自生复合电车线连续制备过程中工艺参数的交互作用及其控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电车线是电气化铁路、工矿电机车等用滑接馈电线的总称。国内外的电车线通常采用的是铜及铜合金电车线,在铜电车线材料的研究中,长期以来存在着高强度和高导电率之间的矛盾,这种矛盾甚至贯穿于整个导电材料研究的始终。采用材料复合技术研制导电材料是近年来发展起来的新方法,由于自生复合材料的各向异性和良好的界面复合能力,使其在解决导电材料的轴向强度和导电性的综合性能方面表现出了极大的潜力。如何实现自生复合电车线的连续稳制备和产业化生产则成为当前自生复合电车线研究的主要方向。本文正是以此为背景,深入研究了自生复合Cu-Cr合金的连续制备过程、工艺特性及电车线的组织与性能,系统地考察了相关的向连续铸造过程中的工艺参数的交互作用规律,并对工艺参数的实时控制特性和方法进行了探索性研究,以期为自生复合电车线的产业化生产打下基础。
     本文提出了通过采用向连续铸造技术制备自生复合材料的方式来解决电车线材料中强度与导电性兼顾问题的崭新技术路线,深入研究了自生复合Cu-Cr合金通过向凝固连续铸造方法制备电车线坯的工艺过程及其对材料组织和性能的影响。自生复合Cu-Cr合金在向连铸之后宏观上具有沿轴向排列的柱状晶组织,微观上保持了与普通向凝固后相同的组织形态:强化相Cr质点由自由凝固时的弥散分布转化为沿α(Cu)晶界向排列,其一般特征为初生α(Cu)基体呈柱状,在α晶之间
    
    2000年上海大学博士学位论文
    分布着条状的汉Cr)相和试Cu)+八Cr)共晶体。前者为导电相,
    后者为强化相,形成两相有序相间的自生复合材料。这样的组
    织形态在导电材料的强度与导电性上的表现为:强度得到极大
    提高,而导电性由于向组织的各向异性而在电流传输方向一「
    降很小。
     考察了电车线铸坯制备标准电车线杆的后续加工性能以及
    电车线后续加工工艺对自生复合Cu一Cr合金组织及性能的影
    响。经冷拉拔后的自生复合Cu一C:合金电车线仍基本保持了
    向凝固时的组织形态,其抗拉强度有大幅度提高,导电率有所
    下降,但综合性能明显高于向连续铸造铸态电车线。向连
    续铸造的Cu一C:合金铸态抗拉强度一般在300一35OMPa之间,
    延伸率约30%~4O%,相对导电率87%~95%,综合性能可达
    9. 6xl护MP矛%。经冷拉拔变形后抗拉强度可提高到400~4 60MPa
    之间,相对导电率80%~85%,综合性能可达18.3xl护MPaZ%。
    软化热处理实验还发现自生复合电车线具有极好的热稳性;
    经过3 h 500℃的保温处理,自生复合电车线的综合性能几乎保
    持不变。
     向连续铸造过程中的稳的固/液界面位置是连续向组
    织材料制备成功的关键因素,本文系统地研究了制备自生复合
    Cu一Cr合金电车线坯的固/液界面位置条件以及对固/液界面位置
    的影响因素。自行设计了一套向连续铸造过程的数值仿真软
    件,通过该软件可以系统研究向连铸过程中工艺参数的交互
    作用规律。数值仿真结果显示,虽然向连铸的可控制工艺参
    数多达六个,但固/液界面位置及凝固界面形状主要与冷却趴
    离、铸型出口温度和牵引速率等三个参数有关,而其他工艺参
    数影响很小。随着冷却距离、铸型出口温度和牵引速率的增大,
    
     自生复合电车线连续制备过程中工艺参数的交互作用及其控制研究
    固液界面位置向远离铸型出口的方向移动。
     本文还考察r各工艺参数的相互搭配方式对固/液界面位置
    的影响规律。发现_〔艺参数冷却水温度或冷却水流量在单独作
    用下,对固/液界面位置的影响均是不显著的,但当考察两者的
    相互搭配时,影响则是显著的。当冷却水温度为20℃和冷却水
    流量为7OL/h时,固/液界面位置最接近于铸型出口。
     采用人工神经网络技术建立了稳制备时固/液界面位置及
    形状因子的预测模型,对于预测任意工艺参数组合下固/液界面
    位置或形状因子具有较高的精度,为制定定向连续铸造的最佳
    工艺‘范围提供了很好的指导。
     深人研究了向连铸弓f晶过渡阶段的动态过程,首次提出
    了过渡阶段牵引速率与凝固界面推进、固/液界面位置变化的匹
    配技术。分析了引晶过渡阶段的温度场及凝固界面的演化历程
    对于最终的固/液界面位置的影响特性。固/液界面位置是从开始
    时位于铸型内部某一深度向铸型外方向迁移。引晶阶段的温度
    场变化取决于该阶段的凝固界面推进速率与引晶牵引速率的匹
    配.在相同的稳工艺参数条件下,过渡阶段的引晶速率采用
    缓慢加速的方式有利于减小固/液界面位置向铸型外的迁移量,
    引晶速率加速越缓,迁移量越小。
     考察了向连续铸造过程中固/液界面位置的实时控制特
    性。选取了冷却距离、铸型出口温度和牵引速率作为控制量,
    建立了固/液界面位置的简化控制模型。并根据控制要求,构建
    了以工控机为主的控制系统硬件配置。
Contact cable is an important part of the electrical railway system. Copper alloy contact cable is the most common type of cables used as so far. Chronically there exits a contradiction between the requirement of high strength and that of high conductivity during the study of copper contact cable and even this contradiction runs through the research of all conductive materials. Manufacturing the contact cable by material composite technology is a newly developed method in recent years. Due to its anisotropism and excellent ability of interfacial combination, in-situ composite shows a wonderful potential to giving the attention to the strength and the conductivity of conductive materials at one time. The key direction in the current research of in-situ composite contact cable is how to continuously steadily produce it and so to realize the industrialization of it. Just on the consideration of all above, in this dissertation the continuous casting procedure of in-situ composite Cu-Cr alloy and its technologica
    l characteristics as well as the structure and properties of contact cable are deeply researched, the interactions among the technical parameters of directional solidification continuous casting (DSCC) process are analyzed, and also the real-time-control characteristics and methods of parameters are discussed. The purpose of all work is to make the foundation of industrialization of in-situ composite contact cable.
    First, the process of contact cable castings of in-situ composite Cu-Cr alloy by means of DSCC, as well as its effects to contact cable's structure and properties, is lucubrated in this paper. The in-situ
    
    
    
    composite Cu-Cr alloy by DSCC has a feature on macrostructure that columnar grains directionally ranks on the axial direction of the castings, and its microstructure has a general pattern as following: primary a (Cu) crystals are cellular or columnar and strip particles (Cr) and eutectic [ + ] alternately distributes between any two primary (Cu) grains. This forms regularly two-phase-alternation in-situ composite materials among which the (Cu) plays the rule of electricity-conduction while the (Cr) that of strengthening. This type of microstructure results in that the strength of conductive materials is improved well and the conductivity along direction of electricity transmission slightly decreases due to anisotropism character of the material with directional structure.
    Second, standard contact cable samples are made from in-situ composite Cu-Cr castings and effects of the subsequent process technology of castings on its structure and properties are investigated. Cold-drawn in-situ composite contact cable samples still keep a structure conformation like as-cast structure so that their tensile strength is improved greatly and their electricity conductivity decreases slight but all in all their synthetic properties are obviously higher than those of castings. As-cast in-situ composite Cu-Cr alloy's tensile strength is about 300~350MPa, elongation rate between 30%~40%, and relative conductivity around 87%~95%, so as to 9.6x106MPa2 % of synthetic property; Cold-drawn contact cable samples' tensile strength is up to 400~460MPa and relative conductivity down to 80%~85% so that the synthetic property can be up to 18.3xl06MPa2 % maximally. Also it is found with heat-treatment experiments that the in-situ composite contact cable has of excellent thermal stability as following: its synthetic property varies little after 3 h soaking at 500 C.
    In addition, the forming conditions of the S/L interface location
    
    
    and the influencing factors on them, during the continuous casting of in-situ composite Cu-Cr contact cable, which is the key for continuously directional solidification structure of materials, are systematically studied. Although DSCC process has 6 controllable technical parameters shown by numerical simulation, the S/L interface location and S/L interface shape-factor are greatly relevant to 3 parameters of all, such as the cooling distance Lc, the mold exit temperature Tm, and the pulling
引文
1 岑星.节约能耗的上引法铜杆生产新工艺.电线电缆,1986:(5):50-52
    2 黄豪士.对电线电缆用导体和金属材料现状及发展的一些看法.电线电缆,1989;(4):2-4
    3 张咏生.电工圆铜杆的三种生产技术比较.电线电缆,1991;(1);34-35
    4 镰田长生,综性結晶無酸素銅(LC-OFC)开发畫期音响效果.技术,1983;37(10):182-189
    5 毛协民.凝固组织形态对导电铜线材性能的影响.功能材料,1994;26(3):292
    6 铃木道夫.電材上絕緣材.技术,1993;47(5):59
    7 斋腾宏嗣.銅單晶导體连续开发.銅,1991:(13/14):4
    8 三它保彦.工业材料高纯度铜制造应用.日本金属学会会报,1992;31:267-276
    9 山崎裕之等.加熱鑄型式连续鑄造法制造溶着棒上向式连壳铸造.日本金属学会志,1993;57(2):190-194
    10 星川雄.放送局送出主力.日本音响学会志.1991;47(2):112-118
    11 Sawada K., Nakai Y.. Shiraishi H., Nakano T., Matsushita Y., et al. Development of a Continuous Casting Single Crystal Copper Conductor. Sumitomodenki.1987; 131:110-113
    12 Kurosaka A., Matsll K. T., et al. Fujkura Technical Review, 1992:51-57
    13 The Furukawa Electric Company. Dempa Digest, April 21.1986:7
    14 Shinohara M. Nakano K.. Yamasaki A., Shibata M. Copper Wire Proceeded by OCC Process. Furukawadenko Jiho, 1986; 79:105-112
    15 刘来宁.自粘性漆包线现状及展望.电线电缆,1998:20(3):2-9
    
    
    16 颜景和,王恩久.音响导电材料的研究现状.电线电缆,1992:13(2):15-17
    17 吴炯,沉官秋.电器材料及其应用.西安:陕西科学技术出版社,1983:38-43
    18 万传琨.电子行业用导电材料的研究现状.材料导报,1992:23-27
    19 赵祖德.铜及铜合金材料手册.北京:科学出版社,1993:3
    20 慰和闳木等.铜及铜合金.电线电缆,1993:5:13-17
    21 高陇桥.国外军用微波真空电子器件用关键材料.电子材料,1994:8:1-8
    22 Hardwick D.A.,et al.Metall.Trans.,1993;24A:27-34
    23 温宏权.自生复合高强度导电铜线材形成机理及制备技术研究.上海大学博士学位论文,1998
    24 陈家祥主编.连续铸钢手册.北京:冶金工业出版社,1991
    25 Perty C.J., Platik S.W. Light Metals, at AIME 1982 Meeting, 1982:837
    26 Dean R.J. Aluminum Technology'86, 1986:164
    27 Crouzet P.Y. Light Metal Age, 1975; 33(10): 17
    28 Odak M., Yongoys G. Light Metal Age, 1975; 33(10): 28
    29 Russel J.B. Nonferrous Wire Handbook, 1977; 1:71
    30 Wassel W.L., Annonl A. Wire J. Int., 1993; (8): 70-79
    31 M.麦克莱恩(著),陈石卿,陈荣章(译).向凝固高温材料.北京:航空工业出版社,1988:5
    32 Versnyder P. L., Shank M. E. Mater.Sci.Eng., 1970; (6): 213
    33 Northcott L. J. Inst. Met., 1939, 62:101
    34 W.库兹,P. R.萨姆(著),李新立(译).向凝固共晶材料.北京:冶金工业出版社,1989:164
    35 Erickson J. S.. et al. In: Sahm P. R.. Speidel M. O. ed. High Temperature Materials in Gas Turbines, Amsterdam: Elservier. 315
    36 李建国等.材料科学与进展,1991;6:461
    37 郭喜平,傅恒志.高温度梯度改进单晶高温合金的性能.材料研究学报,1995:9:213
    
    
    38 Lux G.. Haour, F.Mollard., 1984;33:1023
    39 Kiminamiu C.S.. Axmann W., Sahm P.R.J.Mater.Sci.Lett., 1989; 8:201-203
    40 Stanescu J., et al. 40th Annual Technical Meeting. Investment Casting Institute, Las Vagas, 1992; 29:1-13
    41 谢发勤等.材料科学与工艺,1996;4(3):102-106
    42 傅恒志,毛协民.液固相变中的接口形态选择.材料研究学报,1994;8:209
    43 大野笃美.加热铸型用连续铸造法.日本金属学会会报.1982;23(9):773
    44 Ohno.The Solidlfication of Metals, Japan, 1976
    45 大野笃美(著),邢建东(译).金属的凝固——理论,实践与应用.北京:冶金工业出版社,1986
    46 Ohno. UK Patent Application(19) GB(11) 2 132 925 A
    47 Ohno. The Continuous Casting Process With a Heated Mold-OCC Process. Bulletin of the Japan Inst. Metals, 1984:73
    48 多田弘一,大野笃美.加铸型式连续铸造法得Al-Cu合金铸块组织性質应用.轻金属,1992;42(6):321-326
    49 Ohno. Production of Single Crystal Materials by OCC Process. Sokeizai, 1986; 12:21-26
    50 Ohno. Continuous Casting of Single Crystal Ingots by the OCC Process. J. of Metals, 1986; 38(1):14-16
    51 大野笃美. Development of Advanced Materials by OCC Process. 轻金属,1989; 39:735-740
    52 大野笃美.OCC 开发里话.日本金属学会会报,1991:30(5):448-449
    53 McLean. Soda H., Sommervile I.D. -Mechanical Properties and Stru-ctures of Al-Cu Alloys Produced by Heated Mold Continuous Casting Method (OCC). J. of Metals, 1995; (4): 67-72
    54 范新会等.单晶连铸技术原理及试验研究.中国有色金属学报,1996;
    
    6(4):106
    55 范新会.单晶连铸技术研究.[西北工业大学博士学位论文],1997
    56 山崎裕之等.加热铸型式连续铸造法制造材性質应用.日本金属学会志,1994:58(9):1061
    57 泽田和夫,中井由弘等.连续单晶铜导体开发.日本金属学会会报,1988:27(5):388
    58 多田弘一,田岛至,大野笃美.上面开放水平加热铸型式连壳铸造法表面状态凝固组织及铸造速度影响.轻金属,1993:43(5):247-251
    59 多田弘一,大野笃美.回转加热铸型用带状铸块连壳铸造.轻金属,1991;41(6):406-411
    60 大野笃美,本保元次郎,高桥胜.Trial construction of a heat rotary mold continuous casting apparatus and structures of Znic strips produced by th apparatus. 日本金属学会志,1991;55(6):675-680
    61 Soda H.. Motoyasu G., Mclean A., Ohno A. Alloy Casting by the Horizontal Ohno Continuous Casting System. Cast Metals,, 1993; 16(2): 76-86
    62 Soda H., Chbchoub F., Lam W.H., et al. The Horizontal Ohno Continuous Casting Process: Process Variables and Their Effects On Casting Stability. Cast Metals, 1991; 4(1): 12-19
    63 Motoyasu G., Motegi T., Ohno A. Structures and Workability ofdirectionally Solidified Sn-Zn Alloy Ingots Obtained by a New Continuous Casting Process. J. Japan Inst. Metals, 1987; (12): 935
    64 Wang Y.H., Kim Y.J., Kou S. Thermal Measurement and Computer Modeling of Heat and Fluid Flow in Crystal Growth by OCC. J. of Crystal Growth, 1988; 91:50
    65 Ohno, et al. The OCC Process: A New Method For Near Net Shape Casting. Advanced Materials, pp161-168
    66 Segal. Metals and Materials, 1990; 6(7): 428-430
    
    
    67 Soda H., Chabchoub F. et al. Experimental Study of the Horizontal Ohno Continuous Casting System. Can. Metals _Ouart., 1992; 31(3): 231-239
    68 Chabchoub F.Can. Metals Quart., 1994; 23(1):73
    69 Kim Y.J., Kou S. An Experimental Study on Process Variables in Crystal Growth by OCC. Metallurgical Transactions A, 1988; 19A:1849
    70 Zeng X.C., Pehike R.D. AFS Transactions, 1985; 93:123
    71 Smart J.S., Smith A.A.. Phillips A.J. Trans. AIME, 1941; 143:272
    72 Zeng X.C., Pehike R.D. Numeral Simulation of Solification for a CopperBased Alloy Casting. Presented at the 1984 AFS Casting Congress
    73 Nakano K. Proceedings of the 3rd Decennial International Confer. on Solidification Processing, Sheffield, July, 1987:413-417
    74 Ohno, Motoyasu G. Proceedings of the 3rd Decennial International Confer. on Solidification Processing, Sheffield, July, 1987:418-422
    75 Finney J.D., Heak B.S. In: Proceedings of the 32nd Confer. on Decision and Control, San Antonol, Texass. 1993:3774-3776
    76 Ohno, et al. The Ohno Continuous Casting Process and Its Applications to Near Net Shape Casting. Proceedings, Casting of Near Net Shape Products, The Metallurgical Society, 1988:177-184
    77 Ohno. Producting of Advanced Materials by the Ohno Continuous Casting Process, Metallurgical Processes for the Year 2000 and Beyond, The Minerals, Metals and Materials Society, 1988:155-164
    78 Soda H., Motoyasu G.. Mclean A., Ohno A. The 2nd PRICM on Advanced Materials & Proceeding, 1995:4:43-45
    79 Ohno. A Personal Perspective on Ohno Continuous Casting. Proceedings of the 4th Decennial International Confer. On Solidification Processing, Sheffield, 97:17-20
    80 Soda H., Sinaman A.. et al. Continuously Cast Bismuth Wires and Their Characteristics. Proceedings of the 4th Decennial International Confer. on
    
    Solidification Processing. Sheffield. 1997:21-22
    81 Motoyasu G., Ohno A. Mechanical Properties and Structures of Al-Cu Alloys Produced by Heated Mold Continuous Casting Method(OCC). Keizoku, 1989; 39(1): 38-44
    82 Motoyasu G. Chiba Institute of Technology. [PhD. Thesis], Chiba-ken, Japan, 1991
    83 Motoyasu G., Ohno A., Motegi T. A New Continuous Casting Process for Mirror Surface Ingots. Imono.. 1987; 59(11): 670-675
    84 常国威.电渣感应连续向凝固技术与电流扰动对枝晶间距的影响.[北京科技大学博士学位论文],1999
    85 常国威,胡汉起等.铸铁电渣感应连续向凝固的试验研究.铸造,1999;(2):18-22
    86 许振明,李建国,傅恒志.连续铸造铜单晶的机械性能和电阻率.中国有色金属学报,1999;9(3):577-581
    87 许振明,李建国,傅恒志.连续铸造铜单晶的工艺参数匹配及对组织的影响.中国有色金属学报,1999;9(材料科学与工程辑):221-228
    88 许振明,李建国,傅恒志.连续铸造铜单晶的晶体取向和竞争生长.人工晶体学报,1999;28(2):188-193
    89 许振明,李建国,傅恒志.连续铸造铜单晶的工艺参数及性能.人工晶体学报,1998;27(3):281-286
    90 许振明等.铜单晶连铸技术的研究.第九届中国铸造学术会议论文集,1997:325
    91 许振明,李建国,傅恒志.连续铸造铜单晶的组织及性能.第六届全国青年材料研讨会论文.材料工程(增刊),1998:1-3
    92 Soda H., Melean G. J. of Material Science, 1995; 30:5438
    93 Kim Y.J.. Lan C.W.. Kou S. Model of Cast and Weld. Proc. Confer. the Minerals, Metals & Materials Soc.. 1988:287-292
    94 Kim Y.J.. Lan C.W.. Kou S. Model of Cast and Weld. Giamei A.F.,
    
    Abbaschian G.J. ed. Proc. Confer.. The Minerals, Metals & Materials Soc., 1988:447
    95 Kim Y.J.. Lan C.W., Kou S. Heat Transfer and Fluid Flow in Directional Solidification. Proceedings of 4th Inter.Confer.On Modeling of Casting and Welding Processes. The Minerals, Metals and Materials Society, 1988:445-457
    96 Liu J.C., Hwang J.D., Su K.C. Solidification Analysis of Crystal Growth in Ohno Continuous Casting Process. Computer Aided Innovation of New Materials, North-Holland: Elsevier Science Publishers B.V., 1991
    97 Lee Y.-J., Jo H.-H., Kim M.-H. J. of Korean Inst. Met. & Mater(Kor.) 1993; 31(7): 906
    98 黎沃光,余业球等.锡铅合金的热型铸造.铸造技术,1997;12(5):42
    99 范新会,王鑫等.单晶连铸过程温度场数值模拟(Ⅰ)——温度场的物理模型及数学模型.西安工业学院学报,1998;18(1):46-51
    100 范新会,王鑫等.单晶连铸过程温度场数值模拟(Ⅱ)——数值计算程序及计算结果分析.西安工业学院学报,1998;18(3):227-231
    101 Flemings M.C. In: Proceedings of F.Weinberg International Symposium on Solidification Proceeding, Weiberg, 1991:173
    102 何国,李建国等.接口动力学对平接口稳性的影响.材料研究学报,1995;9:1-7
    103 蔡英文,许振明,李建国,傅恒志.向凝固接口速率对牵引速率的响应.人工晶体学报,1998;27(2):141-145
    104 Kurz W.,Fisher D.J.(著),毛协民等(译).凝固原理.西安:西北工业大学出版社,1987:95
    105 胡汉起.金属凝固原理.北京:北京科技大学,1991:168
    106 Hertaberg R. W.. Kraft R. W. Trans. AIME. 1963: 227:580
    107 Lemkey F. D.. Hertzberg R. W., Ford J.A.. Trans. AIME, 1965; 233:334
    108 Jankson K.A.. Hunt J.D. Trans. Metall.. AIME, 1966, 236:843
    109 Sato T., Sayama Y. J. Crystal Growth, 1974: 22:259
    
    
    110 Fisher D. J.. Kurz W. Acta Metall.. 1980:28 : 777
    111 傅恒志,毛协民.液固相变中的接口形态选择.材料研究学报,1994;8:209
    112 Wen Hongquan. Peng Liming. Directional Solidification of Cu-Cr Alloy: Rare Metals, 1998; 17(2): 23
    113 Wen Hongquan. Peng Liming, et al. A New Material for the Contact Cable Part Ⅰ: Feasibility Study. Hawaii: the 3nt Pacific Rim International Conference on Advanced Materials and Processing, 1998:137
    114 温宏权,彭立明等.非平面棒状共晶的生长模型.中国材料研究学会编.’98中国材料研讨会论文集.1998:442
    115 彭立明,温宏权,毛协民等.自生复合Cu-0.8Cr合金向凝固过程研究.材料工程,1999:(9):25-30
    116 彭立明,毛协民.凝固工艺对自生复合Cu-Cr合金电车线综合性能的影响.功能材料,2000;10
    117 Funk G., Boehmer J.R., Fet t F. N. International Journal of Computer Application in Technology, 1994; 35(7): 214-228
    118 张克福,毛协民,傅恒志.三维铸件向凝固过程的模拟Ⅰ、Ⅱ.航空学报,1993;B14:72
    119 袁浩扬.[华中理工大学博士学位论文],p66
    120 大中逸雄(着),许云祥(译).计算机传热凝固解析入门:铸造过程中的应用北京:机械工业出版社.P455-480
    121 S.V.帕坦卡(著),张政(译).传热与流体流动的数值计算.北京:科学出版社,1984
    122 Wang Y.H., Kim Y.J., Kou S. Thermal Measurement and Computer Modeling of Heat and Fluid Flow in Crystal Growth by OCC. J. of Crystal Growth, 1988: 91:50
    123 Sabersky R.H.. Acosta A. J.. Hauptmann E. G. Fluid Flow (2nd edition). London: Collier Macmillan Pr.
    124 G.H.盖格(著),俞景禄等(译).冶金中的传热传质现象.北京:冶金工业
    
    出版社,1981:247-270
    125 陶文铨著.数值传热学.西安:西安交通大学出版社,1995:23~110
    126 费祥麟主编.高等流动力学.西安:西安交通大学出版社,1995:23-110
    127 查金荣,陈家镛著.传递过程原理及应用.北京:冶金工业出版社,1997:100-132
    128 郭宽良.计算传热学.合肥:中国科技大学出版社,1988:33-83
    129 蔡开科主编.连续铸钢.北京:科学出版社,1990
    130 Crank J. Free and Moving Boundary Problems, Oxford: Clarendon Press, 1984:217-283
    131 李宝宽著.炼钢中的计算流体力学.北京:冶金工业出版社,1998:139-155
    132 GosmanA. D., Pun W.M.. et al. Heat and Mass Transfer in Recirculating Flows. London: Academic Press. 1969:18-115
    133 石教英,蔡文立著.科学计算可视化算法与系统.北京:科学出版社,1996
    134 美国金属学会主编.金属手册—性能与选择:有色合金及纯金属(第九版.北京:机械工业出版社,1994:923
    135 下地光雄(日)著,郭淦钦译.液态金属.北京:科学出版社,1987
    136 谭真,郭广文编著.工程合金热物性.北京:冶金工业出版社,1994
    137 北京大学数学力学系数学业概率统计组编.正交设计——种安排多因素试验的数学方法.北京:人民教育出版社,1976
    138 马希文编.正交设计的数学理论.北京:人民教育出版社,1981
    139 北京大学数学力学系概率统计组编.正交设计法.北京:石油化学工业出版社,1976
    140 Wang Y.H., Kim Y.J.. Kou S. Thermal Measurement and Computer Modeling of Heat and Fluid Flow in Crystal Growth by OCC. J. of Crystal Growth, 1988; 91:50
    141 [日]常川雅功等.各种冷却因素对铝连续铸造冷却特性的影响,铝加工技术,1997:1:6-11
    142 M.N.奥齐西克著.俞昌铭译.热传导.北京:教育出版社,1983
    
    
    143 董珍译.连铸喷嘴的喷雾物性和传热系数.冶金译丛,1997:2:21-24
    144 李午,余其来.连铸二冷区铸坯表面温度的连铸测量.冶金自动化,1993;17(3):17-19
    145 文光华,迟景灏,黄云飞.连铸机二冷喷嘴冷态和热态特性的实验研究.钢铁研究,1998;5:3-6
    146 俞忠原.实验设计与资料分析.哈尔滨:哈尔滨船舶工程学院出版社,1991
    147 王耀南着.智能控制系统.长沙:湖南大学出版社,1996
    148 李士勇编.模糊控制·神经控制·智能控制论.哈尔滨:哈尔滨工业大学出版社,1996
    149 McCalloch W. S.. Pitts W. A Logic Calculus of The Ideal Imminent in Nervous Activity. Bulletin of Ath. Biophys., 1943; 5:115-133
    150 Hebb D. D. The Organization of Behavior. New York: John Wiley & Sons, 1949
    151 Rosenblatt R. Principles of Neurodynamics. New York: Spartan Book, 1959
    152 Widrow B., Hoff M. E. Adaptive Switching Circuits 1960 Ire Wesco. Conv. Record, Part 4, 1960, 8:96-104
    153 Rumelhart D. E., McClelland J. L. Parallel Distributed Processing. MIT Press, 1986
    154 Hopfield J.J., Tank D. W. Computing with Neural Circuits: A Model. Science, 1986: 233(8): 625-633
    155 Kohonen T. Self-Organization & Associative Memory, zad Ed. New York: Springer-Verlag, 1988.
    156 焦李成.神经网络系统理论.西安:西安电子科技大学出版社,1990
    157 Kosko B. Neural Networks & Fuzzy Systems, Englewood, Cliffs: Prentice, Hall. 1992
    158 王伟等.连铸过程的建模与控制.控制与决策,1997:12(增刊):385-390
    159 倪维斗,徐向东著.热动力系统建模与控制的若干问题.北京:科学出版社,1996
    
    
    160 胡守仁主编.神经网络应用技术.长沙:国防科技大学出版社,1993:23
    161 楼顺天,施 阳编著,基于Matlab的系统分析与设计—神经网络.西安:西安电子科技大学出版社,1998
    162 孟宪蔷主编.控制工程基础.北京:航空工业出版社,1993
    163 胡家耀,吴植翘,宋寿山.模糊控制在退火炉燃烧过程控制中的应用.自动化学报,1989:15(6):501-507
    164 华晓鸣.电弧冶炼炉Fuzzy控制系统.化工自动化及仪表,1988:15(5):18-22
    165 Sbarbaro D.. et al. Neural Control of a Steel Rolling Mill. IEEE Control System Magazine, 1993;13(4): 69-75
    166 冯索夫.智能开头控制器在温度控制中的应用.冶金自动化,1989;(1):62-63
    167 姚锡凡等.低压铸造液面加压系统的自适应模糊与积分控制.特种铸造及有色合金,1998;增刊:25-33
    168 任天庆等.CLP型低压铸造液面加压控制系统.特种铸造及有色合金,1987;(2):15-20
    169 韩成年.DJY-1型低压铸造液面加压控制系统.铸造机械,1984;(4):2-6
    170 任天庆,林海峰.微处理机控制低压铸造液面加压控制系统.铸造机械,1985;(5):19-24
    171 潘卫.利用人工神经网络技术实现智能控制.计算技术与自动化,1993;12(2):7-12
    172 任天庆.铸造设备自动控制系统设计.北京:国防工业出版社,1990
    173 清华大学编写组.Microsoft Windows3.1程序员参考大全.北京:清华大学出版社,1993

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700