用户名: 密码: 验证码:
竹桉复合材料优化重组技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是一个森林资源匮乏的国家,无论森林覆盖率还是人均占有量均低于世界平均水平,尤其缺乏大径级的针叶材和优质的阔叶材,而我国的竹类资源和人工林资源十分丰富,其面积和产量均居世界首位,因此,高效合理地利用竹材和人工林木材对缓解我国木材供需矛盾具有重要意义。
     本文选用我国南方资源丰富的毛竹(Phyllostachys pubescens Mazel exH.de Lebaie)和人工速生材尾叶桉(E.urophylla)为原料,通过对毛竹竹条和桉树单板基本物理力学性能,表面润湿性能,胶合性能和板坯热传导性能等研究基础上,从结构和工艺两个方面对竹桉复合材料重组技术进行优化设计。
     主要结论如下:
     (1)竹条的厚度对竹条基本物理力学性能影响较小,桉树单板的厚度对单板基本物理力学性能影响较大,随着厚度的增加,单板的静曲强度和弹性模量减小;采用涂胶热压处理后,桉树单板的物理力学性能得到改善,其改善程度因单板厚度、施胶量和单板的密度不同而不同。
     (2)环境温度对PF胶在竹条和桉树单板表面的润湿性有显著的影响,随着润湿环境温度的升高,酚醛胶在竹条和桉树单板表面的润湿性变差;堆放时间对桉树单板润湿性具有显著的影响,随着堆放时间的延长,PF胶在桉树单板表面的润湿性变差;砂磨可以在一定程度上改善桉树单板的润湿、渗透和铺展性能
     (3)建立了胶合强度分布规律的评价体系。桉树、杨木和落叶松胶合强度的双尾检验P值分别为0.203、0.235和0.464,均大于0.05显著性水平,三种木材胶合板的胶合强度服从正态分布,为正偏态分布;桉树和杨木胶合板的胶合强度为尖峰态,而落叶松胶合板的胶合强度为低峰态。
     (4)建立了竹材和桉树单板层积材的热压升温曲线数学模型。模型的实际曲线和理论曲线的R~2值在0.92以上,热压升温速率系数k值与单板的厚度、板坯层数,热压温度,热压压力,含水率呈线性相关,在热压过程中,通过调整板坯结构和热压工艺可以改善竹木复合材料板坯的热传导性能。
     (5)建立了适合于竹木复合材料的刚度预测模型。用该模型预测的竹桉复合材料弹性模量预测值与实验值的Pearson乘积矩相关系数R~2在0.80以上,用竹材和桉树单板层积材的弹性模量预测竹桉复合材料的弹性模量,实际值与理论值相差在11%以内,模型具有一定的实际意义。
     (6)建立了竹木复合材料的强度定性预测的数学模型。该模型能对竹木复合材料的不同破坏类型进行定性解释;用竹桉复合材料刚度模型、强度模型和材料断裂理论,从理论上阐明了竹桉复合材料的设计原理。
     (7)对于单板厚度为2.25mm的13层桉树单板层积材其较优的热压工艺为:热压温度为140℃,热压时间为1min·mm~(-1),施胶量为250g·m~2,压缩率为16%。
China is a country with short of forestry resources; whether the forest coverage rate or per capita is lower than those of the world's average, especially lack of larger-sized softwood and high quality hardwood. Fortunately, China has plenty of bamboo resources and forest plantation, the planting area and production of which rank first in the world. So there will be a significance to use those resources with efficiency and reasonability. The Moso bamboo (Phyllostachys pubescens Mazel exH.de Lebaie) and Eucalyptus (E.urophylla) abundant in the south of China, were choused as experimental materials in this dissertation. Based on the discussion of the basic physical and mechanical properties, surface wettability of bamboo and Eucalyptus, bonding properties and the mat thermal conductivity, the dissertation optimized the technique of reconstruction for bamboo-Eucalyptus composites in structure and technology. The main conclusions obtained from the research and analysis is as follows:
     The effect of thickness of bamboo strips on the basic physical and mechanical properties are not significant, while the effect of thickness of eucalyptus veneer strips are very obvious, with the increase of thickness, the physical and mechanical properties decrease. The physical and mechanical properties of eucalyptus veneer strips are improved by treated with glue-spreading and hot-pressing, the improving degrees of the physical and mechanical properties are different depending on veneer thickness, glue-spread and density.
     The environmental temperature has a significant impact on the wettability of PF on the surface of bamboo and Eucalyptus, the wettability of the PF on the surface of bamboo and decreased with increasing of the temperature from 20℃to 100℃; stacking time of Eucalyptus veneer after peeling is of a great effect on the wettability on the surface of eucalyptus veneer, the wettability on the surface of eucalyptus decreased with the extension of storage time. Ball-milling can improve the wettability, penetration and spreading performance of eucalyptus veneer by certain extent.
     The systems for evaluating the bonding strength distribution were established in this paper. Two-tailed test P value of bonding strength of plywood made from plantation wood such as eucalyptus, polar and larch is 0.203、0.235and 0.464, respectively, more than significance level of 0.05. They are approximate conform to the normal distribution on the whole, however there is a certain deviation as it is asymmetric with positive bias; the bonding strength of eucalyptus and poplar plywood turned out to be leptokurtosis while larch plywood's is platykurtic.
     A mathematical model of the hot-pressing temperature curve was established in this paper based on the studies of hot-pressing temperature curve of bamboo and eucalyptus laminated veneer lumber. The R~2-value of the theoretical curve and the actual curve are above 0.92. The coefficient of hot-pressing temperature rate(k-value) has a linear relation with mat layers, hot-pressing temperature, hot-pressing pressure and water content, the thermal conductivity of bamboo and eucalyptus composites can be improved by adjusting mat's structure and hot-pressing process.
     The stiffness prediction model suitable for bamboo-wood composites was established in this paper. The correlation coefficient R2-value of predicted and experimental value of MOE eucalyptus-bamboo composites are above 0.80, the error between experimental value and predicted value is within 11% by taking MOE of bamboo LVL and eucalyptus LVL as a basic data for properties' design of bamboo-eucalyptus composites, therefore, the model has a great practical significance.
     Based on the studies of the failure mechanisms of bamboo-wood composites, a qualitative mathematical prediction model of bamboo-wood composites strength was established in this paper, which can qualitatively interpret different failure types of bamboo-eucalyptus composites. The dissertation explained the design rules of bamboo-eucalyptus composites in theory by using stiffness prediction models, strength models and material fracture theories.
     The preferable optimum hot-pressing process for 13-layers LVL with 2.25 mm thickness veneer is as below: temperature is 140℃, hot-pressing time is 1min·mm~(-1), glue spread is 250g·m~2, compression rate is 16%。
引文
[1] 国家林业局.2005中国林业发展报告。北京:中国林业出版社.2005.
    [2] 2003年中国原木进口分析报告.2003:3~9.
    [3] 2005年中国原木进口分析报告.2005:4~10.
    [4] 国家林业局.《林业发展“十一五”和中长期规划》.
    [5] 国家林业局.2004中国林业发展报告。北京:中国林业出版社.2004.
    [6] 李剑泉,路文明,李志勇等.中国木材资源利用管理政策体系.中国林学会木材分会第十一次学术研讨会论文集,797~801.
    [7] 张建,汪奎宏,李琴等.竹木复合利用的发展现状与建议[J].2006,33(5):12~15.
    [8] 张齐生.竹类资源加工的特点及其利用途径的展望,中国林业产业[J],2004:(1)9~11.
    [9] 王戈.毛竹/杉木层积复合材料及其性能[D].北京:中国林业科学研究院,2001.
    [10] 王小青,刘君良.竹木复合材料的研究现状和展望.木材工业[J],2005:19(6)8~12.
    [11] IUFRO.The future of edcalyptus for wood products[R].IUFRO Conference Proceeding.Tasmania,2000.
    [12] 殷亚方,江笑梅,吕建雄等.我国桉树人工林资源和木材利用现状[J].木材工业,2001,15(5):3~5.
    [13] 杨民胜,彭彦.中国桉树纸浆材现状与发展趋势.造纸纤维原料[J],2006,25(6):17-20.
    [14] Jessica Lawrence.2003. Importing Destruction-the Plywood connection. Idonesia Report, 143~147.
    [15] B.Ozarska.1999. A review of the utilization of hardwoods for LVL[J]. Wood Science and Technology, 33(4):341~351.
    [16] Aydin,S. Colak; G. Colakoglu,E. Salih. 2004. A comparative study on some physical and mechanical properties of LaminatedVeneer Lumber (LVL) produced from Beech and Eucalyptus [J]Holz Roh Werkstoff,62:218~220.
    [17] Brad Jianhe Wang, Chunping Dai.2005. Hot-pressing stress graded aspen veneer for laminated veneer lumber[J]. Holzforschung,59:10~17.
    [18] K Mathieu; J Carrick; M Marosszeky.2004. A method for cleavage fracture testing of hardwood laminated veneer lumber[J]. Structural Integrity & Fracture (SIF2004):1~7.
    [19] Fabricio Moura Dias, Francisco Antonio Rocco Lahr. Alternative Castor Oil-Based Polyurethane Adhesive Used in the Production of Plywood[J].Materials Research, 2004.,7(3)413~420.
    [20] 余养伦,任丁华,周月等.2006.尾叶桉单板胶合性能的初步研究[J],林产工业,33(4):20~23.
    [21] 赵荣军.桉树人工林木材居室环境学特征及木材性质与加工工艺对胶合板质量影响的研究[D],北京:中国林业科学研究院,2002.
    [22] Xu feng, Chiaki Tanaka, Tetsuya Nakao. Mechanical properties of plywood reinforced by bamboo and jute[J]. Forest Products Journal,1997,33(6):74-78.
    [23] Matsuda T. Manufacture of medium density fiberboard from Malaysian fast growing tree species and bamboo. In: Bulletin of FFPRI, Ibaraki, 1995, 369 45.
    [24] Zhang Min, Kawai Shuichi, Sasaki Hikaru. Manufacture and properties of composite fiberboard 2—Fabrication of board manufacturing apparatus and properties of bamboo/wood composite fiberboard[J]. Mokuzai Gakkaishi, 1995, 41(10):903~910 46.
    [25] 川井秀一.竹材積層高性能複合開発.京都大学科学研究费補助金(一般研究C)研究成果報告书,日本,京都,1996.
    [26] Subyakto, Bambang Subiyanto, Sandra A.Azis. Cultivation and utilization of bamboo in Indonesia[J]. Journal of Bamboo Research, 1997, 16(2): 1~7 41.
    [27] Jiadal U.C. Tensile strength of bamboo fiber-reinforced plastic composition with different stacking sequences[J]. Bamboos Current Research. 1990,1:231~234 39.
    [28] Chew Lian Teck, Nurulhuda mohd, Nasir. Urea-particleboard from bamboo Vulgaris Schris. Proceedings of 4th International Bamboo Workshop. Chiangmia, Thailand, 1991 40.
    [29] Szoolag S., Rangaraju T.S. An improved and economical process for manufacture of bamboo mat board. In:Proceedings of 4th International Bamboo Workshop[C]. Chiangmia, Thailand, 1991 38.
    [30] Lee A.W.C., Bai X.S., Bangi A.P. Flexural properties of bamboo-reinforced southern pine OSB beam[J]. Forest Products Journal, 1997,47(6):74~78.
    [31] 张齐生,孙丰文.竹木复合集装箱底板的研究[J].林业科学,1997,33(6):546~553.
    [32] 张齐生,孙丰文.竹木复合结构是科学合理利用竹材资源的有效途径[J].林产工业,1995,22(6):4~6.
    [33] 王思群,华毓坤,董士琴.竹木复合定向刨花板强度性能的研究[J].木材工业,1991,5(3):6~10.
    [34] 殷苏州,李北冈,胡德彪.竹材覆面定向刨花板性能的研究[J].木材工业,1997,11(4):8~11.
    [35] 许斌,蒋身学.竹木复合层积材横纹静摩擦系数的研究[J].林业科技开发,2000,14(6):22~23.
    [36] 钱俊,叶良明,金永明.速生杉木与竹黄篾复合板的研究[J].建筑人造板,1999,(2):35~37.
    [37] 吴章康,张宏健,黄素永.竹木复合中密度纤维板工艺条件的研究[J].木材工业,2000,14(3):7~10.
    [38] 范毛仔,许若璇,杨爱和.碎单板竹片平行胶合板材的研究[J].木材工业,1995,9(1):10~13.
    [39] 何翠华.竹木复合胶合板的试制报告[J].木材工业,1991,5(4):50~51.
    [40] 鲍逸培.竹木复合集装箱底板开发与研究[J].建筑人造板.1997,(3):13~16.
    [41] 郑忠福.单板贴面竹编竹材层积材的生产工艺研究[J].建筑人造板,1995,(1):13-15.
    [42] 张应鹤.竹材人造板发展的思考[J].木材加工机械.2004,(2):26~28.
    [43] 黄争鸣等.复合材料细观力学引论[M].北京:科学出版社,2004.
    [44] 王耀先.复合材料结构设计[M].北京:化学工业出版社,2001.
    [45] 鲁博,张林文,曾竟成等.天然纤维复合材料[M].北京:化学工业出版社,2005.
    [46] 于文吉.竹材表面性能及力学性能变异规律的研究.北京:中国林科院博士研究论文,2001.
    [47] 付跃进.柠檬桉,窿缘木材胶合工艺及胶合性能的研究[D].北京:中国林业科学研究院,2003.
    [48] 张玉萍.六种人工林木材实木胶合性能的研究[D].北京:中国林科院硕士研究论,2006.
    [49] 张齐生.中国竹材工业化利用.北京:中国林业出版,1995:35.
    [50] 华毓坤.人造板工艺学[M].北京:中国林业出版社,2002.
    [51] 顾继友.胶粘剂与涂料[M].北京:林业科学出版社,1999.
    [52]. Zisman, W.A. Constitution effects on adhesion and adhesion[M]. New York: Elsevier Publ, 1962, 176~208.
    [53] Berg, J.V. Role of acid-base interactions in wetting and relates phenomena[M]. New York, Marcel Dekker, Inc., 1993: 76~148.
    [54]. Baier, R, E., E. Q. Shafrin, and W.A.Zisman Adhesion: Mechanisms that assist or impede it[J]. Science, 1968, 162 (386): 1360~1368.
    [55]. Gray, V.R. 1962. The wettability of wood[J]. For. Prod. J. 12 (9), 452~461.
    [56]. Wenzel, R.N. 1936, Resistence of soloid surface to wetting by water[J]. Ind. Eng. Chem. 28, 988~994.
    [57]. Hse, C.Y.1972. Wettability of southern pine veneer by phenol formaldehyde wood adhesives[J]. For. Prod.J. 12(9) 452~461.
    [58]. Hse, C.Y. 1971. Properties of phenolic adhesives as related to bond quality in southern pine plywood[J]. For. Prod. J. 21 (1), 44~52.
    [59]. Freeman, H.A.1959. Relation between physical and chemical properties of wood and adhesion[J]. For. Prod. J.9 (12), 4512~458.
    [60]. Herczeg, A. 1965. wettability of wood. For. Prod. J. 12 (9), 492~461.
    [61]. Chen, C.1970.Effect of extrctive removal on adhesion and wettability of some tropical woods[J]. For. Prod.J. 20(1), 36~40
    [62]. Kajita, H.1992. Wettability of the surface of some American softwoods species[J]. Mokuzai Gakk. 38, 516~521.
    [63]. Young R A. et al. Bond formation by wood surface reaction[J]. Wood Sic., 1982, 14(3): 110~119
    [64]. Hodgson, K.T. 1988. Dynamic wettability properties of single wood pulp fibers and their relationship to absorbency[J]. Wood fiber science. 20, 3~17.
    [65]. Lee, S.B.and P.Luner. 1972. The wetting and interfacial properties of lignin[J]. Tappi J.55, 116~121.
    [66]. Hemingway, R.W.1969. Thermal instability of fats relative to surface wettabilty of yellow birch[J]. Tappi 52(11). 2149~2155.
    [67]. Collett, B.M. A review of surface and interfacial adhesion in wood science and related field[J]. Wood Sci. Technol. 1972, 18(6): 1~42.
    [68].江泽慧,于文吉,余养伦.竹材表面润湿性研究[J].竹子研究汇刊,2005,24(4):44~47.
    [69]. Sheldon Q. Shi. Dynamic adhesive wettability of wood. Wood and fiber Sci. 2001, 33 (1): 58~68.
    [70].王戈,余养伦,于文吉.温度变化对酚醛胶在竹材表面动态润湿性的影响[J].北京林业大学学报.2006,
    [71]. Drew Myers, Surface Interface, and Colloid: Principles and Application[M], Beijing: Chemical Industry Press, 2005: 74~133.
    [72].颜肖慈,罗明道.界面化学[M],北京:化学工业出版社,2005:69~82.
    [73].江泽慧,王喜明.桉树人工林木材干燥与皱缩[M].北京:中国林业出版社,2003:4~5.
    [74] Jozsef Bodig Benjamin A. Jayne 1991 Mechanics of Wood and Wood Composites. 陈周宏译(台湾),全 贤图书公司出版,305~359;
    [75].张宏健,尹秀明,邱荣强.胶合板胶合效果评价方法探讨[J].木材工业,2003,17(5):4~7.
    [76].耿修林,谢兆茹.应用数学[M].北京:科学出版社,2002.
    [77].梁之舜,邓集贤.概率论和数理统计[M].北京:高等教育出版社,2001.
    [78].余建英,何旭宏.数据统计分析和SPSS应用[M].北京:人民邮电出版社,2006.
    [79] Derwood E. Brady, Frederick A. Kamke. Effects of hot-pressing parameters on resin penetration [J]. Forest Prod. J. 1988, 39(11/12): 53~56.
    [80] Irvine, G.M. The glass transition of lignin and hemicellulose and their measurement by differential thermal analysis. Tappi 1984. 67(5): 118~121.
    [81] T.TABARSA, Y.H.CHUI. Effects of hot-pressing on properties of white spruce[J]. Forest Prod. J. 1997, 47(5): 71~76.
    [82] Panshin, A.J and C.De Zeeuw. Textbook of wood Technology. 4th ed. McGraw-Hill Inc. New York. 1980: 365.
    [83] T.TABARSA, Y.H.CHUI. 1997. Effects of hot-pressing on properties of white spruce[J]. Forest Prod. J. 47(5): 71~76.
    [84] Dai.C and P.R.Steiner. 1993. Compression behaviour of randomly formed wood flake mats[J]. Wood and Fiber Sci. 25(4): 349~358.
    [85] Strickler, M.D.1959.The effect of press cycles and moisture content on properties of Douglas-fir flake-board[J]. Forest Prod. J 9(7): 203~207.
    [86] Bodig.J. and B.A.Jayne. 1982.Mechanics of Wood and Wood Composites[W]. Van Bostrand Reinhold Co., Inc. New York. 712pp.
    [87] T.TABARSA and Y.H.CHUI. 1997. Effect of hot-pressing on properties of White Spruce[J]. Forest Prod. J47(5): 71~76.
    [88] Hillis, W.E. 1984. High temperature and chemical effects on wood stability. Part Ⅰ General consideration[J]. Wood Sci. & Tech. 18(3)281~293.
    [89] 王补宣.多孔介质中的对流传热传质[J].西安交通大学学报,1994,28(5):51~58.
    [90] Zombori, G, B., F.A.Kamke.2001.Simulation of the mat formation process[J]Wood Fiber Sci, 33(4): 564~579.
    [91] 林铭,谢拥群,杨庆贤.木材热导率内在规律的理论研究[J].福建林学院学报2004,24(1):25~27
    [92] 杨庆贤.木材热学参数的理论表达式[J].福建林学院学报2001,21(4):329~331.
    [93] 杜朝刚,陈天全,常建民.刨花板热压过程中的传热传质研究现状和展望[J].林产工业,2004,31(5):9~14.
    [94] 王逢瑚,李鹏,陶毓博.单板层积材热压导热数学模型和可视化数值解的研究[J].材料热处理学报.2005,26(1)90~92.
    [95] G. Leon; J. Cruz-de-Leon; L. Villasenor. 2000. Thermal characterization of pine wood by photoacoustic and photothermal techniques[J]. Holz als Roh-und Werkstoff, 58 (4): 241~246.
    [96] U. Sand; J. Sandberg; R. Bel Fdhila. 2006. Two-Phase Transport Model for the Pyrolysis Process of a Vertical Wood Cylinder, Including the Surrounding Flow Field[J]. International Journal of Green Energy, 3 (1): 63~78.
    [97] 周义仓,赫孝良.数学建模实验[M].西安:西安交通大学出版社,1999:274~284.
    [98] R.Davalos-Sovatelo. 2005. Determination of elastic properties of clear wood by the homogenization method in two dimensions[J], wood sci. technol. 39(3): 385~417.
    [99] 周小凡,谢来苏,隆言泉.2001.植物纤维各向弹性模量的计算机仿真[J].南京林业大学学报(自然科学版),25(6):33~37.
    [100] 卢晓宁,陈字聪,陈颖.2002.速生杨木单板顺纹弹性模量预测模型[J].南京林业大学学报(自然科学版),26(3):9~13.
    [101] 卢晓宁,黄河浪,杜以诚.2003.速生杨木单板横纹弹性模量预测模型[J].南京林业大学学报(自然科学版),27(2):21~25.
    [102] 卢晓宁,王志强,杜以诚.2006.速生杨木单板面内剪切模量预测模型[J].南京林业大学学报(自然科学版),30(1):94~95.
    [103] Andy W C Lee, Lonny L Thompson, David V Rosowsky. 1999. Finite element analsys of MOSO bamboo-reinforced southern pine OSB composite beams[J]. Wood and Fiber Sciense, 31(4): 403~415.
    [104] 江泽慧,王戈,费本华等.2002,竹木复合材料的研究及发展[J].林业科学研究,15(6):712~718.
    [105] 马岩,李松龄.1996.定向刨花板弹性模量微观力学理论求解方法探讨[J].东北林业大学学报,24(6):94~97.
    [106] 邢立平,马岩.2002.重组木弹性模量微观力学理论分析的实验[J].东北林业大学学报,30(4):91~93.
    [107] 蒋身学,朱一辛,张齐生.2002.竹木复合层积材结构及其性能[J].南京林业大学学报(自然科学版),26(6):10~12.
    [108] 那斌,卢晓宁.2002.胶合板弹性特性预测[J].建筑人造板,(1):31~33.
    [109] 张晓冬,李君,王泉中.2005.木竹复合层合板力学性能预测与分析[J].南京林业大学学报(自然科学版),29(6):103~105.
    [110] 王志强1,卢晓宁,朱月虎,等.2006.不对称人造板的结构设计[J].南京林业大学学报(自然科学版),30(6):23~27.
    [111] Persson K.2000. Micromechanical modeling of wood and fiber properties. Department of Mechanics and Material Mechanics[D], PhD dissertation, Lund University, Lund, Sweden.
    [112] Mark RE.1981. Molecular and wall structure of wood. In: Wangaard FF(ed) wood: its structure and properties[M] vol Ⅰ. Clark C. Heriitage Memorial Series on wood. Penn State University, University Park, PA.
    [113] 张钧林,严彪,王德平.材料科学基础[M].北京:高等教育出版社,2006.
    [114] 祁述雄.中国桉树.北京,中国林业出版社[M],2002:367~404.
    [115] 赵仁杰,喻云水等.竹材人造板工艺学[M].北京:中国林业出版社,2002.
    [116] 孙丰文.1994.竹木复合人造板[J].林业科技开发.(3):23~26.
    [117] 王小青,郭莉,刘君良.2005.竹木复合单板层积材制备工艺[J].木材工业,19(5):7~9.
    [118] 张心安,朱一辛.2005.单板层积材的研究与发展现状[J].中国林业产.:26~28.
    [119] Jessica Lawrence. 2003. Importing Destruction-the Plywood connection. Idonesia Report, 143~147.
    [120] B.Ozarska. 1999. A review of the utilization of hardwoods for LVL[J]. Wood Science and Technology, 33(4): 341~351.
    [121] Aydin, S. Colak; G. Colakoglu, E. Salih. 2004. A comparative study on some physical and mechanical properties of LaminatedVeneer Lumber (LVL) produced from Beech and Eucalyptus [J]Holz Roh Werkstoff, 62: 218~220.
    [122]. Brad Jianhe Wang, Chunping Dai. 2005. Hot-pressing stress graded aspen veneer for laminated veneer lumber[J]. Holzforschung, 59: 10~17.
    [123] K Mathieu; J Carrick; M Marosszeky. 2004. A method for cleavage fracture testing of hardwood laminated veneer lumber[J]. Structural Integrity & Fracture (SIF2004): 1~7.
    [124] 黄发荣等.2003.酚醛树脂及其应用[M].北京:化学工业出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700