大型铝合金主传动箱箱体低压铸造成形过程的数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低压铸造是通过密封容器中的气体压力使金属液沿着升液管自下而上的填充铸件型腔,并且在铸件内的金属液凝固过程中,一直保持着金属液压力的铸造方法。这种工艺方法具有表面光洁,易于加工,节约造型材料,减少污染,工序简单,易实现机械化和自动化等优点。但是金属型低压铸造因为金属的散热系数高,凝固顺序不容易控制。
     本课题研究的铸件为特高压变电站用的大型铝合金传动箱箱体,成品件重量为270kg,且壁厚不均,薄壁15mm,厚壁260mm,加增大了设计和制造难度。首先对铸件进行工艺性分析,确了铸件的分型面,并设计了一套包括直浇道、内浇道、横浇道的浇注系统,在此基础上进行了低压铸造充形及凝固过程的数值模拟。通过数值模拟,确最优工艺参数,充型速度0.5m/s,浇注温度700℃,模具温度220℃。
     利用计算机数值模拟技术结果,得到了铸件各部位凝固的先后顺序趋势,通过在某些部位添加和调整冷铁,再反复进行模拟,根据模拟缺陷结果,优化了传动箱箱体铸件凝固过程的温度场;通过实际小批量生产检验,产品合格率达到90%,证明了模拟结果的正确性。计算机模拟技术应用到实际生产中,可以优化生产工艺,降低生产成本和生产风险,以最小的投入达到最大化的收益,提高市场竞争力。
Molten metal is filling up the casting along the lifting tube from down to up under the gas pressure is called low pressure die casting. The molten metal is always under the gas pressure when it is solidification. This casting method is predominant than other methods. In this study, Low Pressure Casting Metal is used, under this improved casting method, the casting have high surface finish quality easy to machine; Use less molding materials, make less pollution. Manufacturing procedure is easy to achieve mechanization and automation. But the metal casting is not widely used because of the high coefficient of heat transfer of metal, hard to achieve the directional solidification.
     The casting in this study is a part of the UHV substation called transmission case made by aluminum. The weight of the casting is 270 kilograms. The wall thickness is 15 millimeter and 260 millimeter, so it hard to design and production. Based on the analysis and comparison on the mounding technique and structures technology, a transmission case is designed. Based on the gating system including sprue, cross gate and ingate, numerical simulation is used for fixing the technological parameters. The technological parameters are speed of mold-filling at 0.5m/s, pouring temperature is 700℃and mold temperature is 220℃.
     According to the result of computerized numerical simulation, analysed the feature of solidification, to design the cooling system to optimize the solidification process of the temperature field, reduce the casting defect. The result is used in the production. The casting was checked and accepted, proved the correct parameters. numerical simulation used into actual production, optimized the production process, reduced production costs and production risks, with a minimum investment to the maximize revenue, increase the market competitiveness.
引文
[1]罗庚生,张志忠,吕有纲等.低压铸造.北京:国防工业出版社,1989.
    [2]W.Wei. Simulation of an automobile wheel casting process. Proceedings of 21st World Foundry Congress,1995:5-16.
    [3]董秀琦,王冬,王承志等.低压及差压铸造理论与实践.兵器工业出版社,1995.
    [4]F.Chiesa. Solidification modeling of cast, aluminum wheels modern casting,1991,12:268-284.
    [5]大西修嗣(日本),用于轻型化铝轮毂生产的新低压铸造技术.铸造,1994,(8):14-18.
    [6]殷庆文.型低压铸造液面加压系统的研制及应用.铸造,1995,(11):21-25.
    [7]R.A.Smith R, Rs.A.Wilkins. Low pressure sand casting. Current Experience with a new Proeess AFS Transactions,1986,94(5):8-26.
    [8]徐启昌,井俊起,于景泰.DK-1低压铸造浇注程序控制器.铸造机械,1983,(5):116-142.
    [9]董秀琦.关于低压及差压铸造发展方向的探讨.铸造技术,1999,(5):14-15.
    [10]张鹏飞.低压铸造轮毅.特种铸造及有色合金,1995,(6):5-10.
    [11]D.John Rutherford. ZA Alloy Die casting. ZA Casting Alloys Conference Proceedings. Michigan,1985:33-36.
    [12]唐剑,黄平,牟大强等.铝合金熔铸技术的现状及发展趋势.铝加工,2001,24(4):5-10.
    [13]李英男.大型铝合金铸件低压铸造.低压铸造国外译文集,1978.
    [14]耿鑫明.铝合金金属型铸造.北京:国防工业出版社,1976.
    [15]闻星火.低压铸造铝合金模具温度场的测试.特种铸造及有色合金,1992,(4):29-32.
    [16]张绍兴,张鹏飞.特种铸造及有色合金,1992,(6):18-20.
    [17]邱庆荣,孙宝德,周尧和.铝合金铸件在汽车上的应用.铸造,1998,(1):469-473.
    [18]陈立亮.低压铸造三维流动场数值模拟.现代铸铁,1997,(2):110-123.
    [19]J.K.Choi. Application of mold filling and solidification simulation to aluminum wheel castings. Proceedings of the Steward Foundry Congress Beijing, China,1995:13-27.
    [20]陈自强.红外线在熔炼铝合金方面应用的研究.铸造,1985,(1):52-55.
    [21]孙文德.特种铸造.浙江大学出版社,1990:52-55.
    [22]吴玉娟,侯峻岭,于宝义,于海朋.高压开关罐体低压铸造凝固数值模拟研究.铸造,2004(9):(EI收录).
    [23]于宝义, 吴玉娟, 侯峻岭, 于海朋, 袁晓光, 李荣德. 高压开关罐体低压铸造充型数值模拟研究. 第四届中国国际压铸会议论文集,2004:239-245.
    [24]祝汉良,郭景杰,贾均.Ti细化A357合金中的析出相.金属学报,2000,36(1):17-20.
    [25]黄斌,陈其善,石伯明.铸件缩孔形成过程的数值模拟.热加工工艺,1994(2):38-40.
    [26]郭庆.铸件凝固过程的温度场模拟及缩孔、变形和热裂缺陷预测:(硕十学位论文).河北:河北工业大学,2002.
    [27]刘强.铸件缩孔缩松缺陷预测及缺陷分析系统的设计与开发: (硕十学位论文).四川:四川大学,2002.
    [28]Y.Ohtskua. Application of a computer Simulation System to Aluminum Permanent Mold Castings. AFS Trans,1982(90):635-646.
    [29]闻星火.低压铸造充型与凝固过程数值研究:(博士学位论文).北京:清华大学,1997.
    [30]Nagasaka Y. three-Dimensional Computer simulation of Casting Processes. A FS Trans,1989: 553-564.
    [31]Lee Y W. The Role of solids Velocity in the Feeding behavior of AI-7Si-0.3Mg Alloy Plate Castings. Materials Science & Engineering A,1990,124(6):233-24.
    [32]吴十平,于彦东,王丽萍.提高充型过程数值模拟运算速度的动态超松弛迭代算法.中国有色金属学报,2003,13(2):1219-1222.
    [33]李杰,曾怡丹.重力金属型铸造计算机辅助设计.中国铸造装备与技术,2004,38(3):55-58.
    [34]熊守美,苏仕方.镁合金成形技术研究进展.铸造,2005,54(1):20-23.
    [35]罗庚生.低压铸造.北京:国防工业出版社,1989.
    [36]徐宏.铸造CAE集成技术研究:(博士学位论文).北京:北京科技大学,2001.
    [37]陈立亮.低压铸造流动与传热藕合计算的研究.特种铸造与有色合金,2002压铸刊:173-175.
    [38]白月龙.低压铸造充型过程数值模拟研究:(硕士学位论文).太原:华北工学院,2002.
    [39]徐宏,褚忠,侯华等.低压铸造工艺充型模拟优化技术.汽车工艺与材料,2002,(10):12-28.
    [40]孙立斌.考虑对流和辐射的铸件凝固过程研究铸造,2000,49(7):413-417.
    [41]柳百成.铸造工程的模拟仿真与质量控制.北京:机械工业出版社,2001.
    [42]徐宏,褚忠,侯华等.低压铸造工艺充型模拟优化技术.汽车工艺与材料,2002(10):12-28.
    [43]陈立亮.低压铸造连续生产数值模拟及其质量控制:(博士学位论文).武汉:华中理工大学,1997.
    [44]杨全.金属凝固与铸造过程数值模拟.浙江:浙江大学出版社,1996.
    [45]大中逸雄(日)著,许云祥译.计算机传热凝固解析入门-铸造过程中的应用.北京:机械工业出版社,1988.
    [46]罗继相.间接挤压铸造模具设计特点及研究.特种铸造及有色合金,2002,22(1):38-40.
    [47]董秀琦.低压与差压铸造的理论与实践.北京:机械工业出版社,2003.
    [48]武建国,屈华昌.铸造模具设计.北京:机械工业出版社,1994.
    [49]AnZai K. A Casting CAE System with Flow and Solidification. Proceedings of Modeling of Casting and Solidification Processes,1995:279-286.
    [50]侯峻岭,许渤.铝合金导体铸件低压铸造模具设计与工艺.特种铸造及有色合金,2007,27(11):856-857.
    [51]Hattel J P, Anderson S, Henson P.Modeling of Thermal Induced Stresses in Die Casting Dies [C]. Transaction of 17th International Die Casting Congress and Exposition,1993.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700