Ga/In与稀土Ce对Ag30CuZnSn钎料显微组织及钎焊接头性能影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
含镉银钎料的熔点适中,工艺性好,并具有良好的强度、韧性、导电性、导热性和抗腐蚀性而广泛应用于航空航天、家电、电子电器、五金等领域。但镉是有毒元素,世界各国纷纷出台相关法规禁止含镉银钎料的应用。基于材料成本的考虑,环保型无镉、低银钎料的研发成为国内外诸多科研院所和诸多研究者的重要研究课题。
     本文研究发现,适量地添加Ga/In元素,银钎料的固、液相线温度能显著降低。添加3.0wt.%Ga可使Ag30CuZnSn银钎料的固相线降低约52℃,液相线降低约68℃;添加约2.0wt.%In可使Ag30CuZnSn银钎料的固相线降低约23℃,液相线则可降低约54℃。单独添加合金元素Ga时,Ag30CuZnSn银钎料的润湿铺展面积随着Ga含量的增加而增加,Ga的添加量超过3.0wt.%后,钎料的润湿铺展性能变化较为平缓。而单独添加In时,Ag30CuZnSn银钎料的铺展面积也随着In添加量的增加而显著改善。添加In为1.5 wt.%~2.0wt.%时,Ag30CuZnSn银钎料的润湿铺展性能已经和传统Ag40CuZnCd含镉银钎料相当。添加少量的Ga、In元素,能使Ag30CuZnSn银钎料在紫铜板、黄铜板上的铺展面积分别提高70%、108%、71%、146%。研究发现,Ag30CuZnSn银钎料中单独添加Ga元素时,钎焊接头的抗拉强度随着银钎料中Ga含量的增加逐渐提高,添加Ga为3.0wt.%时,钎焊接头抗拉强度达到最大值;当Ga添加量进一步增加,钎焊接头抗拉强度趋于稳定。含3.0wt.%Ga的Ag30CuZnSn银钎料的抗拉强度(325MPa)比不含Ga的银钎料提高75MPa,实验结果表明,在银钎料中添加Ga能显著改善钎焊接头的力学性能。银钎料中单独添加In元素时,钎焊接头的抗拉强度亦随着银钎料中In含量的增加逐渐提高,添加In含量在1.0wt.%范围内,强度值几乎呈直线增长,In含量在1.0 wt.%~1.5wt.%范围内,钎焊接头的抗拉强度呈现抛物线变化趋势,添加In超过1.5wt.%以后,接头强度的变化趋于平缓。
     研究发现,在Ag30CuZnSn钎料中添加Ga/In元素可以显著提高其铺展性能和钎焊接头抗拉强度的根源是银钎料显微组织的改善。Ga添加量的增加,基体组织由针状组织逐渐转变为规则的细小晶粒组织。当Ga添加量为3.0wt.%时,针状组织被细小的类似蠕虫状的组织取代,基体组织也变得更加细小、均匀;Ga添加量超过3.0wt.%时,基体组织明显粗化。研究发现,添加合金元素In,同样会使银钎料组织显著改变,但是含In的银钎料显微组织与添加Ga的不同,组织分布也缺乏规律性。分析发现,In添加量为1.0wt.%时,基体中有均匀的初晶晶粒形成,另外伴生有小颗粒状和微细条状的共晶组织出现。当In添加量进一步增加,组织明显变得粗大,银钎料共晶组织之间的差别较为明显。分析分别添加Ga、In合金元素的银钎料的SEM组织,结合能谱分析结果可以看出,Ga/In均能均匀地分布于Ag30CuZnSn银钎料中。Ga的添加量为3.0wt.%时,基体组织主要由α-Ag固溶体和α-Cu固溶体组成,纵横交错的固溶体中主干结构为α-Ag构成,在纵横交错的蠕虫状主干的固溶体之间分布的是α-Cu固溶体,性能优良的Ga-Ag与Ga-Cu固溶体填充于主干结构内部。进一步分析钎缝显微组织和断口形貌,发现钎缝组织致密、规则,银钎料钎焊接头的断裂形式为韧性断裂。
     研究发现,采用复合添加的方式添加Ga/In元素,可进一步改善Ag30CuZnSn银钎料的性能。在添加3.0wt.%Ga的基础上添加1.0wt.%的In,含Ga银钎料的固相线温度从638℃下降到621℃,固相线温度大约下降了17℃,液相线温度从701℃下降到676℃,液相线温度则大约下降了25℃。In添加量增加致使含Ga银钎料的固液相线温度进一步下降,液相线温度降幅增大,固相线温度降幅减小,而固液相线温度变化区间也逐渐减小。当In的添加量为3.0wt.%时,固、液相线温度降幅趋于稳定。实验结果表明,含Ga-In的银钎料铺展性能均优于单独添加Ga或In元素的银钎料,尤其是Ag30CuZnSn-3.0Ga-2.0In和Ag30CuZnSn-3.0Ga-2.5In银钎料的铺展面积较为规则,实验试样表面光亮、边缘整齐,形状近似为圆形。研究发现,在Ag30CuZnSn银钎料中单独添加Ga、In元素时,可以分别提高银钎料在紫铜、黄铜上的铺展性能。同时添加Ga/In元素时,仍然可显著地提高银钎料在紫铜、黄铜上的铺展性能,但是银钎料在黄铜上的铺展性能更好一些。深入研究结果发现,添加稀土元素Ce以后还可以进一步改善含Ga与In的银钎料在紫铜、黄铜上的铺展性能,但是仍然是银钎料在黄铜上的铺展性能更好,铺展面积更大。
     研究发现,将Ga元素控制在3.0wt.%,改变In的添加量,发现AgCuZnSn-3Ga-2In钎缝具有最佳的力学性能。同时添加Ga和In时,银钎料的钎焊接头强度高于单独添加Ga或In的银钎料钎焊接头强度。理论分析表明,在添加Ga为3.0wt.%的基础上,添加少量的In,基体组织变得更加均匀,呈现“花纹”状共晶组织。对钎焊接头拉伸断口的分析研究发现,AgCuZnSn-3Ga-2In钎焊接头断口具备明显韧性断裂特征,这是由于Ga/In元素在银钎料基体中分布均匀,没有偏析现象,且AgCuZnSn-xGa-yIn钎料基体组织呈现明显的“骨架”状特征。由于Ag30CuZnSn-Ga-In中含有Sn、Ga和In,形成的部分Ga-Ag固溶体和Ga-Cu固溶体弥散分布在钎缝组织的主干网络,故而可以在降低钎料熔点、提高铺展性能的基础上,抑制了Cu6Sn5金属间化合物的产生,因此可以保证钎焊接头具有较高的强度和塑性。在添加Ga/In元素后显著地降低银钎料固溶体组织的熔点,另由于银钎料基体组织生成的固溶体相的弥散作用,因此能够保证银钎料的强度和塑性。
     研究发现,向含Ga和In的银钎料中加入微量稀土元素Ce具有进一步改善其性能的作用。研究结果表明,添加稀土Ce具有强化晶界、细化晶粒的作用,在含Ga/In银钎料中添加稀土元素Ce,因为稀土Ce在银钎料中不固溶,在银钎料基体中以稀土相的形式存在,并在晶界产生富集现象,充当“异相形核”质点的作用,因而Ce对银钎料的铺展性能和接头力学性能仍然有进一步的改善作用,但是对银钎料的熔化特性几乎没有影响。铺展实验和钎缝抗拉强度实验结果表明,含Ga和In的银钎料中稀土元素Ce的最佳添加量应该控制在0.03wt.%~0.1wt.%范围。
Due to the moderate melting point, excellent properties (processing, intensity, toughness, conductivity, corrosion-resistance) of the silver filler metal with cadmium, it has been used in aerospace field, household appliance and so on. However, for the toxicity of cadmium, countries of the world has banned the materials with cadmium using in household appliance, moreover, considering the cost of materials, cadmium-free silver filler metal with lower Ag-containing has been focused in foreign and domestic brazing field.
     Effects of gallium and indium on melting property were illustrated in this thesis. The results indicate that 3.0wt.% Ga addition can decrease the solidus of Ag30CuZnSn filler metals by 52℃, and the liquidus by 68℃, moreover, 2.0wt.% In addition into Ag30CuZnSn filler metals can decrease the solidus by 23℃and the liquidus by 54℃approximately. When filler metals with gallium and indium spread on copper and brass, spreadability were gradually improved with the increasing of gallium and indium content. When the In was added into the silver filler metals, the more content of In, the better spreadability. When the content of In is up to 1.5wt.%~2.0wt.%, the spreading area is equal to the traditional silver filler metals containing Cd. With the addition of small amount of Ga/In, the spreading areas can be increased by 70%、108%、71%、146% on copper and brass plates respectively. When Ga is added into silver filler metals, the tensile strength of the brazed joints is improved with the increasing of Ga content, and will remain stable when the content of Ga is up to 3.0wt.%, whose tensile strength is 325Mpa, and 75Mpa larger than Ag30CuZnSn without Ga containing. Therefore adding Ga into silver filler metals can improve the mechanical properties of the joints. Effect of In on the property of the silver filler metals is also studied, the tensile strength of the joints is improved with the increasing of In content, and the value shows a linearly development when the In content is within 1.0wt.%. The tensile strength shows a parabolic trend with a further increasing in In content (1.0 wt.%~1.5wt.%), when the In content exceeds 1.5wt.%, the variation tendency of the joint strength tends to stability.
     The microstructure of Ag30CuZnSn, which was improved by Ga addition, is similar to the matrix of the Ag56CuZnSn filler metals with high Ag content. With the addition of Ga, the acicular structure turned into the fine grains gradually. The acicular phase was disappeared and the wormlike microstructure was found when the Ga content is 3.0wt.%. However, continue to increase the Ga content coarsening the grains of the brazing alloy. The microstructure was also changed by In addition. The fine primary grain and micro-stripy or granular eutectic structure were found in the 1.0wt.% In contenting alloy. The grains coarsened significantly and the difference between the eutectic phases was obvious with the increasing content of In. From the analysis results by SEM and EDS, Ga and In distribute uniformly in the AgCuZn alloy, and the mainly phase are solid solutionα-Ag andα-Cu in the Ag30CuZnSn-3wt.%Ga alloy.α-Cu distributed between the wormlike backboneα-Ag structure, and the Ga-Ag,Ga-Cu solid solution was filled in the wormlike backbone. The characteristics of fracture morphology of the brazing seam were also analyzed. It is found that the microstructure of the brazing seam is dense and regular and the fracture mechanism of the brazing seam is the toughness fracture.
     In was also added into the alloy on the basis of 3.0wt.% Ga adopted. With the addition of 0.5wt% In, the solidus temperature of the alloy was decreased by about 17°C from 638°C to 621°C , and the liquidus temperature was decreased by 25℃from 701℃to 676℃. With the increasing of In content, both of the solidus temperature and liqudus temperature decrease obviously, and effect of the liquidus was larger than that of solidus. The melting range (liquidus temperature minus solidus temperature) was also reduced. When the content of In is around 3.0wt.%, the decrease magnitudes of the liquidus and solidus were diminished and come to stabilization. It can be found from the results that the spread-ability of the alloy was improved with the addition of Ga and In, the spreading characterization of Ag30CuZnSn-3.0Ga-2.0In and Ag30CuZnSn-3.0Ga-2.5In filler metals is ideal, the shape of spreading filler metals is similar roundness with bright and trim brim. The results indicated that single addition of Ga or In in Ag30CuZn filler metal could improve the spreading performance on copper and brass. Simultaneous addition of Ga and In could improve the spreading behavior as before, and the performance on brass is relatively superior to that on copper. Deeply study showed that with additive minor Ce, the spreading performance could further improved, as the same, the spreading area on brass is larger.
     On the basis of 3.0wt.% Ga, adding a small amount of In, the microstructures of silver filler metals can be refined further, and the“stripe”shape eutectic microstructures appeared in the filler metal matrix. Based on analysis of microstructures of silver filler metals, the optimal In content is in the range of 1.0wt.%~1.5wt.% for Ag30CuZnSn-3Ga-xIn filler metals. Observing from the tensile fracture of the butt joint brazed with Ag30CuZnSn-3Ga-2In, it can be found that the ductile fracture characteristics, when the content of In exceeds 2.0wt.%, the dissociation morphology fracture will be emerged which have little influence on the tensile property of the brazed joints. When studying the microstructure of the Ag30CuZn-Sn3Ga-2In filler metals by way of SEM, it is found that the elements of Ga and In distribute uniformly, and there are no segregation, and the significant‘framework’structure which can be found in the matrix. Due to the existence of Sn, Ga and In in Ag30CuZnSnGaIn filler metals, the melting point and spreading properties can be improved, and the formation of Cu6Sn5 can be exhibited too, thus the strengthen and plastic properties of joints brazed with silver filler metals can be protected obviously. Therefore, the addition of Sn, Ga and In can decrease the melting points significantly, moreover, since the dispersive distribution of solid solutions, the properties of joints with silver filler metals can also be improved.
     In the investigation, the addition of rare earth Ce can further improve the properties of silver filler filler metals bearing In and Ga. Based on the experimental results, due to the grain refinement and grain boundary strengthening of rare earth Ce, adding minor amount of rare earth Ce to Ag30CuZnSn-3Ga-2In filler metals can improve the spreading and mechanical properties by an effective way, and has little effect on the melting characterization of original silver filler metals, by analyzing the spreading areas and tensile strengthening synthetically, it is found that the greatest improvement to the properties of Ag30CuZnSn-3.0Ga-2.0In filler metals is obtained with around 0.03wt.%~0.1wt.%. Rare earth Ce plays two roles in the silver filler metals, fine-grain strengthening and grain-boundary strengthening. When the rare earth Ce is added into silver filler metals, it is found that the rare earth Ce does not dissolve into Ag based solid solution and Cu based solid solution, but can form rare earth phase in the filler metal matrix. In addition,“enrichment phenomena”could be confirmed for rare earth Ce in the grain boundary.
引文
[1] Yang M X, Lin T S, He P, et al. In situ synthesis of TiB whisker reinforcement in the joints of Al_2O_3/TC4 during brazing. Materials Science and Engineering A, 2011, 528(9): 3520~3525.
    [2] Wang Z P, Huang J H, Zhang J H, et al. Reactive composite brazing of Cf/SiC composites to Ti alloy with (Ag-6Al)+Ti+C composite filler materials. Materials Science and Technology, 2011, 27(1): 49~52.
    [3] Grusd A. Connecting to lead-free solders. Circuits Assembly, 1999, (8): 32~38.
    [4] Vianco P T, Rejent J A. Properties of ternary Sn-Ag-Bi solder alloys: partⅡ: Wettability and mechanical properties analyses. Journal of Electronic Materials, 1999, 29(10): 11~38.
    [5] Wei Y Y, Duh J G. Effect of thermal aging on (Sn-Ag, Sn-Ag-Zn)/Pt-Ag, Cu/Al_2O_3 Solder in surface mount solder joints. Materials in electronics, 1998, (9): 373~381.
    [6] Li G Y, Chan Y C. Diffusion and intermetallics formation between Pd/Ag metallization and Sn/Pd/Ag solder in surface mount solder joints. Materials Science and Engineering, 1999, (7): 116~126.
    [7] Official Journal of the European Union. Directive 2002/96/EC of the european parliament and of the council of 27 January 2003. The Restriction of the use of certain Hazardous Substances in electrical and electronic equipment, 2003, L37: 19-23.
    [8]中华人民共和国信息产业部、国家发展和改革委员会、商务部、海关总署、国家工商行政管理总局、国家质量监督检验检疫总局、国家环境保护总局(第39号)令.电子信息产品污染控制管理办法. 2006-02-28.
    [9] Weise W, Wolfgang W, Voelcker A, et al. Cadmium-free silver alloy brazing solder, method of using said Solder, and metal articles brazed with said solder. United States: US 5531962, 1996-07-02.
    [10]张启运,庄鸿寿.钎焊手册.北京:机械工业出版社, 2008.
    [11]查尔斯.辛格,E.J.霍姆亚德,A.R.霍尔.技术史(第一卷).上海:上海科技教育出版社,2004.
    [12]薛松柏,钱乙余.我国硬钎料生产中的质量问题及对策(上).焊接, 1997, (5): 2~5.
    [13]金普军,秦颖,胡雅丽,等.湖北九连墩楚墓出土青铜器钎焊材料的分析.焊接学报,2007, 28(11):37-40.
    [14] Wingert P C, Leung C H. The development of silver-based cadmium-free contact materials. Journal of Alloys and Compounds. 2004, 72(3): 148~157.
    [15]王成刚,赵西城,彭济时,等.银基材料的应用现状及发展趋势.有色金属, 2002, 54(7): 98~101.
    [16]张玉奎.银基钎料发展概况.有色金属与稀土应用, 1999, (1): 1~6.
    [17]蒋鹤麟,祁更新,夏文华,等.银合金及银复合材料的技术发展. 2000, 21(3): 56~59.
    [18]邓键.我国钎焊材料生产现状与发展思路.机械工人(热加工), 2003, (6): 34~36.
    [19]汪厚泰.空调机中高银钎料的替代实验.制冷学报, 1995, (3): 51~54.
    [20]翟宗仁.关于代银、镉中温钎料的概述.电子工艺技术, 1985, (9): 2~9.
    [21] Li Z R, Cao J, Liu B, et al. Effect of La content on microstructure evolution of 20Ag-Cu-Zn-Sn-P-La filler metals metals and properties of joints. Science and Technology of Welding & Joining, 2010, 15(1):59-63.
    [22] Timmins P F. The mechanism of tough-pitch copper embitterment by silver brazing alloys. Welding Journal, 1990, 69(10): 378s-419s.
    [23]翟宗仁.无镉钎料的研制进展概述.第十届全国钎焊与扩散焊技术交流会论文集,无锡, 1998, 13-17.
    [24] Weigert K M. Physical properties of metallurgical phases of the Ag-Cd-Cu-Zn quaternary alloy. Welding Journal, 1955, 34(5): 420.
    [25] Weigert K M. Formation and physical properties of metallaugical phase of the Ag-Cd-Cu-Zn quaternary alloy. Welding Journal, 1955, 34(5): 421~424.
    [26]虞觉奇,尹邦跃,雷泽英,等. 25AgCuZnCd钎料脆性的研究.焊接学报, 1999, (12): 119~123.
    [27] Intrater J. Behavior of Cadmium on brazing problems associated with fumes. Materials manufacture Process, 1993, 8(3): 353~373.
    [28] Roberts P M. Recent developments in cadmium-free silver brazing alloys. Welding Journal, 1978. 57(10): 23~30.
    [29]宁远涛,郭根生,李永年.贵金属焊料及焊膏.贵金属, 1989, 10(4): 65~68.
    [30]蒋鹤麟.银饰品的制造与应用.贵金属, 1998, 19(4): 54~58.
    [31] IARC Monographs on the evaluation of carcinogenic risks to humans. Lyon, France: International Agency for Research on Cancer, 1993.
    [32]高峰, Sekulic D P,钱乙余.钎焊技术的最新研究进展.焊接学报, 2003, 24(4): 92~96.
    [33]薛松柏,陈燕,吕晓春. SnAgCuCe无铅钎料合金体系的热力学计算及预测.焊接学报, 2005, 26(5): 45~47.
    [34]庄祥禄,李德刚,李培祖.新型专用低银钎料的研究.焊接技术, 1999, (2): 30~31.
    [35]刘永安.不同含银量钎料对电机钎焊接头电阻值的影响.大电机技术, 1997, (3): 30~33.
    [36]薛松柏,钱乙余,赵振清,等.银基钎料中铈与杂质元素铅、铋作用机制.中国稀土学报, 2002, 20(5): 436~439.
    [37]何志勇,丁立平. Ag-Cu-Sn系低银钎料的研究.钢铁研究学报, 1992, 4(4): 35~38.
    [38]邓键.铜基铜合金钎焊用400~600℃钎料的探讨.焊接, 1975, (6): 20~25.
    [39]李香兰,刘永涛,谷云燕,等. Ag-Cu-P相图及其钎料系研究.沈阳黄金学院学报,1990, (4): 85~89.
    [40]张吟秋,程时和,李寿林,等.高磷铜钎料的研制和应用.湖南冶金, 1992, (4): 16~19.
    [41]毛崇慈,李国亮.节锡钎料的研究及应用.焊接, 1992, (2): 12~14.
    [42]刘泽光,王文祥,唐敏,等. Ag-Cu-In-Sn系低熔点钎料.贵金属, 1991, 12(3): 17~22.
    [43]甘卫平,陈慧,杨伏良. Ag-Cu-In-Sn钎料加工工艺的研究.材料导报, 2007, 21(3): 156~159.
    [44]贵金属材料加工手册[M],北京:冶金工业出版社, 1976: 30.
    [45]凌强. 45AgCuZn钎料中心不熔物成因分析,焊接, 2003, 9.
    [46]乔培新,蒋国海,唐福庆.人造金刚石与65Mn钢钎焊用低银钎料及钎焊工艺研究.第六届全国焊接学术会议论文集.中国西安, 1990, 5: 121-127.
    [47]李卓然,矫宁,冯吉才,陆成虹. Sn、P对AgCuZn系钎料合金组织与性能的影响,第十五届全国钎焊及特种连接技术交流会论文集. 2007.
    [48]李明高,孙大谦,等. TiNi形状记忆合金与不锈钢激光钎焊AgCuZnSn钎料的研制.焊接学报, 2005, 7(26): 44-48.
    [49] Xue S B, Qian Y Y, Dong J. Equivalent activity coefficient phenomenon of cerium reacting with lead or bismuth in Ag, Cu and Zn Alloy. Journal of Rare Earths. 2002, 20(6): 626~629.
    [50]韩宪鹏,薛松柏.无镉银钎料研究现状与发展趋势.焊接, 2007, 6: 19-23.
    [51]恩泽忠男.对低银钎料的看法.国外焊接, 1992, (10): 23~26.
    [52]刘光泽,王文祥,唐敏,等.镍对Ag-Cu-In-Sn合金钎焊特性的影响.贵金属,1992,13(4):23-29.
    [53] Wronski S. Brazing cooper to mild and strainless steels using cooper-phosphorus-tin alloys. Welding and Metal Fabrication, 1970 (8): 335-339.
    [54] Chung J W, Kim G S, Lee S Y, et al. Effects of alloying elements on the microstructure and mechanical properties of Cd-free brazing alloys. Journal of the Korean Institute of Metals and Materials (South Korea), 2001, 39 (9): 1068-1075.
    [55]钱乙余,薛松柏.我国钎焊及扩散焊的现状及发展.见:中国机械工程学会焊接学会编.第八届全国焊接会议论文集.中国青岛:中国机械工业出版社, 1997: 225~227.
    [56] Xue S B , Qian Y Y , Hu X P , et al. Behavior and influence of Pb and Bi in Ag-Cu-Zn brazingalloy. China Welding, 2000, 9(1): 42~47.
    [57]薛松柏,张国栋,钱乙余.我国硬钎料生产中的质量问题及对策(下).焊接, 1997, (6): 2~5.
    [58]薛松柏,钱乙余,余晓萍,等.杂质元素铝、铁在银基钎料中的作用及其机理.焊接, 1998, (10): 6~10.
    [59]薛松柏,钱乙余,胡晓萍,等.铋在银基钎料中的行为和影响.焊接学报. 1998, 19(4): 209~214.
    [60]薛松柏,钱乙余,胡晓萍.元素锡、铟在银基钎料中的作用及其机理.焊接, 1998, (11): 28~31.
    [61]薛松柏,顾文华.含镓和铈的无镉银钎料.中国专利: CN1765564, 2006-05-03.
    [62]顾文华,薛松柏.含镓、铟和铈的无镉银钎料.中国专利: CN1775459, 2006-05-24.
    [63]薛松柏,顾文华,顾立勇.含铟和铈的无镉银钎料.中国专利: CN1836823. 2006-09-27.
    [64]顾文华,薛松柏,顾立勇.一种含镓和铈的无镉银钎料.中国专利: CN1836824, 2006-09-27.
    [65]顾文华,薛松柏,顾立勇,等.含镓和稀土铈的无镉银钎料.中国专利: CN1887502, 2007-01-03.
    [66] Milligan W J R. Silver brazing alloys design and selection for brazing. The Art & Science of Welding, 1985, 10: 378~419.
    [67]钟文晨.低银铜基钎料化学成分的设计.广东有色金属学报, 2005, 15(4): 16~18.
    [68]黄祖洽,丁鄂江.表面浸润与浸润相变.上海:上海科技出版社,1994.
    [69] Kim H. Wetting kinetics and interfacial reaction of lead-based and lead-free solder alloys on copper and nickel metallizations in electronic packaging. A dissertation submitted in partial satisfaction of the requirements for the degree doctor of philosophy in material science and engineering. Los angeles: University of California, 1996.
    [70] Mortensen A, Drevet B, Eustathopoulos N. Kinetics of diffusion-limited spreading of sessile drops in reactive wetting. Scripta Materialia, 1997, 36(6):645-651.
    [71] Kalogeropoulou S, Rado C, Eustathopoulos N. Mechanisms of reactive wetting: the wetting to Non-wettingase. Scripta Materialia, 1999, 41(7):723-728.
    [72] Pavel P, Anne T, Vladimir T, et al. The role of intermetallics in wetting in metallic systems .Scripta materialia, 2001, 45(12): 1439-1445.
    [73] Gennes P G. The dynamic of reactive wetting on solid surfaces. Physica A, 1998,249(1-2): 196-205
    [74]国家标准委员会.金属焊接国家标准汇编.北京:中国标准出版社, 1990.
    [75]陈婵英,方启文.小管径紫铜管钎焊工艺.安装, 1997, (2): 12~15.
    [76]机械工业理化检验人员技术培训和资格鉴定委员会.金相检验.上海:上海科学普及出版社, 2003. 57~75
    [77]冯端.铸件形成理论.北京:科学出版社, 1987: 109-118.
    [78]虞觉奇.二元合金相图集.上海科学技术出版社,1984:289.
    [79]李卓然,轿宁,冯吉才,等.合金元素对AgCuZn系钎料合金组织与性能的影响.焊接学报, 2008, 29(3): 65~68.
    [80]李卓然,轿宁,冯吉才,等. P,稀土La对AgCuZnSn钎料合金组织与性能的影响.焊接学报, 2007, 28(12): 1~4.
    [81]汪厚泰.空调机钎焊工艺研究.焊接技术, 1996, (1): 26~28.
    [82]东北工学院金属教研室.有色合金及热处理.冶金工业出版社, 1980: 179~183.
    [83]韩宪鹏,薛松柏,顾立勇,等.镓对Ag-Cu-Zn钎料组织和力学性能的影响.焊接学报, 2008, 29(2): 45-48.
    [84] He Z Y, Ding L P. Investigation on Ag-Cu-Sn brazing filler metals. Materials Chemistry and Physics, 1997, 49(1): 1~6
    [85]钟群鹏,赵子华,张峥.断口学的发展及微观断裂机理研究.机械强度, 2005, 27(3): 358~370.
    [86]谭肇升.稀土对CuPNiSn非晶焊料性能的影响.中国稀土学报, 1992, 10(4): 355~359.
    [87]党平.稀土在纯铜钟的作用及作用机理,中国稀土学会第二届年会会议论文集, 1990: 128~131.
    [88]朱元凯.稀土在导电铜中应用工艺实验分析.中国稀土学会第二届年会会议论文集, 1990: 93~96.
    [89]张玉柱.铜中加稀土对氧化动力学的影响.稀土, 1991, 12(5): 35~38.
    [90]朱颖.锡铅稀土钎料SMT焊点热循环失效机制研究, [博士学位论文].哈尔滨:哈尔滨工业大学, 1996
    [91]马鑫.微电子表面组装焊点失效的相关力学及金属学因素分析, [博士学位论文].哈尔滨:哈尔滨工业大学, 2000.
    [92]杜挺.稀土元素在金属材料中的一些物理化学作用.金属学报, 1997, 33(1): 69~77.
    [93]吕振家.稀土在钢铁中的应用.北京:冶金工业出版社, 1987.
    [94]杜挺,韩其勇,王常珍.稀土碱土元素的物理化学及在材料中的应用.北京:科学技术出版社, 1995: 167~222.
    [95]张启运.稀土元素对Al-Si共晶合金的变质作用.金属学报, 1981, 17(2): 130~142.
    [96]张启运. Al-Si共晶合金变质机理的讨论(2),金属学报, 1984, 20(2):A138~142.
    [97]西成基. Al-Si-Be平衡状态的研究.轻金属, 1972, 22(12): 176~180.
    [98]郑韩贵.冷却速度和变质剂添加浓度对Al-Si共晶合金变质作用的影响.金属学报, 1992, 18(6): 661~666.
    [99]李庆春.稀土对Al-Cu合金凝固过程力学行为及固液共存区的影响.金属学报, 1987, 23(2):B62~67.
    [100]党平.稀土元素在铝硅各相中的分布.中国稀土学会第二届年会会议论文集, 1990: 319.
    [101]张亮,薛松柏,曾广,等.铈对SnAgCu钎料的显微组织和性能影响.中国稀土学报,2009,27(2):246~250.
    [102] Zhang L, Xue S B, Gao L L, et al. Effects of trace amount addition of rare earth on properties and microstructure of Sn-Ag-Cu alloys. Journal of Materials Science: Materials in Electronics, 2009, 20(12):1193~1199.
    [103] Wu C M L, Yu D Q, Law C M L, et al. Properties of lead-free solder alloys with rare earth element additions. Materials Science and Engineering R, 2004, 44(1):1~44.
    [104] Shi Y W, Tian J, Hao H, et al. Effects of small amount of rare earth Er on microstructure and property of SnAgCu solder. Journal of Alloys and Compounds, 2008, 453(1-2):180~184.
    [105] Zhang L, Xue S B, Gao L L, et al. Effects of rare earths on properties and microstructures of lead-free solder alloys. Journal of Materials Science: Materials in Electronics, 2009, 20(8):685~694.
    [106] Chen Z G, Shi Y W, Xia Z D, et al. Study on the microstructure of a novel lead-free solder alloy SnAgCu-RE and its soldered joints. Journal of Electronic Materials, 2002, 31(10):1122~1128.
    [107] Dudek M A, Sidhu R S, Chawla N, et al. Microstructure and mechanical behavior of novel rare earth-containing Pb-free solders. Journal of Electronic Materials, 2006, 35(12):2088~2097.
    [108]武玉英.几种含硅合金中富硅相形核与生长机制的研究, [博士学位论文].济南:山东大学, 2008.
    [109]刘贵立,李荣德.铸造锌铝合金稀土变质机制的电子理论研究.中国稀土学报,2003,21(5):554~557.
    [110]张新明,朱航飞,李国锋,等.微量Zr,Er和Y对Al-Zn-Mg-Cu合金铸态组织的影响.中南大学学报(自然科学版),2008,39(6):1196~1200.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700