基于两亲性嵌段共聚物自组装制备有序功能纳米材料
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,嵌段共聚物自组装结构的研究倍受人们关注,同时,利用自组装嵌段共聚物制备各种不同形态及有序结构的功能纳米材料和纳米结构材料也成为了目前研究的热点。然而,利用嵌段共聚物对纳米粒子的聚集结构的调控以及对制得的纳米粒子的进一步研究还比较少。本论文的主体思想是利用嵌段共聚物制备出纳米粒子,一方面对纳米粒子的聚集形貌进行调控,另一方面结合纳米粒子的特性拓展其应用。本论文开展了以下几个方面的工作:
     1.对两亲性嵌段共聚物PS-b-P2VP和PCMA-b-P2VP在溶液中的自组装结构以及胶束薄膜的形貌进行了研究,为进一步制备纳米粒子提供了基础。
     2.基于PS-b-P2VP,制备出了金属铼配合物的纳米颗粒和CdS纳米粒子,利用PS链段和P2VP链段对溶剂亲和性的差异,通过调节溶剂环境,实现了对纳米粒子聚集结构的调控。
     3.分别利用PS-b-P2VP和PCMA-b-P2VP的胶束结构制备基底表面支持的Au、Ag纳米粒子阵列,并结合微接触印刷方法(μCP),实现对金属纳米粒子聚集体更大尺度(微米级)上的控制,制备出多尺度图案化的金属纳米粒子阵列。
     4.为了进一步拓展制备出的规整结构纳米粒子的应用。我们利用嵌段共聚物胶束制备出氧化铁纳米粒子,并结合铁纳米粒子对碳纳米管生长的催化特性,实现了碳纳米管在催化剂基底上的可控生长,并结合其它一些处理手段,制备出了图案化的高定向性碳纳米管。
The self-assembling micelles of amphiphilic block copolymers and their applications in fabricating nanoparticles are among the hottest topics of polymer science. This thesis focuses on the behaviors of amphiphilic block copolymers in dilute solutions and thin films, including the effects of solvent nature and solution concentration on the self-assembly of two amphiphilic block copolymers. The micelles are used as nanoreactors to fabricate some metal nanoparticles and semiconductor nanoparticles, the size and the aggregates of the nanoparticles in the micelles have been controlled in our experiments. In addition, the nanoreactors of micelles, combined with microcontact printing (μCP), have been successfully in fabricating patterned metal arrays and carbon nanotubes.
     First, we systematically investigated the effects of the solvent nature and solution concentration on the self-assembling behaviors of two amphiphilic block copolymers (PS-b-P2VP and PCMA-b-P2VP). The affinity of the solvent to different blocks seriously affected the solubility and self-assembly of the block copolymers. In some solvents, which were preferential affinity to a specific block, the block copolymer can self-assemble into nanometer-sized spheral micelles consisting of a soluble corona and an insoluble core. By spin-coating the solution of micelles onto the substrates, after evaporating the solvent, the thin films with regular morphologies of nanodots remained on the substrates. Due to the different solubility of the block chains, the thin films from the micelles show sensitivity to the solvent atmosphere around them. Dipping the films in a solvent, which was selective to the core blocks, with the swollen of the core blocks, the surface of the thin films transformed from the nanodots to nanoporous.
     The micelles from amphiphilic block copolymer PS-b-P2VP and PCMA-b-P2VP used as nanoreactors have been succeed in fabricating Au, Ag, CdS nanoparticles. To the block copolymers, the pyridine ligands in the micelles either in the core parts or in the corona parts can be easily incorporated with some metal ions or proton, so the nanoparticles can be selectively located in the core parts or corona parts. In addition, the reversion of the block copolymer micelles endues the tunable morphologies of the aggregations of nanoparticles. The aggregations of Au nanoparticles and CdS nanoparticles in the micelles of PS-b-P2VP can be transformed from core-embedded to corona-embedded. We also attached Rhenium complex, a luminescence molecule, to the PS-b-P2VP chains. The resulting polymer metal complexes were able to form micelles in different solvent systems, and the emissive complexes tagged on the block copolymers can act as luminescent probes in the resulting micelles.
     To obtain Au nanoparticles, four methods were introduced to our system. In the colloid solution, beside NaBH4, pyrrole was used as an effective reducing agent, the formed Au nanoparticles and Au-polypyrrole compound haved been investigated. In order to generate periodically ordered Au nanopartiles, thermal decompension and oxygen plasma were used as effective reducing procedures, but the obtained Au nanoparticles show great different in the scale to these two methods.
     Taking advantage of the nanoreactors of amphiphilic block copolymers, we introduced a simple, convenient, and versatile approach for fabricating arrays of gold, silver nanoparticle aggregates of various sizes by combining them with the method of microcontact printing (μCP).
     Moreover, Fe nanoparticles were fabricated in our system by the same way, which have been successfully used as templates to fabricate carbon nanotubes in a PECVD system. Besides the intensity and scale of the carbon nanotubes could easily controlled, with the introducing ofμCP, patterned carbon nanotubes successfully fabricated on the substrates. In addition, with the pre-coating of the substrate with a layer of Al2O3 and changing the size of catalysts, patterned and aligned carbon nanotubes were successfully fabricated in our system.
引文
[1] M. Park, C. Harrison, P. M. Chaikin, R. A. Register, D. H. Adamson, Block copolymer lithography: Periodic Arrays of~10 11 Holes in 1 Square Centimeter, Science 1997, 276, 1401.
    [2] R. L. Jones, S. K. Kumar, D. L. Ho, R. M. Briber, T. P. Russell, Chain conformation in ultrathin polymer films, Nature 1999, 400, 146.
    [3] S. F?rster, T. Plantenberg, From Self-Organizing Polymers to Nanohybrid and Biomaterials, Angew. Chem. Int. Ed. 2002, 41, 688.
    [4] J. F. Ciebien, R. T. Clay, B. H. Sohn, R. E. Cohen, Brief review of metal nanoclusters in block copolymer films, New J. Chem., 1998, 685-691
    [5] T. Hayakawa, S. Horiuchi, From Angstroms to Micrometers: Self-Organized Hierarchical Structure within a Polymer Film, Angew. Chem. Int. Ed. 2003, 42, 2285.
    [6] M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, C. M. Lieber, Growth of nanowire superlattice structures for nanoscale photonics and electronics, Nature 2002, 415, 617.
    [7] G. M. Whitesides, J. P. Mathias, C. T. Seto, Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures, Science 1991, 254, 1312.
    [8] S. Inagaki, Y. Fukushima, K. Kuroda, Synthesis of highly ordered mesoporous materials from a layered polysilicate, J. Chem. Soc. Chem. Commun. 1993, 680.
    [9]袁建军,程时远,封麟先,嵌段共聚物自组装及其在纳米材料制备中的应用,高分子通报, 2002, 6.
    [10] T. P. Russell, G. Coulin, V. R. Delin, D. Miller, Characteristics of the surface-induced orientation for symmetric diblock PS/PMMA copolymers, Macromolecules 1989, 22, 4600.
    [11] M. W. Matsen, M. Schick, Microphase Separation in Starblock Copolymer Melts, Macromolecules, 1994, 27, 6761.
    [12] M. W. Matsen, F. S. Bates, Unifying Weak-and Strong-Segregation Block Copolymer Theories, Macromolecules, 1996, 29, 1091.
    [13] S. Forster, A. K. Khandpur, J. Zhao, F. S. Bates, I. W. Hamley, A. J. Ryan, W. Bras,Complex Phase Behavior of Polyisoprene-Polystyrene Diblock Copolymers Near the Order-Disorder Transition, Macromolecules, 1994, 27, 6922.
    [14] A. K. Khandpur, S. Foerster, F. S. Baters, I. W. Hamley, A. J. Ryan, W. Bras, K. Almdal, K. Mortensen, Polyisoprene-Polystyrene Diblock Copolymer Phase Diagram near the Order-Disorder Transition, Macromolecules, 1995, 28, 8796.
    [15] D. A. Hajduk, P. E. Harper, S. M. Gruner, C. C. Honeker, G. Kim, E. L. Thomas, L. J. Fetters, The Gyroid: A New Equilibrium Mophology in Weakly Segregated Diblock Copolymers, Macromolecules, 1994, 27, 4063.
    [16] G. Riess, Micellization of block copolymers, Prog. Polym. Sci. 2003, 28, 1107.
    [17] L. Luo, J. Tam, D. Maysinger, A. Eisenberg, Cellular Internalization of Poly(ethylene oxide)-b-poly(?-caprolactone) Diblock Copolymer Micelles, Bioconjugate Chem. 2002, 13, 1259.
    [18] A. P. Gast, P. K. Vinson, K. A. Cogan-Farinas, An intriguing morphology in crystallizable block copolymers, Macromolecules 1993, 26, 1774.
    [19] M. Antonietti, S. Heinz, M. Schmidt, C. Rosenauer, Determination of the Micelle Architecture of Polystyrene/Poly(4-vinylpyridine) Block copolymers in Dilute Solution, Macromolecules 1994, 27, 3276.
    [20] K. Schillen, W. Brown, R. M. Johnsen, Micellar sphere-to-rod transition in an aqueous triblock copolymer system– a dynamic light-light-scattering study of translational and rotational diffusion, Macromolecules 1994, 27, 4825.
    [21] O. Glatter, G. Scherf, K. Schillen, W. Brown, Characterization of a poly(ethylene oxide) poly(propylene oxide) triblock copolymer (EO(27)-PO39-EO(27)) in aqueous-solution, Macromolecules 1994, 27, 6046.
    [22] J. O. Zhao, E. M. Pearce, T. K. Kwei, H. S. Jeon, P. K. Kesani, N. P. Balsara, Micelles formed by a model hydrogen-bonding block-copolymer, Macromolecules 1995, 28, 1972.
    [23] J. P. Spatz, S. Sheiko, M. M?ller, Ion-stabilized block copolymer micelles: Film formation and interaction, Macromolecules 1996, 29, 3220.
    [24] A. V. Kabanov, T. K. Bronich, V. A. Kabanov, K. Yu, A. Eiseberg, Spontaneous formation of vesicles from complexes of block ionomers and surfactants, J. Am. Chem. Soc. 1998, 120, 9941.
    [25]吴人杰。高聚物的表面与界面。北京:科学出版社,1999
    [26] P. Lambooy, T. P. Russell, G. J. Kellogg, A. M. Mayes, P. D. Gallagher, S. K. Satija,Observed frustration in confined block copolymer, Phys. Rev. Lett. 1994, 72, 2899.
    [27] P. Mansky, Y. Liu, E. Huang, T. P. Russell, C. Hawker, Controlling Polymer-Surface Interactions with Random Copoymer Brushes, Science 1997, 275, 1458.
    [28] K. Shin, K. A. Leach, J. T. Goldbach, D. H. Kim, J. Y. Jho, M. Tuominen, C. J. Hawker, T. P. Russell, A Simple Route to Metal Nanodots and Nanoporous Metal Films, Nano Lett. 2002, 2, 933.
    [29] M. Antonietti, C. Goltner, Superstructures of Functional Colloids: Chemistry on the Nanometer Sacle, Angew. Chem. Ed. Engl. 1997, 36, 910.
    [30] S. V. Vinogradov, T. K. Bronich, A. V. Kabanov, Nanosized cationic hydrogels for drug delivery: preparation, properties and interactions with cells, Adv. Drug. Delivery Rev. 2002, 54, 135.
    [31] B. M. Discher, Y. Y. Won, D. S. Ege, J. C. Lee, F. S. Bates, D. E. Discher, D. A. Hammer, polymersomes: Tough Vesicles Made from Diblock Copolymer, Science 1999, 284, 1143.
    [32] F. Ilhan, T. H. Galow, M. Gray, G. Clavier, V. M. Rotello, Giant Vesicle Formation through Self-Assembly of Complementary Random Copolymer, J. Am. Chem. Soc. 2000, 12, 5895.
    [33] A. K. Brannan, F. S. Bates, ABCA Tetrablock Copolymer Vesicles, Macromolecules 2004, 37, 8816.
    [34] D. M. Vriezema, J. Hoogboom, K. Velonia, K. Takazawa, P. C. M. Christanen, J. C. Maan, A. E. Rowan, R. J. M. Nolte, Vesicles and Polymerized Vesicles from Thiophene-Containing Rod-Coil Block Copolymer, Angew. Chem. Int. Ed. 2003, 42, 772-776
    [35] D. E. Discher, R. D. Kamien, Towards precision micelles, Nature 2004, 430, 519-520
    [36] H. Xu, R. Erhardt, V. Abetz, A. H. E. Müller, W. A. Goedel, Janus Micelles at the air/water Interface, Langmuir 2001, 17, 6786.
    [37] E. Kramer, S. F?ster, C. Goltner, M. Antonietti, Synthesis of Nanoporous Silica with New Pore Morphologies by Templating the Assemblies of Ionic Block Copoymers, Langmuir 1998, 14, 2027.
    [38] K. Prochazka, T. J. Martin, S. E. Webber, P. Munk, Onion-Type Micelles in Aqueous Media, Macromolecules 1996, 29, 6526.
    [39] B. Michels, G. Waton, R. Zana, Dynamics of Micelles of Poly(ethylene oxide)-Poly(ethylene oxide) Block Copolymers in Aqueous Solutions, Langmuir 1997, 13, 3111.
    [40] C. Honda, Y. Abe, T. Nose, Relaxation Kinetics of Micellization in Micelle-Forming Block Copolymer in Selective Solvent, Macromolecules 1996, 29, 6778.
    [41] X. Chen, Y. Liu, Y. An, J. Lü, J. Li, D. Xiong, L. Shi, Novel Structured Composites Formed from Gold Nanoparticles and Diblock Copolymers, Macromol. Rapid. Commun. 2007, 28, 1350.
    [42] L. Zhang, K.Yu, A. Eisenberg, Multiple Morphologies and Characteristics of“Crew-Cut“Micelle-like Aggregates of Polystyren-b-poly(acrylic acid) Diblock Copolymers in Aqueous Solutions, J. Am. Chem. Soc. 1996, 118, 3168.
    [43] L. Zhang, K.Yu, A. Eisenberg, Ion-Induced Morphological Changes in“Crew-Cut“Aggregates of Amphiphilic Block Copolymers, Science 1996, 272, 1777.
    [44] L. Zhang, A. Eisenberg, Multiple Morphologies of“Crew-Cut“Aggregates of Polystyrene-b-poly(acrylic acid) Block Copolymers, Science 1995, 268, 1728
    [45] Y. Yu, A. Eisenberg, Control of Morphology through Polymer-Solvent Interactions in Crew-Cut Aggregates of Amphiphilic Block Copolymer, J. Am. Chem. Soc. 1997, 119, 8383.
    [46] L. Zhang, A. Eisenberg, Thermodynamic vs Kinetic Aspects in the Formation and Morphological Transitions of Crew-Cut Aggregates Produced by Self-Assembly of Polystyrene-b-poly(acrylic acid) Block Copolymers in Diute Solution, Macromolecules 1999, 32, 2239.
    [47] E. Minati, P. Viville, R. Borsali, M. Schappacher, A. Deffieux, R. Lazzaroni, Micellar Morphological Changes Promoted by Cyclization of PS-b-PI Copolymer: DLS and AFM Experiments, Macromolecules 2003, 36, 4125.
    [48] V. Butun, S. P. Armes, N. C. Billingham, Z. Tuzar, A. Rankin, J. Eastoe, R. K. Heenan, The Remarkable“Flip-Flop”Self-Assembly of a Diblock Copolymer in Aqueous Solution, Macromolecules 2001, 34, 1503.
    [49] L. Lei, J. F. Gohy, N. Willet, J. X. Zhang, S. Varshney, R. Jerome, Tuning of the Morphology of Core-Shell-Corona Micelles in Water. I. Transition from Sphere to Cylinder, Macromolecules 2004, 37, 1089.
    [50] J. Fu, B. Luan, X. Yu, Y. Cong, J. Li, C. Pan, Y. Han, Y. Yang, B. Li, Bis(phenoxyimine)zir conium and–titanium Catalysts Affording Prevailingly Syndiotactic Polypropylenes via Opposite Modes of Monomer Insertion, Macromolecules 2004, 37, 276
    [51] Z. Zhou, Z. Li, Y. Ren, M. A. Hillmyer, T. P. Lodge, Micellar Shape Change and Internal Segregation Induced by Chemical Modification of a Tryptych Block Copolymer Surfactant, J. Am. Chem. Soc. 2003, 125, 10182.
    [52] T. P. Lodge, J. Bang, K. J. Hanley, J. Krocak, S. Dahlquist, B. Sujan, J. Ott, Origins of Anomalous Micellization in Diblock Copolymer Solutions, Langmuir 2003, 19, 2103.
    [53] T. P. Lodge, B. Pudil, K. J. Hanley, The Full Phase Behavior for Block Copolymers in Solvents of Varying Selectivity, Macromolecules 2002, 35, 4707
    [54] J. V. M. Weaver, S. P. Armes, S. Liu, A“Holy Trinity”of Micellar Aggregates in Aqueous Solution at Ambient Temperature: Unprecedented Self-Assembly Behavior from a Binary Mixture of a Neutral-Cationic Diblock Copolymer and an Anionic Polyelectrolyte, Macromolecules 2003, 36, 9994
    [55] A. S. Lee, V. Butun, M. Vamvakaki, S .P. Armes, J. A. Pople, A. P. Gast, Structure of pH-Dependent Block Copolymer Micelles: Charge and ionic Strength Dependence, Macromolecules 2002, 35, 8540.
    [56] K. Schillen, K. Bryskhe, Y. S. Menikova, Vesicles Formed from a Poly(ethylene oxide)-Poly(propylene oxide)-Poly(ethylene oxide) Triblock Copolymer in Dilute Aqueous, Macromolecules 1999, 32, 6885.
    [57] E. Jeoung, T. H. Galow, J. Schotter, M. Bal, A. Ursache, M. T. Tuominen, C. M. Stafford, T. P. Russell, V. M. Rotello, Fabrication and Characterization of Nanoelectrode Arrays Formed via Block Copolymer Self-Assembly, Langmuir 2001, 17, 6396.
    [58] D. M. Vriezema, A. Kros, R. de Gelder, J. J. L. M. Cornelissen, A. E. Rowan, R. J. M. Nolte, Eelectroformed Giant Vesicles from Thiophene-Containing Rod-Coil Diblock Copolymers, Macromolecules 2004, 37, 4736.
    [59] A. Khanal, Y. Li, N. Takisawa, N. Kawasaki, Y. Oishi, K. Nakashima, Morphological Change of the Micelle of Poly(styrene)-b-poly(ethylene oxide) Induced by Binding of Sodium Dodecyl Sulfate, Langmuir 2004, 20, 4809.
    [60] E. Hoppenbrouwers, Z. Li, G. Liu, Triblock Nanospheres with Amphiphilic ControlChains, Macromolecules 2003, 36, 876.
    [61] Y. Y. Won, H. T. Davis, F. S. Bates, Giant Wormlike Rubber Micelles, Scicence 1999, 283, 960.
    [62] S. Stewart, G. Liu, Block Copolymer Nanotubes, Angew. Chem. Int. Ed. 2000, 39, 340.
    [63] D. J. Pochan, Z. Chen, H. Cui, K. Qi, K. L. Wooley, Toroidal Triblock Copolymer Assemblies, Science 2004, 306, 94.
    [64] J. Massey, K. N. Power, I. Manners, M. A. Winnik, Self-Assembly of a Novel Organometallic-Inorganic Block Copolymer in Solution and the Solid State: Nonintrusive Observation of Novel Wormlike Poly(ferrocenyldimethylsilane) -b-Poly(dimethylsiloxane) Micelles, J. Am. Chem. Soc. 1998, 120, 9533.
    [65] N. S. Cameron, M. K. Corbierre, A. Eisenberg, 1998 E. W. R. Steacie Award Lecture Asymmetric amphiphilic block copolymers in solution: a morphological wonderland, Can. J. Chem. 1999, 77, 1311.
    [66] L. Luo, A. Eisenberg, Thermodynamic Size Control of Block Copolymer Vesicles in Solution, Langmuir 2001, 17, 6804.
    [67] M. Moffitt, K. Khougaz, A. Eisenberg, Micellization of Ionic Block Copolymers, Acc. Chem. Res. 1996, 29, 95.
    [68] H. Shen, L. Zhang, A. Eisenberg, Multiple pH-Induced Morphological Change in Aggregates of Polystyrene-block-poly(4-vinylpyridine) in DMF/H2O Mixtures, J. Am. Chem. Soc. 1999, 121, 2728.
    [69] B. H. Sohn, S. Yoo, B. W. Seo, S. M. Park, Nanopatterns by Free-standing Monolayer Films of Diblock Copolymer Micelles with in Situ Core-Corona Inversion, J. Am. Chem. Soc. 2001, 123, 12734.
    [70] S. Krishnamoorthy, R. Pugin, J. Brugger, H. Heinzelmann, A. C. Hoogerwerf, C. Hinderling, Block Copolyer Micelles as Switchable Templates for Nanofabrication, Langmuir 2006, 22, 3450.
    [71] Y. Boontongkong, R. E. Cohen, Cavitated Block Copolymer Micellar Thin Films: Lateral Arrays of Open Nanoreactors, Macromolecules 2002, 35, 3647
    [72] Y. Xuan, J. Peng, L. Cui, H. Wang, B. Li, Y. Han, Morphology Development of Ultrathin Symmetric Diblock Copolymer Film via Solvent Vapor Treatment, Macromolecules 2004, 37, 7301.
    [73] Y. Cong, Z. Zhang, J. Fu, J. Li, Y. Han, Water-Induced Morphology Evolutionof Block Copolymer Micellar Thin Films, Polymer 2005, 46, 5377.
    [74] A. Harada, K. Kataoka, Formation of Polyion Complex Micelles in an Aqueous Milieu from a Pair of Oppositely-Charged Block Copolymer with Poly(ethylene glycol) Segments, Macromolecules 1995, 28, 5294.
    [75] G. S. Kwon, K. Kataoka, Block copolymer micelles as long-circulating drug vehicles, Adv. Drug Delivery Rev. 1995, 16, 295.
    [76] C. Scholz, M. Lijima, Y. Nagasaki, K. Kataoka, A Novel Reactive Polymeric Micelle with Aldehyde Groups on Its Surface, Macromolecules 1995, 28, 7295.
    [77] C. Allen, D. Maysinger, A. Eisenberg, Nano-engineering block copolymer aggregates for drug delivery, Colloids and Surfaces B, 1999, 16, 3.
    [78] E. D. Pressly, R. Rossin, A. Hagooly, K. Fukukawa, B. W. Messmore, M. J. Welch, K. L. Wooley, M. S. Lamm, R. A. Hule, D. J. Pochan, C. J. Hawker, Biomaromolecules 2007, 8, 3126.
    [79] M. Antonietti, S. Forster, J. Hartmann, S. Oesteich, Novel Amphiphilic Block Copolymer by Polymer Reactions and Their Use for Solubilization of Metal Salts and Metal Colloids, Macromolecules 1996, 29, 3800.
    [80] M. Moffitt, A. Ensenberg, Size Control of Nanoparticles in Semiconductor- Polymer Composites. 1. Control via Multiplet Aggregation Numbers in Styrene-Based Random Ionomers, Chem Mater 1995, 7, 1178.
    [81] C. Wu, A. Niu, L. M. Leung, T. S. Lam, Preparation of Narrowly Distributed Stable and Soluble Polyacetylene Block Copolymer Nanoparticles, J. Am. Chem. Soc. 1999, 121, 1954.
    [82] S. F?rster, T. Plantenberg, From Self-Organizing Polymers to Nanohybrid and Biomaterials, Angew. Chem. Int. Ed. 2002, 41, 688.
    [83] R. T. Clay, R. E. Cohen, Synthesis of metal nanoclusters within microphase- separated diblock copolymers: a‘universal’approach, Supramol. Sci. 1995, 2, 183.
    [84] J. Yue, R. E. Cohen, Nanoreactors for inorganic cluster synthesis, Supramol, Sci. 1994, 1, 117.
    [85] R. S. Kane, R. E. Cohen, Synthesis of PbS Nanoclusters within Block Copolymer Nanoreactors, Chem. Mater. 1996, 8, 1919
    [86] B. H. Sohn, R. E. Cohen, Processible Optically Transparent Block Copolymer Film Containing Superparamagnetic Iron Oxide Nanoclusters, Chem. Mater. 1997, 9, 264
    [87] Y. Boontongkong, R. E. Cohen, Cavitated Block Copolymer Micellar Thin Films:Lateral Arrays of Open Nanoreactors, Macromolecules 2002, 35, 3647.
    [88] H. Imahori, S. Fukuzumi, Porphyrin Monolayer-Modified Gold Clusters as Photoactive Materials, Adv. Mater. 2001, 13, 1197.
    [89] S. Weiss, Fluorescence Spectroscopy of Single Biomelecules, Science 1999, 283, 1676.
    [90] S. Nie, S. R. Eniory, Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering, Science 1997, 275, 1102.
    [91] A. B. R. Mayer, Colloidal Metal Nanparticles Dispersed in Amphiphilic Polymers, Polym. Adv. Technol. 2001, 12, 96.
    [92] G. Hou, L. Zhu, D. Chen, M. Jiang, Core-Shell Reversion of Hybrid Polymeric Micelles Containing Gold Nanoparticles in the Core, Macromolecules 2007, 40, 2134.
    [93] M. Aizawa, J. M. Buriak, Block Copolymer-Templated Chemistry on Si, Ge, InP, and GaAs Surfaces, J. Am. Chem. Soc. 2005, 127, 8932.
    [94] H. Zhao, E. P. Douglas, B. S. Harrison, K. S. Schanze, Preparation of CdS Nanoparticles in Salt-Induced Block Copolymer Micelles, Langmuir 2001, 17, 8428.
    [95] H. Zhao, E. P. Douglas, Preparation of Corona-Embedded CdS Nanoparticles, Chem. Mater. 2002, 14, 1418-1423
    [96] C. W. Wang, M. G. Moffitt, Surface-Tunble Photoluminescence from Block Copolymer-Stabilized Cadmium Sulfide Quantum Dots, Langmuir 2004, 20, 11784.
    [97] H. Yusuf, W. G. Kim, D. H. Lee, M. Aloshyna, A. G. Brolo, M. G. Moffitt, A Hierarchical Self-Assembly Route to Three-Dimensional Polymer-Quantum Dot Photonic Arrays, Langmuir 2007, 23, 5251.
    [98] C. W. Wang, M. G. Moffitt, Nonlithographic Hierarchical Patterning of Semiconducting Nanoparticles via Polymer/Polymer Phase Separation, Chem. Mater. 2005, 17, 3871.
    [99] Y. Guo, M. G. Moffitt, Semiconductor Quantum Dots with Environmentally Responsive Mixed Polystyrene/Poly(methyl methacrylate) Brush Layers, Macromolecules 2007, 40, 5868.
    [100] G. Schabas, H. Yusuf, M. G. Moffitt, D. Sinton, Controlled Self-Assembly of Quantum Dots and Block Copolymers in a Microfluidic Device, Langmuir 2008,24, 637.
    [101] C. C. Weng, K. H. Wei, Selective Distribution of Surface-Modified TiO2 Nanoparticles in Polystyrene-b-poly(Methyl Methacrylate) Diblock Copolymer, Chem. Mater. 2003, 15, 2936
    [102] S. I. Yoo, B. H. Sohn, W. C. Zin, S. J. An, G. C. Yi, Self-assembled arrays of zinc oxide nanoparticles from monolayer films of diblock copolymer micelles, Chem. Comm. 2004, 2850-2851.
    [103] C. C. Weng, K. F. Hsu, K. H. Wei, Synthesis of Arrayed, TiO2 Needlelike Nanostructures via a Polystyrene-block-poly(4-vinylpyridine) Diblock copolymer Template, Chem. Mater. 2004, 16, 4080
    [104] X. Li, K. H. A. Lau, D. H. Kim, W. Knoll, High-Density Arrays of Titania Nanoparticles Using Monolayer Micellar Films of Diblock Copolymers as Templates, Langmuir 2005, 21, 5212.
    [105] S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, H. A. Atwater, Plasmonics-A Route to Nanoscale Optical Devices, Adv. Mater. 2001, 13, 1501.
    [106] D. L. Feldheim, C. D. Keating, Self-assembly of single electron transistors and related devices, Chem. Soc. Rev. 1998, 27, 1.
    [107] B. H. Sohn, R. E. Cohen, Processible Optically Transparent Block Copolymer Films Containing Superparamagnetic Iron Oxide Nanoclusters, Chem. Mater. 1997, 9, 264.
    [108] M. P. Pileni, Magnetic fluides: Fabrication, magnetic properties, and organization of nanocrystals, Adv. Funt. Mater. 2001, 11, 323-336.
    [109] Y. K. Chio, J. Zhu, J. Grunes, J. Bokor, G. A. Somorjai, Fabrication of sub-10-nm silicon annowire arrays by size reduction lithography, J. Phys. Chem. B 2003, 107, 3340.
    [110]张希,沈家骢,“浮萍”与“倒浮萍”聚合物超薄膜结构与功能组装,高分子学报1997, 4, 469.
    [111]邹勃,张力,吴立新,迟力峰,张希,科学通报2001, 46, 441.
    [112] A. Kumar, G. M. Whitesides, Patterned Condensation Figures as Optical Diffraction Gratings, Science 1994, 263, 60.
    [113] Y. Xia, G. M. Whitesides, Soft Lithography, Angew. Chem., Int. Ed. 1998, 37, 551.
    [114] Z. Chen, T. Gang, X. Yan, X. Li, J. Zhang, Y. Wang, X. Chen, Z. Sun, K. Zhang, B.Zhao, B. Yang, Capto-dative Substituent Effects in Syntheses with Padicals and Radicophiles [New synthetic methods (32)], Adv. Mater., 2006, 18, 924
    [115] Z. Sun, Y. Li, Y. Wang, X. Chen, J. Zhang, K. Zhang, Z. Wang, C. Bao, J. Zeng, B. Zhao, B. Yang, Three-Dimensional Colloid Crystal-Assisted Lithography for Two-Dimensional Patterned Arrays, Langmuir 2007, 23, 10725
    [116] Stephen Y. Chou, Peter R. Krauss, Preston J. Renstrom, Imprint of sub-25 nm vias and trenches in polymers, Appl. Phys. Lett. 1995, 67, 3114
    [117] S. C. Minne, P. Flueckiger, H. T. Soh, C. F. Quate, Cross-sectional characterization of thin-film transistors with transmission electron microscopy, J. Vac. Sci. Technol. B 1995, 13, 1380
    [118] Y. K. Choi, J. Ma, H. Cheng, Polymer-Dircted Synthesis of Penniform BaWO4 Nanostructures in Reverse Micelles, J. Am. Chem. Soc. 2003, 125, 3450.
    [119] J. P. Spatz, V. Z. H. Chan, S. M??mer, F. M. Kamm, A. Plettl, P. Ziemann, M. M?ller, A Combined Top-Down/Bottom-Up Approach to the Microscopic Localization of Metallic Nanodots, Adv. Mater. 2002, 14, 1827.
    [120] R. Glass, M. M?ller, J. P. Spatz, Block copolymer micelle nanolithography, Nanotechnology 2003, 14, 1153-1160.
    [121] M. Haupt, S. Miller, R. Glass, M. Arnold, R. Sauer, K. Thonke, M. M?ller, J. P. Spatz, Cyanide-Bridged Crlll-Nill Superparamagnetic Nanoparticles, Adv. Mater. 2003, 15, 829
    [122] S. H. Yun, B. H. Sohn, J. C. Jung, W. C. Zin, M. Ree, J. W. Park, Micropatterning of a single layer of nanoparticles by lithographical methods with diblock copolymer micelles, Nanotechnology 2006, 17, 450.
    [1] H. Huang, Z. Hu, Y. Chen, F. Zhang, Y. Gong, T. He, C. Wu, Effects of Casting Solvents on the Formation of Inverted Phase in Block Copolymer Thin Film, Macromolecules 2004, 37, 6523.
    [2] S. F?rster, M. Antonietti, Amphiphilic Block Copolymers in Structure-Controlled Nanomaterial Hybrids, Adv. Mater. 1998, 10, 195.
    [3] L. F. Zhang, A. Eisenberg, Multiple Morphologies of“Crew-Cut”Aggregates of Polystyrene-b-poly(acrylic acid) Block Coplymer, Science 1995, 268, 1728.
    [4] S. Jain, F. S. Bates, On the Origins of Morphological Complexity in Block Copolymer Surfactants, Science 2003, 300, 460.
    [5] C. Honda, K. Sakaki, T. Nose, Micellization of an asymmetric block copolymer in mixed selective solvents, Polymer 1994, 35, 5309.
    [6] A. Berheim-Groswasser, E. Wachtel, Y. Talmon, Micellar Growth, Network Formation, and Criticality in Aqueous Solutions of the Nonionic Surfactant C12E5, Langmuir 2000, 16, 4131.
    [7] Y. Y. Won, A. K. Brannan, H. T. Davis, F. S. Bates, Cryogenic Transmission Electron Microscopy (Cryo-TEM) of Micelles and Vesicles Formed in Water by Poly(ethylene oxide)-Based Block Copolymers, J. Phys. Chem. B 2002, 106, 3354.
    [8] C. 1. C. Riegel, D. Samios, C. L. Petzhold, A. Eisenberg, Self-assembly of amphiphilic di and triblock copolymers of styrene and quaternized 5-(N,N-diethylamino) isoprene in selective solvents, Polymer 2003, 44, 2117.
    [9] R. Savic, L. Luo, A. Eisenberg, D. Maysinger, Micellar Nanocontainers Distribute to Defined Cytoplasmic Organelles, Science 2003, 300, 615.
    [10] H.Yang, N. Coombs, 1. Sokolov, G. A.Ozin, Free-standing and oriented mesoporous silica films grown at the air? water interface, Nature 1996, 381, 589.
    [11] S. A. Jenekhe, X. L. Chen, Self-Assembled Aggregates of Rod-Coil Block Copolymers and Their Solubilization and Encapsulation of Fullerenes, Science 1998, 279, 1903.
    [12] D. E. Disher, A. Eisenberg, Polymer Vesicles, Science 2002, 297, 967-973
    [13] S. Stewart, G. Liu, Block Copolymer Nanotubes, Angew. Chem. Int. Ed. 2000, 39, 340.
    [14] J. Zhu, Y. Liao, W. Jiang, Ring-Shaped Morphology of“Crew-Cut”Aggregates from ABA Amphiphilic Triblock Copolymer in a Dilute Solution, Langmuir 2004,20, 3809.
    [15] D. J. Pochan, Z. Chen, H. Cui, K. Hales, K. Qi, K. L. Wooley, Toroidal Triblock Copolymer Assemblies, Science 2004, 306, 94.
    [16] J. Zhu, Y. Jiang, H. Liang, W. Jiang, Self-Assembly of ABA Amphiphilic Triblock Copolymers into Vesicles in Dilute Solution, J. Phys. Chem. B. 2005, 109, 8619.
    [17] J. F. Gohy, N. Willet, S. Varshney, J. X. Zhang, R. Jerome, Core-Shell-Corona Micelles with a Responsive Shell, Angew. Chem. Int. Ed. 2001, 40, 3214.
    [18] B. H. Sohn, S. Yoo, B. W. Seo, S. H. Yun, S. M. Park, Nanopatterns by Free-Standing Monolayer Films of Diblock Copolymer Micelles with in Situ Core-Corona Inversion, J. Am. Chem. Soc. 2001, 123, 12734.
    [19] S. Krishnamoorthy, R. Pugin, J. Brugger, H. Heinzelmann, A. C. Hoogerwerf, C. Hinderling, Block Copolymer Micelles as Switchable Templates for Nanofabrication, Langmuir 2006, 22, 3450.
    [20] K. Markgraf, V. Abetz, Superlattices in block copolymer blends with attractive interactions, e-Polym. 2001, No. 15.
    [21] J. Brandrup, E. H. Immergut, E. A. Grulke, A. Abe, D. R. Bloch, Polymer Handbook, 4th ed,; John wily & Sons: New York, 1999.
    [22] J. Hahn, S. E. Webber, Deposition of Cationic Polymer Micelles on Planar SiO2 Surfaces, Langmuir 2004, 20, 4211.
    [23] Y. Cong, Z. Zhang, J. Fu, J. Li, Y. Han, J. Lin, Water-Induced Morphology Evolution of Block Copolymer Micellar Thin Films, Polymer 2005, 46, 5377.
    [24] Y. Cong, J. Fu, J. Li, Y. Han, Acid-induced morphological transition of block copolymer brush absorbed on mica surface, Polym. Int. 2005, 54, 1021.
    [1]李永军,刘春艳,有序纳米结构薄膜材料,化学工业出版社,2006
    [2] C. T. Wong, W. K. Chan, Yellow Light-Emitting Poly(phenylenevinylene) Incorporated with Pendant Ruthenium Bipyridine and Terpyridine Complexes, Adv. Mater., 1999, 11, 455.
    [3] W. K. Chan, X. Gong, W. Y. Ng, Photoconductivity and charge transporting properties of metal-containing poly(p-phenylenevinylene), Appl. Phys. Lett., 1997, 71, 2919.
    [4] Z. Peng, L. Yu, Synthesis of Conjugated Polymers Containing Ionic Transition Metal Complexes, J. Am. Chem. Soc., 1996, 118, 3777.
    [5] Z. Peng, A. R. Gharavi, L. Yu, Synthesis and Characterization of Photorefractive Polymers Containing Transition Metal Complexes as Photosensitizer, J. Am. Chem. Soc., 1997, 119, 4622.
    [6] Q. Wang, L. Wang, L. Yu, Synthesis and Unusual Physical Behavior of a Photorefractive Polymer Containing Tris(bipyridyl)ruthenium(II) Complexes as a Photosensitizer and Exhibiting a Low Glass-Transition Temperature, J. Am. Chem. Soc., 1998, 120, 12860.
    [7] Q. Wang, L. Yu, Conjugated Polymers Containing Mixed-Ligand Ruthenium(II) Complexes. Synthesis, Characterization, and Investigation of Photoconductive Properties, J. Am. Chem. Soc., 2000, 122, 11806.
    [8] B. Wang, M. R. Wasielewski, Design and Synthesis of Metal Ion-Recognition- Induced Conjugated Polymers: An Approach to Metal Ion Sensory Materials, J. Am. Chem., Soc., 1997, 119, 12.
    [9] D. T. McQuade, A. E. Pullen, T. M. Swager, Conjugated Polymer-Based Chemical Sensors, Chem. Rev., 2000, 100, 2537.
    [10] P. G. Pickup, Conjugated metallopolymers. Redox polymers with interacting metal based redox sites, J. Mater. Chem., 1999, 9, 1641.
    [11] S. S. Zhu, T. M. Swager, Conducting Polymertallorotaxanes: Metal Ion Mediated Enhancements in Conductivity and Charge Localization, J. Am. Chem. Soc., 1997, 119, 12568.
    [12] A. Kraft, A. C. Grimsdale, A. B. Holmes, Electroluminescent Conjugated Polymers-Seeing Polymers in a New Light, Angew. Chem. Int. Ed. 1998, 37, 402.
    [13] J. Wang, R. Wang, J. Yang, Z. Zheng, M. D. Carducci, T. Cayou, N. Peyghambarian, G. E. Jabbour, First Oxadiazole-Functionalized Terbium(III)-β-Diketonate for Organic Electroluminescence, J. Am. Chem. Soc., 2001, 123, 6179.
    [14] S. Hou, W. K. Chan, Polymer aggregates formed by polystyrene-block- poly(4-vinyl-pyridine) functionalized with rhenium(I) 2, 2′-bipyridyl complexes, Macromol. Rapid Commun. 1999, 20, 440.
    [15] S. Hou, K. Y. K. Man, W. K. Chan, Nanosized Micelles Formed by the Self-assembly of Amphiphilic Block Copolymers with Luminescent Rhenium Complexes, Langmuir 2003, 19, 2485.
    [16] C. C. Weng, K. F. Hsu, K. H. Wei, Synthesis of Arrayed, TiO2 Needlelike Nanostructures via a Polystyrene-block-poly(4-vinylpyridine) Diblock Copolymer Template, Chem. Mater. 2004, 16, 4080.
    [17] H. Du, G. Q. Xu, W. S. Chin, Sythesis, Characterization, and Nonlinear Optical Properties of Hyridized CdS-Polystyrene Nanocomposites, Chem. Mater. 2002, 14, 4473.
    [18] M. G. Moffitt, C. W. Wang, Surface-Tunable Photoluminescence from Block Copolymer-Stabilized Cadmium Sulfide Quantum Dots, Langmuir 2004, 20, 11784.
    [19] Q. Zhang, S. Gupta, T. Emrick, T. P. Russell, Surface-Functionlized CdSe Nanorods for Assembly in Diblock Copolymer Templates, J. Am. Chem. Soc. 2006, 128, 3898.
    [20] T. Liu, C. Burger, B. Chu, Nanofabrication in polymer matrices, Prog. Polym. Sci. 2001, 28, 5.
    [21] Y. Ma, L. Qi, J. Ma, H. Cheng, W. Shen, Synthesis of Submicrometer-Sized CdS Hollow Sphere in Aqueous Solutions of a Triblock copolymer, Langmuir 2003, 19, 9079.
    [22] M. Zhang, M. Drechsler, A. H. E. Mueller, Template-Controlled Synthesis of Wire-Like Cadium Sulfide Nanoparticle Assemblies within Core-Shell Cylindrical Polymer Brushes, Chem. Mater. 2004, 16, 537.
    [23] N. Duxin, F. Liu, H. Vali, A. Eisenberg, Cadmium Sulphide Quantum Dots in Morphologically Tunable Triblock Copolymer Aggregates, J. Am. Chem. Soc. 2005, 127, 10063.
    [24] H. Zhao, E. P. Douglas, B. S. Harrison, K. S. Schanze, Preparation of CdS Nanoparticles in Salt-Induced Block Copolymer Micelles, Langmuir 2001, 17, 8428.
    [25] H. Zhao, E. P. Douglas, Preparation of Corona-Embedded CdS Nanoparticles, Chem. Mater. 2002, 14, 1418.
    [26] L. Spanhel, M. Haase, H. Weller, A. Henglein, Photochemistry of colloidal semiconductors.20. Surface modification and stability of strong luminescing CdS particles, J. Am. Chem. Soc. 1987, 109, 5649.
    [27] Y. Cong, B. Li, Y. Han, Y. Li, C. Pan, Self-Assembly of H-Shaped Block Copolymers, Macromolecules 2005, 38, 9836.
    [1] S. I. Yoo, B. H. Sohn, W. C. Zin, S. J. An, G. C. Yi, Self-assembled arrays of zinc oxide nanoparticles from monolayer films of diblock copolymer micelles, Chem. Comm. 2004, 2850.
    [2] S. H. Yun, B. H. Sohn, J. C. Jung, W. C. Zin, J. C. Zin, J. K. Lee, O. Song, Tunable Magnetic Arrangment of Iron Oxide Nanoparticles in Situ Synthesized on the Solid Substrate from Diblck Copolymer Micelles, Langmuir 2005, 21, 6548.
    [3] J. P. Spatz, S. Sheiko, M. M?ller, Ion-Stabilized Block Copolymer Micelles: Film Formation and Intermicellar Interaction, Macromolecules 1996, 29, 3220.
    [4] A. N. Shipway, E. Katz, I. Willner, Nanoparticles Arrays on Surfaces for Electronic, Optical, and Sensor Applications, Chem. Phys. Chem. 2000, 1, 18.
    [5] Y. K. Choi, J. Zhu, J. Grunes, J. Bokor, G. A. Somorjai, Fabrication of sub-10-nm silicon annowire arrays by size reduction lithography, J. Phys. Chem. B 2003, 107, 3340.
    [6] F. P. Zamborini, R. M. Crooks, Nanometer-Scale Patterning of Metals by Electrodeposition from an STM Tip in Air, J. Am. Chem. Soc. 1998, 120, 97010.
    [7] R. D. Piner, J. Zhu, F. Xu, S. Hong, C. A. Mirkin,“Dip-pen”nanolithography, Science 1999, 283, 661.
    [8] K. B. Lee, S. J. Park, C. A. Mirkin, J. C. Smith, M. Mrksich, Protein nanoarrays generated by dip-pen nanolithography, Science 2002, 295, 1702.
    [9] A. Kumar, G. M. Whitesides, Features of Gold Having Micrometer to Centimeter Dimendions can be Formed through a Combination of Stamping with an Elastomeric Stamp and an Alkanethiol Ink Followed by Chemical Etching, Appl. Phys. Lett. 1993, 63, 2002.
    [10] Y. Xia, J. A. Rogers, K. E. Paul, G. M. Whitesides, Unconventional Methods for Fabricating and Patterning Nanostructures, Chem. Rev. 1999, 99, 1823.
    [11] S. Palacin, P. C. Hidber, J. P. Bourgoin, C Miramond, C. Fermon, G. M. Whitersides, Patterning with magnetic materials at the micron scale, Chem. Mater. 1996, 8, 1316.
    [12] D. Qin, Y. Xia, B. Xu, H. Yang, C. Zhu, G. M. Whitesides, Fabrication of ordered two-dimensional arrays of micro- and nanoparticles using patterned self-assembled monolayers as templates, Adv. Mater. 1999, 11, 1433.
    [13] C. C. Chen, J. J. Lin, Controlled Growth of Cubic Cadmium Sulfide Nanoparticles Using Patterned Self-Assembled Monolayers as a Template, Adv. Mater. 2001, 13, 136.
    [14] J. Ji, X. Li, L. T. Canham, J. L. Coffer, Use of Microcontact Printing Methods to Direct Pattern Formation of Calcified Mesoporous Silicon, Adv. Mater. 2002, 14, 41.
    [15] A. Bernard, J. P. Renault, B. Michel, H. R. Bosshard, E. Delamarche, Microcontact Printing of Proteins, Adv. Mater. 2000, 12, 1067.
    [16] V. Santhanam, R. P. Andres, Mcirocontact Printing of Uniform Nanoparticle Arrays, Nano Lett. 2006, 1, 46-56
    [17] Y. Cong, J. Fu, Z. Zhang, Z. Cheng, R. Xing, J. Li, Y. Han, Fabrication of Arrays Ag Nanoparticles Aggregates by Microcontact Printing and Block Copolymer Nanoreactor, J. Appl. Polym. Sci. 2006, 100, 2737.
    [18] J. Q. Lu, S. S. Yi, Asp-Gly Based Peptides Confined at the Surface of Cationic Gemini Surfactant Aggregates, Langmuir 2006, 22, 3591.
    [19] M. Aizawa, J. M. Buriak, Block Copolymer Templated Chemistry for the Formation of Metallic Nanoparticle Arrays on Semiconductor Surfaces, Chem. Mater. 2007, 19, 5090.
    [20] M. Antonietti, E. Wenz, L. Bronstein, M. Seregina, Synthesis and characterization of noble metal colloid in block copolymer micelles, Adv. Mater. 1995, 7, 1000.
    [21] A. B. R. Mayer, Colloidal Metal Nanoparticles Dispersed in Amphiphilic Polymers, Polym. Adv. Technol. 2001, 12, 96.
    [22] J. Zhang, Y. Gao, A. Alvarez-Puebla, J. M. B. Buriak, H. Fenniri, Synthesis and SERS Properties of Nanocrystalline Gold Octahedra Generated from Thermal Decomposition of HAuCl4 in Block Copolymers, Adv. Mater. 2006, 18, 3233.
    [23] J. Q. Lu, S. S. Yi, Uniformly Sized Gold Nanoparticles Derived from PS-b-P2VP Block Copolymer Templates for the Controllable Synthesis of Si Nanowires, Langmuir 2006, 22, 3591.
    [24] G. Hou, L. Zhu, D. Chen, M. Jiang, Core-Shell Reversion of Hybrid Polymeric Micelles Containing Gold Nanoparticles in the Core, Macromolecules 2007, 40, 2134.
    [25] S. F?rster, M. Antonietti, Amphiphilic Block Copolymers in Structure-Controlled Nanomaterial Hybrids, Adv. Mater. 1998, 10, 195.
    [26] S. F?rster, T. Plantenberg, From Self-Organizing Polymers to Nanohybrid and Biomaterials, Angew. Chem. Int. Ed. 2002, 41, 688.
    [27] H. M. Powell, J. J. Lannutti, Nanofibrillar Surfaces via Reactive Ion Etching, Langmuir 2003, 19, 9071.
    [28] J. P. Spatz, S. M?ssmer, C. Hartmann, M. M?ller, T. Herzog, M. Krieger, H. G. Boyen, P. Ziemann, B. Kabius, Ordered Deposition of Inorganic Clusters from Micellar Block Copolymer Films, Langmuir 2000, 16, 407.
    [1] H. J. Dai, J. H. Hafner, A. G. Rinzler, D. T. Colbert, R. E. Smalley, Nanotubes as nanoprobes in scanning probe microscopy, Nature 1996, 384, 147.
    [2] S. S. Wong, J. D. Harper, P. T. Lansbury, C. M. Lieber, Carbon Nanotube Tips: High-Resolution Probes for Imaging Biological Systems, J. Am. Chem. Soc. 1998, 120, 603.
    [3] T. W. Ebbesen, H. J. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi, T. Thio, Electrial conductivity of individual carbon nanotubes, Nature 382, 54.
    [4] S. S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, H. J. Dai, Self-Oriented Regular Arrays of Carbon Nanotubes and Their Field Emission Properties, Science 1999, 283, 512.
    [5] J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. J. Cho, H. J. Dai, Nanotube Molecular Wires as Chemical Sensors, Science 2000, 287, 622.
    [6] E. S. Snow, J. P. Novak, M. D. Lay, E. H. Houser, F. K. Perkins, P. M. Campbell, Carbon nanotubes networks: Nanomaterial for macroelectronic applications, J. Vac. Sci. Technol B 2004, 22, 1990.
    [7] J. Q. Lu, T. E. Koplecy, N. Moll, D. Roitman, D. Chamberlin, Q. Fu, J. Liu, T. P. Russell, D. A. Rider, I. Manners, M. A. Winnik, High-Quality Single-Walled Carbon Nanotubes with Small Diameter, Controlled Density, Ordered Locations Using a Polyferrocenyl- silane Block Copolymer Catalyst Precursor, Chem. Mater. 2005, 17, 2227.
    [8] J. Lu, S. S. Yi, T. Kopley, C. Qian, J. Liu, E. Gulari, Fabrication of Ordered Catalytically Active Nanoparticles Derived from Block Copolymer Micelle Templates for Controllable Synthesis of Singly-walled Carbon Nanotubes, J. Phys. Chem. B 2006, 110, 6655.
    [9] J. Q. Lu, D. A. Rider, E. Onyegam, H. Wang, M. A. Winnik, I. Manners, Q. Cheng, Q. Fu, J. Liu, Carbon Nanotubes with Small and Tunable Diameters from Poly (ferrocenylsilane)-block-polysiloxane Diblock Copolymers, Langmuir 2006, 22, 5174.
    [10] R. D. Bennett, G. Y. Xiong, Z. F. Cohen, R. E. Cohen, Using Block Copolymer Micellar Thin Films as Templates for the Production of Catalysts for Carbon Nanotube Growth, Chem. Mater. 2004, 16, 5589.
    [11] R. D. Bennett, A. J. Hart, R. E. Cohen, Controlling the Morphology of Carbon Nanotube Films by Varying the Areal Density of Catalyst Nanoclusters Using Block-Copolymer Micellar Thin Films, Adv. Mater. 2006, 18, 2274.
    [12] R. D. Bennett, A. J. Hart, A. C. Miller, P. T. Hammond, D. J. Irvine, R. E. Cohen, Creating Patterned Carbon Nanotube Catalysts through the Microcontact Printing of Block Copolymer Micellar Thin Films, Langmuir 2006, 22, 8273.
    [13] G. G. Tibbetts, Why are carbon filaments tubular? Journal of Crystal Growth, 1984, 66, 632.
    [14] Q. Fu, S. Huang, J. Liu, Chemical Vapor Deposition of Single-Walled Carbon Nanotubes Catalyzed by Uniform Fe2O3 Nanoclusters Synthesized Using Diblock Copolymer Micelles, J. Phys. Chem. B 2004, 108, 6124.
    [15]汪兆平,韩和相,李国华,碳纳米管的拉曼散射研究,光散射学报1999, 1, 28.
    [16] D. P. Schweinsberg, Y. D. West, Quantative FT Raman analysis of two component systems. Spetrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 1997, 53, 25.
    [17] B. M. Carthy, A. B. Dalton, J. N. Coleman, H. J. Byrne, P. Bernier, W. J. Blau, Spectroscopic investigation of conjugated polymer/single-walled carbon nanotube interactions, Chemical Physics Letters, 2001, 350, 27.
    [18]韩和相,汪兆平,李国华,葛惟锟,常保和,解思深,多壁碳纳米管的拉曼散射,光散射学报1999, 11, 187.
    [19] J. W.Liu, W. Wang, W. T. Zheng, J. X. Li, Q. F. Guan, J. L. Su, J. L. Qi, Q. Jiang, Alignment of amorphous carbon nanotubes with graphitized branches grown by radio requency plasma-enhanced chemical vapor depositon, Carbon 2007, 45, 668.
    [20] X. Hu, T. Wang, X. Qu, S. Dong, In Situ Synthesis and Characterization of Multiwalled Carbon Nanotube/Au Nanoparticle Composite Materials, J. Phys. Chem. B 2006, 110, 853.
    [21] X. Wang, Y. Liu, D. Zhu, Two- and Three-Dimensional Alignment and Patterning of Carbon Nanotubes, Adv. Mater. 2002, 14, 165.
    [22] M. Jung, K. Y. Eun, Y. J. Baik, K. R. Lee, J. K. Shin, S. T. Kim, Effect of NH3 envronmental gas on the growth of aligned carbon nanotubes in catalystically pyrolizing C2H2, Thin Solid Films 2001, 398, 150.
    [23] S. H. Tsai, F. K. Chiang, T. G. Tsai, F. S. Shieu, H. C. Shih, Synthesis and characterization of the aligned hydrogenated amorphous carbon nanotubes by electron cyclotron resonance excitation, Thin Solid Films 2000, 1, 11.
    [24] Y. Chen, D. T. Shaw, L. P. Guo, Field emission of different oriented carbon nanotubes, Appl. Phys. Lett. 2000, 76, 2469.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700