进行表面插层镶嵌,制备了具有核-壳结构的高岭土(LKL)。用机械共混法将LKL与PVC进行熔融复合,制备出PVC/LKL复合材料。用转矩流变仪、UV-vis、SEM、DMA和万能力学试验机研究了PVC/LKL复合体系的加工性能,PVC/LKL复合材料的微观结构、动态粘弹行为和力学性能。结果表明,LKL对PVC具有较好的增塑作用,可抑制加工过程中PVC的降解;LMM-1插层镶嵌提高了LKL在PVC基体中的分散,LKL与PVC的界面粘结提高,PVC/LKL复合材料的缺口冲击强度(4.0kJ/m2)较纯PVC的缺口冲击强度(3.07kJ/m2)提高29%,Tg达到95.2℃,较纯PVC材料提高了6℃。
     (4)用LMM-1对粒状碳酸钙表面进行包覆,制备出了具有核-壳结构的碳酸钙(LCC)。用机械共混法将LCC与PVC进行熔融复合,制备出PVC/LCC复合材料。用转矩流变仪、UV-vis、SEM、DMA和万能力学试验机研究了PVC/LCC复合体系的加工性能,PVC/LCC复合材料的微观结构、动态粘弹行为和力学性能。结果发现,LMM-1与碳酸钙一起对PVC具有很好的协同增塑作用,且可抑制加工过程中PVC的降解;LMM-1包覆改性提高了LCC在PVC基体中的分散,LCC与PVC的界面粘结提高,PVC/LCC复合材料的缺口冲击强度(4.95kJ/m2)较纯PVC的缺口冲击强度(3.07kJ/m2)提高59.7%,Tg达到93.0℃。
     (5)用白度测试、UV-vis、SEM和万能力学试验机对添加碳酸钙及LCC的PVC材料紫外光老化实验后的结构和性能进行研究。结果表明,LCC作为紫外光屏蔽剂加入PVC基体,显著提高了体系的抗紫外老化性能。LMM-1对碳酸钙的包覆促进了其在PVC基体中的分散,LCC对紫外光的屏蔽效果较碳酸钙颗粒优异,经紫外光老化实验后的PVC/LCC复合材料表现出较PVC/CaCO3(PVC/CC)复合材料高的白度保持率和力学性能保持率。
     (6)用一端富含双键的液态高分子改性剂(LMM-2)对碳酸钙进行包覆,同时添加交联剂对包覆于碳酸钙表面的LMM-2进行交联,制备出表面交联包覆的核-壳结构碳酸钙颗粒(CLCC)。用机械共混法将CLCC与PVC进行熔融复合,制备出PVC/CLCC复合材料。用转矩流变仪、UV-vis、白度测试、SEM、 DMA和万能力学试验机研究了PVC/CLCC复合体系的加工性能,PVC/CLCC复合材料的微观结构、动态粘弹行为和力学性能。结果发现,CLCC对PVC具有很好的增塑作用,可抑制加工过程中PVC的降解; CLCC显著提高了PVC材料的抗冲击性能和耐热性。当体系中CLCC颗粒含量达一最佳值时,交联的LMM-2在PVC基体中形成三维的网络状结构,复合材料的抗冲性能和耐热性达最佳,PVC/CLCC复合材料的缺口冲击强度(5.8kJ/m2)较纯PVC的缺口冲击强度(3.07kJ/m2)提高87.1%,Tg达到104.6℃,较纯PVC材料提高了15.4℃。
     (7)用Pukanszky方程研究了碳酸钙包覆前后与PVC基体界面的相互作用,用Friedman方程和Kissinger方程对添加了LCC和CLCC的PVC材料的热降解机理和降解行为进行了研究。结果表明,LMM-1及LMM-2的加入,显著提高了碳酸钙颗粒与PVC基体间的界面作用;在降解第一阶段,PVC、PVC/LCC及PVC/CLCC复合材料的降解机理是一致的。LCC及CLCC的加入只是改变了PVC的热降解速度,并没有改变PVC的热降解机理。
Although the comprehensive performance of PVC resin is promising, the relatively low heat resistance and impact strength restrict its application. The attempts to promote the heat resistant property of PVC material usually deteriorate its processability and mechanical properties. The plasticization and toughening of PVC material can enhance the toughness, but meanwhile, sacrifice its heat resistant property. If the plasticizing molecules can be anchored on the surface of inorganic particles to form a core-shell structure and incorporated into the PVC matrix, their mobility in host material can be hampered and the dispensability of inorganic particles can be promoted. Additionally, such strategy can realize a simultaneous plasticizing, reinforcing and toughening, and enhance the heat resistance of PVC material. In this thesis, the kaolin and calcium carbonate particles with core-shell structure are prepared by liquid-like technique, intercalation inset technique and coating crosslink technique. These core-shell structured inorganic particles are mixed with PVC matrix to produce PVC/inorganic particle composites with high impact strength and heat resistance.
     The main contents and results are listed as follows:
     1. The dimethyloctadecyl [3-(trimethoxysilyl)propyl] ammonium chloride (DC5700) is used to modify the surface of kaolin. Then sodium nonylphenol polyoxyethylene ether sulfate (NPES) is used to achieve ion exchange reaction with kaolin organic ion salt to produce solvent-free kaolin fluid (SFKF). The Fourier Infrared Spectrometer analysis (FTIR), X-ray Diffraction (XRD), thermogravimetric analysis (TG) and transmission electron microscope (TEM) are used to analyze the structure of SFKF. The rheological property of SFKF is studied by electromagnetic rheometer. The results show that the surface of SFKF grafts43wt%long chain organic species. It can flow when the temperature achieves65℃, at which the kaolin particles are intercalated and partially exfoliated.
     2. The PVC/SFKF composites are prepared by mechanically mixing SFKF with PVC materials. The processability, micro-structure, dynamic mechanical behavior and mechanical properties of PVC/SFKF composites are studied by using torque rheometer, ultraviolet-visible spectroscopy (UV-vis), scanning electron microscope (SEM), dynamic mechanical analysis (DMA) and universal mechanical testing machine, respectively. The results show that SFKF has fine plasticization effect on PVC materials, and restrains the decomposition of PVC materials during melting process. SFKF can uniformly disperse in PVC matrix, and the interface adhesion between kaolin and PVC matrix is enhanced. The notched impact strength of the PVC/SFKF composite achieves4.08kJ/m2, which is33%higher than that of neat PVC materials. The Tg of the PVC/SFKF composite is93.6℃, which is4.4℃higher than that of neat PVC materials.
     3. The liquid macromolecular plasticizer (LMM-1) with nitrile end-group is used to intercalate kaolin on the surface, and thus the core-shell structured kaolin (LKL) is obtained. The PVC/LKL composites are prepared by melt blending LKL with PVC materials. The processability, micro-structure, dynamic mechanical behavior and mechanical properties of PVC/LKL composites are studied by employing torque rheometer, UV-vis, SEM, DMA and universal mechanical testing machine. The results show that LKL has good plasticization effect on PVC materials, and can restrain the decomposition of PVC materials during melting process. The intercalation of LMM-1can improve the dispersion of LKL in PVC matrix and the interface adhesion between LKL and PVC matrix is enhanced. The notched impact strength and Tg of the PVC/LKL composites achieve4.0kJ/m2and95.2℃, respectively, which are enhanced29%and6℃with respect to neat PVC materials.
     4. The core-shell structured CaCCO3(LCC) particles are prepared by coating LMM-1on the surface of CaCO3particles. The PVC/LCC composites are also prepared through melt blending LCC with PVC materials. The processability, micro-structure, dynamic mechanical behavior and mechanical properties of PVC/LCC composites are studied by using torque rheometer, UV-vis, SEM, DMA and universal mechanical testing machine. The results show that LMM-1and CaCO3particles have good synergistic plasticization effect on PVC materials, and can restrain the decomposition of PVC materials during melting process. The dispersion of LCC in PVC matrix is improved when the CaCO3particles are modified by LMM-1. The notched impact strength of PVC/LCC composite incorporated with optimum amount of LCC particles is4.95kJ/m2, which is59.7%higher than that of neat PVC materials. The Tg of the composite is93.0℃, which is3.8℃higher than that of neat PVC materials.
     5. The structure and properties of PVC material incorporated with CaCO3and LCC particles after UV aging are characterized using whiteness test, UV-vis, SEM and universal mechanical testing machine. The results show that LCC particles used as ultraviolet light screening agents can effectively improve the anti-aging properties of PVC matrix. Due to the coating of LMM-1on the surface of CaCO3particles, the compatibility between CaCO3particles and PVC matrix is significantly improved. The LCC particles can uniformly disperse in PVC matrix and effectively reflect ultraviolet light. Based on these premises, the LCC particles have better anti-aging properties than CaCO3particles for PVC matrix. The PVC/LCC composite has higher whiteness and mechanical property retention than PVC/CaCO3(PVC/CC) composite.
     6. The liquid macromolecular plasticizer (LMM-2) with double bond end-groups is used to modify CaCO3particles, and then the crosslinking agent is added to crosslink the LMM-2. The core-shell structured CaCO3particles with crosslinked coating layer (CLCC) are obtained. The PVC/CLCC composites are also prepared through melt blending CLCC with PVC materials. The processability, micro-structure, dynamic mechanical behavior and mechanical properties of PVC/CLCC composites are studied by using torque rheometer, UV-vis, whiteness test, SEM, DMA and universal mechanical testing machine. The results show that CLCC has fine plasticization effect on PVC materials, and can restrain the decomposition of PVC materials during melting process. CLCC significantly enhances the toughness and heat resistance of PVC materials. When the CLCC content reaches an optimum value, the crosslinked LMM-2forms three-dimensional network structure in PVC matrix, and the notched impact strength and Tg of the composite achieve5.8kJ/m2and104.6℃, respectively, which are much higher than that of neat PVC materials.
     7. The interface interaction between PVC matrix and CaCO3particles before and after modification is studied by using Pukanszky equation. The degradation mechanism and behavior of PVC/LCC and PVC/CLCC composites are investigated by using Friedman equation and Kissinger equation. The results show that the interface adhension between CaCO3particles and PVC matrix significantly enhances after the addition of LMM-1and LMM-2. The degradation mechanism of PVC, PVC/LCC and PVC/CLCC composites are consistent at the first stage of degradation. The addition of LCC and CLCC particles only changes the decomposition speed of PVC materials, but does not alter its degradation mechanism.
引文
[1]潘祖仁,邱文豹.塑料工业手册:聚氯乙烯.北京:化学工业出版社,1999.
    [2]Han E. H., Leon E. Mechanical performance of polymer systems:The relation between structure and properties. Progress in Polymer Science,2005,30:915-938.
    [3]Huang J. C., Chang D. C., Deanin R. D. Analysis of PVC blends by three dimensional solubility parameters. Advanced Polymer Technology,1993,12:81-90.
    [4]Djelloul Messadi, Jean-Louls Taverdet, Jean-Maurlce Vergnaud. Plasticizer Migration from Plasticized Poly(vinyl chloride) into Liquids. Effect of Several Parameters on the Transfer. Industrial and Engineering Chemistry,1983,22(1):142-146.
    [5]Byong Yong Yu, Jae Woo Chung, Seung-Yeop Kwak. Reduced Migration from Flexible Poly(vinyl chloride) of a Plasticizer Containing-Cyclodextrin Derivative. Environmental Science and Technology,2008,42(19):7522-7527.
    [6]Zuo J. D., Gong P. Development of PVC Modified by Core-shell Structure Particles. Modern Plastics Processing and Applications,2006,18:61-64.
    [7]Wu Q. Y, Gao W. P., Wang Q. G., et al. Toughening of r-PVC/CPE blend by PMMA basic core shell rigid organic filler. Polymeric Materials Science and Engineering,2000-06.
    [8]Gao F. Q., Ning R. C. Advance in study of PVC modified by blending toughening method. China Plastics Industry,2006-S1.
    [9]Zhou W. L., Zhao S., Tan H. L., et al. Modification of poly(vinyl chloride) by acrylic impact modifier. China Synthetic Resin and Plastics,2003-06.
    [10]Folarin O. M., Sadiku E. R. Thermal stabilizers for poly(vinyl chloride):A review. International Journal of the Physical Sciences,2011,6(18):4323-4330.
    [11]Crompton Vinyl Additives GmbH. Organic based heat stabilizers for rigid PVC. Plastics Additives and Compounding November,2001,26-30.
    [12]Moghri M., Garmabi H., Akbarian M. Effects of Additives on Fusion Parameters of Rigid PVC Formulations. Journal of Vinyl and Additive Technology,2008,14:73-78.
    [13]Kou J. L., Lin Y. J., Wang M. M. Development trend and study status of non-toxic heat stabilizer of PVC. China Chlor-Alkali,2006-02.
    [14]Ableler G.. Polymeric Modifying Agents. U S.,2000,4644276.
    [15]赖悦腾,陈忻,梁结娥.有机锡类PVC热稳定剂及其协同作用的探讨.广西化工,2001,30(1):13~15.
    [16]Shu W. Y., Liu Y. N., Chen Q. Y. Synthesis of antimony tris(mercaptoethyl carboxylates) as thermal stabilizer for polyvinyl chloride. Transactions of Nonferrous Metals Society of China,2002,12:997-1000.
    [17]林美娟.三异丁氧基混合稀土增韧聚氯乙烯的研究.高分子学报,2002,2:213~216.
    [18]Tong X. M., Zhang M., Zhang T., et al. Study on the microcapsulization technics of PVC heat stabilizers. New Chemical Materials,2008-11.
    [19]华幼卿,秦倩,段雪.新型聚氯乙烯热稳定剂-水滑石的研究.聚氯乙烯,2001,6:42~45..
    [20]Taghizadeh M. T., Nalbandi N., Bahadori A. Stabilizing effect of epoxidized sunflower oil as a secondary stabilizer for Ca/Hg stabilized PVC. eXPRESS Polymer Letters,2008,12(1): 65-76.
    [21]申雄军,舒万良,周忠诚.新型PVC热稳定剂-甘油锌的研制.中国塑料,2001,15(1):57~58.
    [22]Zhao Y. W. Synthesis, application and market prospect of N-phenyl maleimide. Technology and Development of Chemical Industry,2007-11.
    [23]郑昌龙,翁志学,方仁江等.N-取代马来酰亚胺改性的耐热PVC树脂.浙江化工,1995,26(2):7-10.
    [24]Magdy W. Sabaa, Michael G. Mikhael, Nadia A. Mohamed, et al. Yassin. N-Substituted maleimides as thermal stabilizers for plasticized poly(vinyl chloride). Polymer Degradation and Stability,1990,27(3):319-336.
    [25]Abir S. Abdel-Naby, Abeer O. Al-Dossary. Use of N-(N'-Arylamino)maleimides to Improve the Thermal Properties of Poly(vinyl chloride) Through Chemical Modification and Graft Copolymerization. Journal of Vinyl and Additive Technology,2008,14: 167-174.
    [26]Abir S. Abdel-Naby. Gamma-Radiation-Induced Graft Copolymerization of N-[4-(N'-Substituted amino carbonyl)phenyl] Maleimide Onto Poly(vinyl chloride) Films. Journal of Vinyl and Additive Technology,2001,7:244-249.
    [27]Yang L. T., Liu G. D., Sun D. H., et al. Mechanical Properties and Rheological Behavior of PVC Blended With Terpolymers Containing N-Phenylmaleimide. Journal of Vinyl and Additive Technology,2002,8:151-158.
    [28]Mona Mohamed Fahmy. Inhibition of the Thermal Degradation of Rigid Poly(vinyl chloride) Using Poly (N- [4- (N'-phenyl amino carbonyl) phenyl] maleimide). Journal of Applied Polymer Science,2010,115:2013-2018.
    [29]Zhang Z., Chen S. J., Zhang J. Improvement in the heat resistance of poly(vinyl chloride) profile with styrenic polymers. Journal of Vinyl and Additive Technology,2011,17: 85-91.
    [30]王玮,王荣伟PVC/SMA共混物性能研究.石油化工,2001,30:608~610.
    [31]Peter Flippo. SMA improves thermal and polarity properties. Plastics Additives and Compounding, March/April 2008.
    [32]Dong L. J., Xiong C. X., Wang T., et al. Preparation and Properties of Compatibilized PVC/SMA-g-PA6 Blends. Journal of Applied Polymer Science,2004,94:432-439.
    [33]Xiong C. X., Lu S. J., Wang T., et al. Study on Morphology of Compatibilized Poly (Vinyl Chloride)/Ultrafine Polyamide-6 Blends by Styrene-Maleic Anhydride. Journal of Applied Polymer Science,2005,97:850-854.
    [34]连永肖,张勇,彭宗林,张隐西,张祥福,杨继承.PVC/共聚尼龙合金的性能研究.中国塑料,2000,14(8):30~35.
    [35]熊传溪,王珍,刘青民等.纳米晶PVC和纳米CaCO3在PVC型材中的应用.武汉理工大学学报,2003,25(7):8-10.
    [36]Xiong C. X., Wang T., Liu Q. H., et al. Preparation and Structural Characterization ofNanocrystalline Poly(vinyl chloride). Journal of Applied Polymer Science,2004,91: 563-569.
    [37]鲁圣军.PVC的工程化技术研究.博士学位论文,武汉理工大学,2005.
    [38]Alexandre M., Dubois P. Polymer-layered silicate nanocomposites:preparation, properties and uses of a new class of materials. Mater Sci Eng R,2000,28:1-63.
    [39]Pavlidou S, Papaspyrides C. D. A review on polymer-layered silicate nanocomposites. Progress in Polymer Science,2008,33:1119-1198.
    [40]Joanna Pagacz, Krzysztof Pielichowski. Preparation and Characterization of PVC/Montmorillonite Nanocomposites-A Review. Journal of Vinyl and Additive Technology,2009,15:61-76.
    [41]钱运华,金叶铃,陈振国.凹凸棒土填充硬质聚氯乙烯塑料.塑料,1998,27(2):37~39.
    [42]汪青萍,余乃梅.红泥聚氯乙烯(RM-PVC)复合材料的形态结构与稳定性关系.厦门大学学报(自然科学版),1991,30(1):59~63.
    [43]Shimpi N. G., Verma J., Mishra S. Dispersion of Nano CaCO3 on PVC and its Influence on Mechanical and Thermal Properties. Journal of Composite Materials,2010,44:211-220.
    [44]钱志军,洪升,薛斌,罗筑,于杰,鲁圣军.玻璃微珠改性聚氯乙烯复合材料的性能研究.塑料,2008,37(3):84~86.
    [45]Miller A. A. Radiation crosslinking of plasticized poly(vinyl chloride). Industrial and Engineering Chemistry,1959,51:1271-1274.
    [46]Bowmer T. N., Davis D. D., Kwei T. K., et al. The radiation crosslinking of poly(vinyl chloride) with trimethylolpropane trimethacrylate. I. Dose dependence and the effects of thermal treatment. Journal of Applied Polymer Science,1981,26:3669-3688.
    [47]Salmon W. A., Loan L. D. Radiation crosslinking of poly(vinyl chloride). Journal of Applied Polymer Science,1972,16:671-682.
    [48]Nethsinghe L. P., Gilbert M. Structure-property relationships of irradiation crosslinked flexible PVC:1. Structural investigations. Polymer,1988,29:1935-1939.
    [49]Nethsinghe L. P., Gilbert M. Structure-property relationships of irradiation crosslinked flexible PVC:2. Properties. Polymer,1989,30:35-39.
    [50]Sharma V. K., Mahajan J., Bhattacharyya P. K. Electron beam (EB) crosslinking of PVC insulation in presence of sensitiser additives. Radiation Physics and Chemistry,1995,45: 695-701.
    [51]Chantara Thevy Ratnam, Nasir M., Baharin A. Irradiation crosslinking of unplasticized polyvinyl chloride in the presence of aditives. Polymer Testing,2001,20:485-490.
    [52]Bard Saethre, Marianne Gilbert. Peroxide crosslinking of plasticized poly(vinyl chloride). Polymer,1996,37:3379-3386.
    [53]Gilbert M., Garcia-Quesada J. C. Crosslinking of rigid poly(vinyl chloride). Plastics, Rubber and Composites,1999,28:125-130.
    [54]Rodriguez-Fernandez O. S., Gilbert M. Aminosilane grafting of plasticized poly(vinyl chloride) Ⅱ. Grafting and crosslinking reactions. Journal of Applied Polymer Science,1997, 66:2121-2128.
    [55]Rodriguez-Fernandez O. S., Gilbert M. Aminosilane grafting of plasticized poly(vinyl chloride) Ⅰ. Extent and rate of crosslinking. Journal of Applied Polymer Science,1997,66: 2111-2119.
    [56]Rodriguez Fernandez O. S., Gilbert M. Properties of aminosilane grafted moisture curable poly(vinyl chloride) formulations. Polymer Engineering and Science,1999,39:1199-1206.
    [57]Garc1a-Quesada J. C, Marcilla A., Cilbert M. Thermal Degradation of Silane Crosslinked Unplasticized PVC. Journal of Analytical and Applied Pyrolysis,2001,60:159-177.
    [58]Hidalgo M., Beltran M. I., Reinecke H., et al. Thermal and mechanical properties of silane-crosslinked poly(vinylchloride). Journal of Applied Polymer Science,1998,70: 865-872.
    [59]Li L. J., Chen X., He B. B. CrossLinking of Rigid Poly(vinyl chloride) With Epoxysilane. Molecular weight viscosity relationships for PVC. Journal of Vinyl and Additive Technology,2007,13:103-109.
    [60]杨丽庭.N-取代马来酰亚胺共聚反应、共聚物性能、结构与应用研究及其共混物性能与群子标度之间关系的研究.博士学位论文,北京化工大学,2000.
    [61]Yuan Y., Siegmann A., Narkis M., et al. Emulsion copolymerization of N-phenylmaleimide with styrene. Journal of Applied Polymer Science,1996,61:1049-1054.
    [62]Takayuki Otsu, Atsushi Tatsumi, Akikazu Matsumoto. Novel synthesis of high molecular weight polymaleimide from N-t-butylmaleimide. Journal of Polymer Science:Polymer Letters Edition,1986,24:113-117.
    [63]杜淼,翁志学,单国荣,黄志明,潘祖仁.氯乙烯/N-苯基马来酰亚胺共聚物组成控制和优化.高分子学报,2000,3:292-296.
    [64]Martin Grohman, Scott Holloway. Successful Extrusion of Small Diameter CPVC Pipe. Journal of Vinyl and Additive Technology,1997,3:28-32.
    [65]李文辉,黄承亚,马玫CPVC/PVC共混物性能研究.合成材料老化与应用,2009,38(1):22~25.
    [66]朱德钦,生瑜,兰明荣PVC/CPVC复合材料的力学和耐热性能研究.聚氯乙烯,2005,3:19~21.
    [67]Hua Y. Q., Huang Y. Q., Siqin D. L. Studies of molecular weight distribution, particle morphology, and rheological behavior of ultra-high molecular weight suspension PVC. Journal of Vinyl Technology,1994,16:235-245.
    [68]Yoshoro Nakamura, Akira Watanabe, Kunio Mori, et al. Improvement in low-temperature toughness of poly(vinylchloride) by cocrosslinking with polyethylene. Journal of Polymer Science. Polymer Letters Edition,1987,25(3):127-129.
    [69]Kurauchi T., Ohta T. Energy absorption in blends of polycarbonate with ABS and SAN. Journal of Materials Science,1984,19(5),1699-1709.
    [70]Crawford E., Lesser A. J. Mechanics of rubber particle cavitation in toughened polyvinylchloride (PVC). Polymer,2000,41(15):5865-5870.
    [71]Dompas D., Groeninckx G., HasegawaM. Kadokura T. Toughening behaviour of rubber-modified thermoplastic polymers involving very small rubber particles:2. Rubber cavitation behaviour in poly(vinyl chloride)/methyl methacrylate -butadiene -styrene graft copolymerblends. Polymer,1994,35(22):4750-4759.
    [72]Wang Q. G., Zhang X. H., Liu S. Y., et al. Ultrafine full-vulcanized powdered rubbers/PVC compounds with higher toughness and higher heat resistance. Polymer,2005, 46(24):10614-10617.
    [73]秦庆戊,崔永岩PVC/ACR共混合金的研究.上海塑料,2000,111:15-18.
    [74]Chen M., Zhou C., Liu Z. G., et al. Core-shell particles designed for toughening poly(vinyl chloride). Polymer International,2010,59:980-985.
    [75]Jessada Wong-On, Jatuphorn Wootthikanokkhan. Dynamic vulcanization of acrylic rubber-blended PVC. Journal of Applied Polymer Science,2003,88(11):2657-2663.
    [76]Wu D. Z., Wang X. D., Song Y. Z., et al. Nanocomposites of Poly(vinyl chloride) and Nanometric Calcium Carbonate Particles:Effects of Chlorinated Polyethylene on Mechanical Properties, Morphology, and Rheology. Journal of Applied Polymer Science, 2004,92:2714-2723.
    [77]Peng J., Wei G. S., Zhang Y. D. Studies on Mechanical and Rheological Properties of Poly(Vinyl Chloride) Modified with Elastomers and Rigid Organic Particles. Journal of Applied Polymer Science,2003,88:2478-2483.
    [78]Whittle A. J., Burford R. P., Hoffman M. J. Assessment of strength and toughness of modified PVC pipes. Plastics, Rubber and Composites,2001,30(9):434-440.
    [79]Zhou L. L,. Wang X., Lin Y. S,. et al. Comparison of the Toughening Mechanisms of Poly (vinyl chloride)/Chlorinated Polyethylene and Poly(vinyl chloride)/Acrylonitrile-Butadiene-Styrene Copolymer Blends. Journal of Applied Polymer Science,2003,90:916-924.
    [80]李青,PVC耐候透明性抗冲改性剂MBS的合成和性能表征.硕士学位论文,山东理工大学,2009.
    [81]Zhou C., Chen M., Tan Z. Y., et al. The influence of arrangement of St in MBS on the properties of PVC/MBS blends. European Polymer Journal,2006,42:1811-1818.
    [82]Wu G. F., Zhao J. F., Shi H. T., et al. The influence of core-shell structured modifiers on the toughness of poly (vinyl chloride). European Polymer Journal,2004,40:2451-2456.
    [83]Zhou C., Chen M., Zhang M. Y., et al. Properties of rubber-toughened Polyvinyl chloride blends based on core-shell modifier with different particle morphology. Polymer Bulletin, 2007,59:699-708.
    [84]Zhou C., Si Q. B., Ao Y. H., et al. Effect of matrix composition on the fracture behavior of rubber-modified PMMA/PVC blends. Polymer Bulletin,2007,58:979-988.
    [85]Li J. X., Chan C. M. Effect of the size of the dispersed NBR phase in PVC/NBR blends on the stability of PVC to electron irradiation. Polymer,2001,42:6833-6839.
    [86]Senake Perera M. C., Ishiaku U. S., Mohd Ishak Z. A. Characterization of PVC/NBR and PVC/ENR50 binary blends and PVC/ENR50/NBR ternary blends by DMA and solid state NMR. European Polymer Journal,2001,37:167-178.
    [87]Migahed M. D., Ishra M., El-Khodary A., et al. Compatibility of polyacrylonitrile-butadiene with polyvinylchloride as explored by thermally stimulated depolarization current. Polymer Testing,1993,12:335-349.
    [88]Liu Z. H., Zhang X. D., Zhu X. G., et al. Effect of morphology on the brittle ductile transition of polymer blends:2. Analysis on poly(vinyl chloride)/nitrile rubber blends. Polymer,1998,39:5019-5025.
    [89]Liu Z. H., Zhang X. D., Zhu X. G,. et al. Effect of morphology on the brittle ductile transition of polymer blends:3. The influence of rubber particle spatial distribution on the fracture behaviour of poly(vinyl chloride)/nitrile rubber blends. Polymer,1998,39: 5027-5033.
    [90]Liu Z. H., Zhang X. D., Zhu X. G., et al. Effect of morphology on the brittle ductile transition of polymer blends:4. Influence of the rubber particle spatial distribution in poly(vinyl chloride)/nitrile rubber blends. Polymer,1998,39:5035-5045.
    [91]Liu Z. H., Zhang X. D., Zhu X. G., et al. Effect of morphology on the brittle ductile transition of polymer blends:6. Influence of rubber particle spatial distribution on the toughening and stiffening efficiency of poly(vinyl chloride)/nitrile rubber blends. Polymer, 1998,39:5047-5052.
    [92]Radhakrishnan Nair M. N., Biju P. K., George V. Thomas, et al. Blends of PVC and Epoxidized Liquid Natural Rubber:Studies on Impact Modification. Journal of Applied Polymer Science,2009,111:48-56.
    [93]Mcconnell D. C., Mcnally G. M., Murphy W. R. Rheological and Mechanical Performance of Ethyl Vinyl Acetate/Poly(vinyl chloride) Formulations. Journal of Vinyl and Additive Technology,2002,8(3):194-201.
    [94]曾仁强,余乃梅PVC/EVA共混体系的增韧机理.厦门大学学报(自然科学版),1999,38(6):884~888.
    [95]Fu Q., Wang G. H. Polyethylene toughened by rigid inorganic particles. Polymer Engineering and Science,1992,32(2):94-97.
    [96]傅强,沈九四,王贵恒.碳酸钙刚性粒子增韧HDPE的影响因素.高分子材料科学与工程,1992,8(1):107~112.
    [97]Koo K. K., Inoue T., Miyaska K. Toughened plastics consisting of brittle particles and ductile matrix. Polymer Engineering Science,1985,25:741-746.
    [98]Angola T. C., Fujita Y., Inoue T. Compatibilizer-aided toughening in polymer blends consisting of brittle polymer particles dispersed in a ductile polymer matrix. Journal of Polymer Science, Polymer Physics,1988,26:807-816.
    [99]Sue H., Huang J., Yee A. F. Interfacial adhesion and toughening mechanisms in an alloy of polycarbonate/polyethylene. Polymer,1992,33:4868-4871.
    [100]Thio Y. S., Argon A. S., Cohen R. E., et al. Toughening of isotactic polypropylene with CaCO3 particles. Polymer,2002,43:3661-3674.
    [101]Lee J., Yee A. F. Inorganic particle toughening Ⅱ:toughening mechanisms of glass bead filled epoxies. Polymer,2001,42:589-597.
    [102]Bartczak Z., Argon A. S., Cohen R. E. Deformation mechanisms and plastic resistance in single-crystal-textured high-density polyethylene. Macromolecules,1992,25:5036-5053.
    [103]王建民,李凤岭.PS对PVC增韧机理的研究.合成树脂及塑料,1996,3:11-14.
    [104]Zhou Q. Modification of polyvinyl chloride/chlorinated polyethylene blends with ultrafine particles of polystyrene. European Polymer Journal,2000,36:1735-1740.
    [105]McNally T., Halley P., Murphy M., et al. Polyethylene multiwalled carbon nanotube composites. Polymer,2005,46:8222-8232.
    [106]Li K. S., Chen Y. H., Niu H. M., et al. Preparation of PVC/Kaolin Nanocomposites through Solid State Shear Compounding Based on Pan-Milling. Materials Science Forum,2011, 694:350-354.
    [107]Chen C. H., Teng C. C., Yang C. H. Preparation and Characterization of Rigid Poly(vinyl chloride)/MMT Nanocomposites. Journal of Polymer Science:Part B:Polymer Physics, 2005,43:1465-1474.
    [108]Chen C. H., Teng C. C., Tsai M. S., et al. Preparation and Characterization of Rigid Poly(vinyl chloride)/MMT Nanocomposites. II. XRD, Morphological and Mechanical Characteristics. Journal of Polymer Science:Part B:Polymer Physics,2006,44: 2145-2154.
    [109]Laurent M. Matuana. Rigid PVC/(Layered Silicate) Nanocomposites Produced Through a Novel Melt-Blending Approach. Journal of Vinyl Additive Technology,2009,15:77-86.
    [110]Zhao H., Sun R. M., Luo Y. Y., et al. A Novel Method of Hyperbranched Poly(amide-ester) Modifying Nano-SiO2 and Study of Mechanical Properties of PVC/Nano-Si02 Composites. Polymer Composites,2008,29:1014-1019.
    [111]Sun S. S., Li C. Z., Zhang L., et al. Effects of surface modification of fumed silica on interfacial structures and mechanical properties of poly(vinyl chloride) composites. European Polymer Journal,2006,42:1643-1652.
    [112]Guo Y. K., Wang M. Y., Zhang H. Q., et al. The Surface Modification of Nanosilica, Preparation of Nanosilica/Acrylic Core-Shell Composite Latex, and Its Application in Toughening PVC Matrix. Journal of Applied Polymer Science,2008,107:2671-2680.
    [113]Sun S. S., Li C. Z., Zhang L., et al. Interfacial structures and mechanical properties of PVC composites reinforced by CaCO3 with different particle sizes and surface Treatments. Polymer International,2006,55:158-164.
    [114]Wu D. Z., Wang X. D., Song Y. Z., et al. Nanocomposites of Poly(vinyl chloride) and Nanometric Calcium Carbonate Particles:Effects of Chlorinated Polyethylene on Mechanical Properties, Morphology, and Rheology. Journal of Applied Polymer Science, 2004,92:2714-2723.
    [115]田满红,郭少云.纳米CaCO3填充PVC复合材料的力化学增强增韧研究.聚氯乙烯,2003,6:22~25.
    [116]Fernando N. A. S., Thomas N. L. Effect of Precipitated Calcium Carbonate on the Mechanical Properties of Poly(vinyl chloride). Journal of Vinyl and Additive Technology, 2007,13:98-102.
    [117]吴学明,王兰等.硅灰石填充改性硬质聚氯乙烯的研究.中国塑料,2002,1:28-32.
    [118]唐明静,杨明娇,淡宜.聚丙烯酸酯/Ti02复合粒子对PVC性能的影响.塑料工业,2006,34(12):12~16.
    [119]Thongpin C, Santavitee O. Degradation Mechanism and Mechanical Properties of PVC in PVC-PE Melt Blends:Effects of Molecular Architecture, Content, and MFI of PE. Journal of Vinyl and Additive Technology,2006,12:115-123.
    [120]Prachayawarakorn J., Khamsri J., Chaochanchaikul K., et al. Effects of Compatibilizer Type and Rubber-Wood Sawdust Content on the Mechanical, Morphological, and Thermal Properties of PVC/LDPE Blend. Journal of Applied Polymer Science,2006,102:598-606.
    [121]Prachayawarakorn J., Khunsumled S., Thongpin C., et al. Effects of Silane and MAPE Coupling Agents on the Properties and Interfacial Adhesion of Wood-Filled PVC/LDPE Blend. Journal of Applied Polymer Science,2008,108:3523-3530.
    [122]Xie X. L., Liu Q. X., Robert Kwok-Yiu Li, et al. Rheological and mechanical properties of PVC/CaCO3 nanocomposites prepared by in situ polymerization. Polymer,2004,45: 6665-6673.
    [123]Pan M. W., Shi X. D., Li X. C., et al. Morphology and Properties of PVC/Clay Nanocomposites via in Situ Emulsion Polymerization. Journal of Applied Polymer Science, 2004,94:277-286.
    [124]Yang L., Hu Y., Guo H., et al. Toughening and Reinforcement of Rigid PVC with Silicone Rubber/Nano-CaCO3 Shell Core Structured Fillers. Journal of Applied Polymer Science, 2006,102:2560-2567.
    [125]Xiong Y., Chen G. S., Guo S. Y. The Preparation of Core-Shell CaCO3 Particles and Its Effect on Mechanical Property of PVC Composites. Journal of Applied Polymer Science, 2006,102:1084-1091.
    [126]Wang Q. G., Zhang X. H., Jin Y., et al. Preparation and Properties of PVC Ternary Nanocomposites Containing Elastomeric Nanoscale Particles and Exfoliated Sodium-Montmorillonite. Macromolecular Materials and Engineering,2006,291: 655-660.
    [127]Wang Q. G., Zhang X. H., Jin Y., et al. Novel rigid poly(vinyl chloride) ternary nanocomposites containing ultrafine full-vulcanized powdered rubber and untreated nano-sized calcium carbonate. Materials Letters,2007,61:1174-1177.
    [128]Gonzalez N., Fernandez-Berridi M. J. Application of Fourier Transform Infrared Spectroscopy in the Study of Interactions Between PVC and Plasticizers:PVC/Plasticizer Compatibility versus Chemical Structure of Plasticizer. Journal of Applied Polymer Science,2006,101:1731-1737.
    [129]Choi Jeongsoo, Yeopkwak Seung. Hyperbranched Poly(ε-caprolactone) as a Nonmigrating Alternative Plasticizer for Phthalates in Flexible PVC. Environmental Science and Technology,2007,41:3763-3768.
    [130]Annika Lindstrom, Minna Hakkarainen. Migration Resistant Polymeric Plasticizer for Poly(vinyl chloride). Journal of Applied Polymer Science,2007,104:2458-2467.
    [131]Bourlinos A. B., Herrera R., Chalkias N., et al. Surface functionalized nanoparticles with liquid-like behavior. Advanced Materials,2005,17(2):234-237.
    [132]Lei Y. A., Xiong C. X., Dong L. J., et al. Ionic liquid of ultralong carbon nanotubes. Small, 2007,3(11):1889-1893.
    [133]Bourlinos A. B., Stassinopoulos A., Anglos D., et al. Functionalized ZnO nanoparticles with liquid like behavior and their photoluminescence properties. Small,2006,2(4): 513-516.
    [134]Bourlions A. B., Raman K., Herrera R., et al. A liquid derivative of 12-tungstophosphoric acid with unusually high conductivity. Journal of the American Chemical Society,2004, 126:15358-15359.
    [135]Bourlions A. B., Chowdhury S. R., Herrera R., et al. Functionalized nanostructures with liquid-like behavior:Expanding the gallery of available nanostructures. Advance Functional Materials,2005,15:1285-1290.
    [136]Li Q., Dong L. J., Deng W., et al. Solvent-free Fluids Based on Rhombohedral Nanoparticles of Calcium Carbonate. Journal of the American Chemical Society,2009, 131(26):9148-9149.
    [137]Bourlions A. B., Chowdhury S. R., Jiang D. D., et al. Layered organosilicate nanoparticles with liquidlike behavior. Small,2005,1:80-82.
    [138]刘新海,李一波.大同高岭土表面改性及效果评价.矿产综合利用,2003,(6):11~13.
    [139]李宝智.煤系煅烧高岭土表面改性及在高分子制品中的应用.中国粉体技术(信息资讯版),2005,(2):12~14.
    [140]Daniels V. D., Rees N. H. Analysis of the ultraviolet/visible spectrum of degraded poly (vinyl chloride) to determine polyene concentrations. Journal of Polymer Science, Polymer Chemistry,1974,12:2115-2122.
    [141]应建波,钟明强,徐立新.PVC/纳米CaCO3复合材料的制备与性能研究.化学建材,2004,3:21-23.
    [142]Day R. E. The role of titanium dioxide pigments in the degradation and stabilisation of polymers in the plastics industry. Polymer Degradation and Stability,1990,29,73-92.
    [143]Gesenhues U. Influence of titanium dioxide pigments on the photodegradation of poly(vinyl chloride). Polymer Degradation and Stability,2000,68,185-196.
    [144]Zhang X. F., Pi H., Guo S. Y. The mechanism for inorganic fillers accelerating and inhibiting the UV irradiation aging behaviors of rigid poly(vinyl chloride). Journal of Applied Polymer Science,2011,122,2869-2875.
    [145]Yarahmadi N., Jakubowicz I., Gevert T. Effects of repeated extrusion on the properties and durability of rigid PVC scrap. Polymer Degradation and Stability,2001,73(1):93-99.
    [146]Friedman H. L. Kinetics of thermal degradation of char-forming plastics form thermogravimetry, Application to a phenolic plastic. Journal of Polymer Science,1964, 6(1):183-195.
    [147]Kissinger H. E. Reaction kinetics in differential thermal analysis. Analytical Chemistry, 1957,29(11):1702-1706.
    [148]Pukanszky B. New Polymer Materials,1992,3:205.
    [149]Turcsanyi B., Pukanszky B., Tudos F. Composition dependence of tensile yield stress in filled polymers. Journal of Materials Science Letters,1988,7:160-162.
    [150]Somasekharan K. N., Kalpogam V. Journal of Thermal Analysis,1987,32:1471.
    [151]Reading M., Dollimore D., Whitehead T. Measurement of meaningful kinetic parameters for solid state decomposition reactions. Journal of Thermal Analysis 1991,37:2165-2188.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700