旋液流态化长寿冷却壁及其热模拟试验新技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
炼铁炉的寿命取决于冷却设备的寿命。而水垢对冷却壁寿命的影响是第一位的。铜冷却壁整体导热性好,必须配备软水密闭循环冷却系统才能防止流道内壁结垢,一代炉役可达15~20年,但投入巨大且运行费用昂。
     本文研究旋液流态化冷却壁新技术,其技术原理是在冷却水流道内设置钢丝螺旋线使冷却水呈螺旋轨迹流动。需要清洗水垢时,加入体积比为2%流态化粒子,粒子随冷却水在流道内螺旋前进,由于离心力的作用,大部分粒子都沿流道内壁的圆柱面螺旋流动,使冷却水流道内壁水垢得以快速、均匀清洗。因而,该冷却壁整体导热性可大幅提。本文首先对其核心技术旋液流态化进行了试验研究,结果表明:流道的人工水垢清洗时间只需145秒。另外,其对流传热强化幅度可达50%以上,而流体总阻力48.7kPa低于供水压力。
     作者采用理论计算、数值模拟和试验相结合的方法进行研究。传热学理论计算表明,该冷却壁的总传热系数是铜冷却壁的40.7%,是铸铁冷却壁的14倍,是普通铸钢冷却壁的5.1倍。数值模拟时,在GAMBIT中建立求解模型,使用FLUENT的离散项模型和三维稳态分离求解器对旋液流态化的传热强化幅度和冷却壁温度场进行模拟。数值模拟结果表明:与空管相比,旋液流态化的对流传热强化幅度为40.4%;肋板完全磨损后,即使热面无渣皮,其热面最温度也会低于安全温度;无肋板且热面均匀粘结30mm厚渣皮时,壁体热面最温度仅为85.7℃。
     首次研究提出了排渣道内进行的模拟试验技术,以测定冷却壁热面最温度和渣皮形成过程及分布。该方案具有试验周期短、费用省、易于操作且安全可靠等显著优点。
The service campaign of blast furnaces depends on their cooling equipments’campaign. The water fouling is the most important factor in service campaign of cooling staves. Copper cooling staves have excellent quality of total heat transfer. With closed loop soft water cooling systems applied, their service campaign is up to the level of 15 to 20 years, but they cost huge.
     The cooling stave intensified by spiral fluidization is studied on in the paper. The technical principle of spiral fluidization lies in installing spiral steel wires within flow channels, which guide cooling water flowing in spiral streamline. The fluidization particles with volume concentration of 2 percent are injected in need of cleaning. When cleaning, the particles flow spirally together with cooling water. Most of particles flow spirally on cylindrical surfaces of flow channels with the action of inertial centrifugal force. So the water fouling is removed quickly and uniformly. Experimental researches on spiral fluidization, the core technology of the stave, are performed for the first time in the paper. And their results show that it only costs 145 seconds to remove the artificial fouling on inner walls of flow channels. In addition, they also reveal that convective heat transfer coefficient between cooling water and inner walls is intensified for more than 50 percent, and that the total flow resistance is equal to 48.7kPa which is lower than total pressure of supply water.
     The method of theoretical calculation combining with numerical simulation and experiment is applied while researching. The results of theoretical calculation based on heat transfer show that the total heat transfer coefficient from inner wall of cooling tube to hot surface of the stave is 40.7 percent of copper stave’s, 14 times of cast-iron stave’s and 5.1 times of widely-used cast-steel stave’s. While simulating, solution models are created by GAMBIT, and by FLUENT are performed numerical simulation on heat transfer magnitude intensified by spiral fluidization through discrete phase model and temperature field of the stave through 3-dimension steady segregated solution. Results of numerical simulation show that in comparison with tubes without any inserts in, the enhanced magnitude of convective heat transfer is up to 40.4 percent. They also reveal that it is under safety temperature during the stage with fins worn down completely even if there is no slag sticking on hot surface, and that the highest temperature on hot surface is only 85.7 degrees on the condition that a layer of slag thick 30mm uniformly sticks on it.
     In the end, an experimental theme in thermal simulation, performed in slag notch, is researched and put forward for the first time to test the temperature on hot surfaces, period of forming slag and distribution of slag. It has many remarkable advantages such as short test period, low cost, easy operation, safety and reliability, and so on.
引文
[1]钱中,程惠尔,吴俐俊.炉铸钢冷却壁传热和结构的影响因素分析.上海金属,2005,27(4):34-38
    [2] 钱 中 , 程 惠 尔 , 吴俐 俊 . 基 于 热 态 实 验 的 冷 却 壁 传 热 分 析 . 钢 铁 研 究 学报,2006,18(5):10-13
    [3]程素森,马祥,杨天钧.冷却水水垢对冷却壁冷却能力影响的传热学分析.钢铁,2002,37(7):16-19
    [4]程素森,杨天钧,左海滨等.炉炉身下部及炉缸、炉底冷却系统的传热学计算.钢铁研究学报,2004,16(5):10-13
    [5]周渝生,曹传根,甘菲芳.炉长寿技术的最新进展.钢铁,2003,38(11):8,70-74
    [6]黄晓煜,孙金铎.鞍钢 7 号炉炉身破损原因剖析.炼铁,2001,20(6):1-4
    [7]储滨,肖阳,龚涛.750m3 利用系数条件下煤比实践.钢铁,2006,41(3):12-15
    [8]周渝生,曹传根.铜冷却壁在炉上的安装和使用.世界钢铁,1999,(3):1-10
    [9]张福明,党玉华.我国大型炉长寿技术发展现状.钢铁,2004,39(10):75-78
    [10]刘琦.采用铜冷却壁,延长炉炉体寿命.中国冶金,2003,(5):12-16
    [11]连诚,黄德友.武钢炉软水密闭循环冷却系统比较.炼铁,2002,21(1):40-41
    [12]王军.铜冷却壁应用经济性浅析.中国冶金,2004,(8):33-36
    [13]曹传根,周渝生,叶正才.宝钢 3 号炉冷却壁破损的原因及防止对策.炼铁,2000,19(2):15
    [14]彭德其,支校衡,俞秀民.管口冲推塑料螺旋线自转清洗防垢及其传热强化.煤矿机械,2005, (9): 29-31
    [15]俞天兰,彭德其,俞秀民等.汽轮机冷凝器自转塑料纽带自动在线连续除垢防垢技术研究. 现代化工, 2002, (6): 44-46
    [16]Tianlan YU,Xiumin YU,Xiaoheng ZHI,et al.Preventing fouling and enhancing heat transfer using the dyna-flow twisted strip with dissymmetrical oblique teeth.The 3rd International Symposium On Heat Transfer Enhancement And Energy Conservation .JAN 12-15, 2004. 710-713
    [17]Jochen St Kollbach,W.Dahm R.Rautenbach. Continuous Cleaning of Heat Exchanger with Recirculating Fluidized Bed.Heat Transfer Engineering, 1987, 8(4):26-32
    [18]Deqi PENG, Xiaoheng ZHI, Xiumin YU, et al.Research on vertical water-cooled condensers of fluidized-bed of internal circulation with bubble cap plate.The 3rdInternational Symposium On Heat Transfer Enhancement And Energy Conservation.JAN 12-15, 2004. 880-884
    [19] 俞秀民 , 吴金香 . 管程内循环液固流态化效换热器研究 . 压力容器 , 1995,13(1):33-36
    [20]彭德其,蒋少青,俞天兰.炼铁炉低流速螺旋流态化水冷壁. ZL200520052393.7. 2005.11.09
    [21]顾毓珍. 湍流传热导论. 上海科技出版社,1964.11. 200,204-206
    [22]M.李伐著, 郭天明, 谢舜韶译. 流态化. 科学出版社, 1964.3. 240-241
    [23]梁在潮. 工程湍流. 华中理工大学出版社,1999.4. 254-259
    [24]舒海涛.炼油、催化装置冷凝器重沸器运行报告.全国化工炼油机械技术情报网换热器会议,1991,8. 3
    [25]全玉臣.冶炼炉在线清洗的研究与实践.清洗世界,2006,22(3):17-20
    [26]杨天钧,征铠,刘庭成等.炉冷却器结垢及压水射流清洗技术.钢铁,1995,30(2):67-69
    [27]蒋玲.炉铜冷却壁的应用及分析.钢铁研究,2003,(4):1-5,29
    [28]Robert G. Carmichael et al.Application of copper staves for BF. IRON AND STEEL ENGINEER ,1996 (8) :30-35
    [29]R.G.Helenbrook. Water Requirements for Blast Furnace Copper Staves.59th ironmaking conference proceedings,2000.461-469
    [30]钱亮,程素森,李维广等.铜冷却壁炉墙内型管理传热学反问题模型.炼铁,2006,25(2):18-22
    [31]L.Bout, H.Delenghe, M.Depamelare, et al.Installing Copper Staves and Operational Practice at Sidmar.Iron and Steel Engineer,1999,(6):43-50
    [32]R. Thill et al. The Application of FEM Techniques in the Development of Copper Staves for the High Heat Load and Hearth Areas of the Blast Furnace.59th ironmaking conference proceedings ,2000
    [33]吴启常,黄晓煜.炉长寿技术研究.鞍钢技术,2003,(2):1-9
    [34]李小静,彭群,朱童斌.马钢炉铸钢冷却壁的开发与应用.炼铁,2003,22(1):45-47
    [35]张士敏,王东升,垒宝昌等.炉钢冷却壁的应用及分析.炼铁,2001,20(1):44-47
    [36]朱童斌,石玮,李晓静.铸钢冷却壁的应用与优势分析.安徽冶金科技职业学院学报,2006,(16):15-19
    [37] 毕松梅 , 聂桂秋 , 徐利华等 . 大型冷却模块的结构特点及应用 . 河南冶金,2007,15(1):15-16,50
    [38]陈韧,张顺义,郝志强等.大型模块式炉炉身传热研究.炼铁,2000,19(4):26-28
    [39]余琨.乌克兰炉炉身冷却模块技术.炼铁,1997,16(6):52-54
    [40]汪敉 , 王文忠 , 余琨 , 童文辉 . 大型冷却模块在鞍钢 1 号炉的应用 . 炼铁,1999,18(5):6-9
    [41]王小艾,郑艾军,张洪海.宣钢 7 号炉操作技术进步.炼铁,2005,24(6):30-33
    [42]柳萌.现代大炉薄壁内衬技术.炼铁,2001,20(3):7-11
    [43]朱童斌,石玮,王黎明等.炉铸钢冷却壁的研制.铸造,2003,52(7):505-509
    [44]刘菁.炉铜冷却壁的应用及探讨.钢铁研究,2001,(3):52-55
    [45]银汉.现代薄壁炉的特征.炼铁,2001,20(2):7-10
    [46]周治中.新型炉冷却设备-铜冷却壁.宝钢技术,2001,(1):57-63
    [47]张晓丽,吴懋林,陶宝国等.钢冷却壁的热态实验研究.矿冶,2003,12(4):37-39
    [48]王福军.计算流体动力学分析.北京:清华大学出版社,2004. 124,125,215,216
    [49]王健石.工业用热电偶及补偿导线技术手册.北京:中国计量出版社,2003. 141-142
    [50]孙原生.铠装热电偶在炉铜冷却板表层埋焊新工艺中绝缘性分析.太钢科技,2006,(2):32-35
    [51]杨世铭,陶文铨.传热学.第 3 版.北京:等教育出版社,1998. 23-24
    [52]铸造手册.第 2 卷:铸钢.中国机械工程学会铸造专业学会.北京:机械工业出版社,1994.78
    [53]于寅.等工程数学.第 3 版.武汉:华中科技大学出版社,2001.388

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700