基于氢键合成子构筑新颖含氮杂环超分子结构的晶体工程
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Crystal Engineering of Novel Azocyclic Supramolecular Structures Based on Hydrogen-bond Synthons
  • 作者:张婧
  • 论文级别:博士
  • 学科专业名称:物理化学
  • 学位年度:2005
  • 导师:吴立新
  • 学科代码:070304
  • 学位授予单位:吉林大学
  • 论文提交日期:2005-08-01
摘要
本论文基于合成子和晶体工程的概念,利用氢键、π-π堆积、配位键、静电相互作用以及疏水相互作用等一系列非共价相互作用,以偶氮吡啶(AZP)和二吡啶乙烯(BPE)分别与脂肪二酸、萘二酚、过渡金属盐等作为构筑基元进行超分子组装的晶体工程研究,并总结出相应的晶体构筑规律。此外,我们还利用五羰基氯化铼与希佛碱[2-亚甲基吡啶基-1-氨基萘(L)]和乙腈为原料制备非手性配位化合物,进而自组装成单手性单柱状超分子螺旋结构单晶。本论文共制备了四个系列24 个单晶化合物,表征了它们的结构,主要得到了以下新颖结果:
    1. 脂肪酸与AZP 和BPE 构筑的超分子单晶,两个构筑基元在O-H…N/C-H…O 合成子作用下组装成一维条带结构;二维空间上条带间的两个组分采用交替排列还是并肩错位排列取决于组分尺寸的长短。
    2. 由于羟基的位置不同,萘二酚与AZP 和BPE 在O-H…N 氢键作用下构筑的超分子结构既有环形二聚体组装的条带结构,又有两个组分交替排列构成的扭曲的条带结构,还有按照C_2/c 空间群排列成的“8”字形螺旋结构。
    3.根据金属的配位几何方式不同,四方平面结构的[CuCl_4]~(2-)与H_2BPE~(2+)在N-H…Cl2 三中心氢键的作用下组装成简单的条带结构;四面体配位结构的[ZnCl_4]~(2-)和[HgCl_4]~(2-)与H_2BPE~(2+)和H_2AZP~(2+)通过N-H…Cl/C-H…Cl合成子组装成单线链、索环链以及环形二聚体,进而组装成波浪层状以及鱼骨状二维堆积结构;FeCl_2和FeCl_3与BPE 和AZP 构筑的晶体,金属部分都是八面体配位的,分别形成下面三种堆积方式:[FeCl_4(H_2O)_2]~(2-)与H2BPE~(2+)通过N-H…Cl/C-H…Cl合成子构筑成环形二聚体;两个[FeCl6]3-与两个发生了质子化和还原了的扭转的H4AZP~(2+) 在N-H…Cl/C-H…Cl 合成子作用下构成环形二聚体; [H_2BPE]_2+[FeCl_3(H_2O)_3]_2和[H_2BPE]~(2+)Cl-4正负电荷层交替排列的三明治式结构。
    4.金属铼与配体希佛碱L 和乙腈以及三个羰基构筑的晶体化合物呈扭曲的八面体几何结构,在C-H…O 氢键作用下组装成单手性柱状螺旋结构。
Based on the concepts of supramolecular synthon and crystal engineering, we obtain twenty-four crystals in four series suitable for X-Ray crystallographic diffraction with trans-4,4-azobispyridine (AZP) or 1,2-bis(4-pyridyl)ethylene (BPE) as one of the building blocks. The crystals can be classified to organic molecular, organic-inorganic ionic, organometallic helical structural supermolucules via hydrogen bonding, π-πstacking and coordinated self-organization. The novel structures were solved by direct method, and the refinements were carried out using SHELXTL v. 6.14 program.
    1. AZP or BPE with fatty diacid construct crystal engineering via O-H…N/C-H…O synthon. Furthermore, the crystals of p-(4-pyridyl) ethylene toluene with succinic acid and capric acid with BPE were produced for comparison. A conclusion drawn from the investigation of these ten crystals is shown below: (1) In one-dimensional space, AZP or BPE with fatty diacid arrange alternately to tape-like structure. Maleic acid closes to ring, and then aggregates to a dimer with another one via intramolecular O-H…O hydrogen bond. The dimer of maleic acids arrange with BPE alternately to tape-like structure. Two p-(4-pyridyl) ethylene toluene and two capric acids interact via
    Van der Waals force and hydrophobic interaction worked as a diacid and di-pyridyl base, respectively. (2) In two-dimensional space, when the dimension of diacid comparable to that of di-pyridyl base, interlaced arrangement of the two building blocks in adjacent tape is observed; when the dimension of the former is much longer than that of the latter, the former arrange side-by-side with a little shift as well as the latter between adjacent tapes under the hydrophobic interaction; when the dimension of the former is much shorter than that of the latter, the former shifts left and right along the tape between adjacent tapes forming zig-zag arrangement as well as the latter. (3) In three-dimensional space, π-πinteraction only is observed in the crystals of succinic acid and adipic acid with AZP and BPE. 2. Supramolecular crystals are obtained from BPE with 2,3-dihydroxynaphthalene (2,3-DHN) and 2,7-dihydroxynaphthalene (2,7-DHN) , respectively or AZP with 2,7-DHN as building block via O-H…N synthon. The try to produce crystal of AZP with 2,3-DHN failed. (1) Crystal of BPE with 2,3-DHN form ternary cyclic dimer with the participator of latticed ethanol. The dihedral angle between BPE and 2,3-DHN is 74.1o, and the separation of BPE in a dimer is 3.46? indicating the existence of π-πinteraction. As a result of packing to two-dimensional structure, one BPE (2,3-DHN) couple is encompassed by four 2,3-DHN (BPE) couples. In three-dimensional space, one BPE (2,3-DHN) couple stands above and beneath one 2,3-DHN (BPE) couple. In other word, the first layer overlaps with the third layer exactly. (2) In the crystal of BPE and 2,7-DHN, two building blocks arrange alternately to chain via O-H…N synthon with 50.6o dihedral angle. Under C-H…O intermolecular interaction two building blocks arrange also alternately between adjacent chains to form a layer. In
    three-dimensional space two building blocks arrange alternately between adjacent layers, too, similar with the crystal of BPE wirh 2,3-DHN. (3) Crystal of AZP with 2,7-DHN in C2/c space group form ‘8’shaped helical structure with alternant building blocks via O-H…N synthon. The dihedral angle between AZP and 2,7-DHN neighbour is 12o. As a result of transfer equivalently, there exist π-πinteraction between two pyridyl ring of AZP with 2,7-DHN and another pyridyl, respectively. 3. According to the tendency of protonation and further participate in hydrogen bond, BPE and AZP are used to crystallize with transition metal in acid environment via hydrogen bonding and electrostatic interaction. We obtained ten ionic supramolecular crystals in which metal forms coordinated square planar, tetrahedral and octahedral geometry, respectively. (1) H2BPE2+ with square planar [CuCl4]2-arrange alternately via N-H…Cl2 three-center bifurcate synthon to one-dimensional tape-like structure. Adjacent tapes link to corrugated sheet via α-CH…Cl interaction. Viewed along the direction of tape, every tape is surrounded by six tapes with π-πstacking. (2) Here exhibit three motifs of solid supramolecular structure of H2BPE2+ and H2AZP2+ crystallized with tetrahedral [ZnCl4]2+ and [HgCl4]2+: zig-zag chain induced by N-H…Cl hydrogen bond; grommet chain induced by N-H…Cl/C-H…Cl synthon; cyclic dimer induce by a couple of N-H…Cl/C-H…Cl synthon. Under the influence of tetrahedral geometry of inorganic part the former two are corrugated sheet and the later is herring-bond-like packing structure in two-dimensional space. (3)H2BPE2+ and H2AZP2+ with six-coordinated Fe(II) and Fe(III) form novel supramolecular crystal structure in HCl. H2BPE2+ with [FeCl4(H2O)2]2-form cyclic dimer via N-H…Cl/C-H...Cl synthon which packs to not herring-bond-like structure but zig-zag chain linked by O-H…O
    hydrogen bonding. C-H…Cl interchainar interaction contributes to the formation of sheet. Latticed water and HCl solvent cross-link adjacent sheets to three-dimensional structure except for the contribution of π-πstacking. Redox reaction happens when AZP cocrystallizes with FeCl2 in HCl in which azo translates to hydrazine along with Fe(II) to Fe(III). A couple of torsional H4AZP2+ and [FeCl6]3-aggregate to a cyclic dimer with [FeCl4]-in their loop. Crystal of BPE and FeCl3 crystallized in HCl forms the rare sandwich structure of [H2BPE]2+[FeCl3(H2O)3]2 positive sheet and [H2BPE]2+·4Cl-negative sheet alternately. 4. Although this part work is not about AZP or BPE, another Schiff base 2-metheneepridyl-1-aminonaphthalene (L) was used. The chiral construction of complex supramolecular systems is receiving much interest, especially with achiral building units. In this part, we investigated the helical supramolecular structure of an achiral rhenium complex crystal, [Re(CO)3(C16H12N2)(MeCN)].ClO4, which was formed by coordination of Re(CO)5Cl with L and acetonitrile. X-ray diffraction analysis suggests that homohelical column metallosupramolecular architecture results from the array of six-coordinated Re around and along a line: the helical axis in chiral in P 1 21 1 space. There is rare example of constructing helical architectures with both coordinated and hydrogen bonds from achiral units. The helical self-assembly process is induced by the intrastrand interaction and crystal growth. Here, the perchlorate acts as both the counter ion and the bridge linking the neighboring coordinated parts together by weak non-covalent interaction. Furthermore, the two-dimensional arrangement adopts double-edged axe-shaped motif, which is different from the common herringbone or brick-wall pattern in coordination polymers. Our investigation
    introduced the special arrangement model into complicated helical architecture, especially homochiral single-colony. In summary, twenty-four crystals’structures have been analyzed and discussed in this thesis, and related crystal engineering character and orderliness have been brought forward which is predictive to the architecture of similar building blocks and synthons.
引文
1. J.M. Lehn, Angew. Chem. 1988, 100, 91; Angew. Chem. Int. Ed. Engl. 1988, 27, 89; ibid. 1990, 102, 1347 and 1990, 29, 134
    2. J.D. Dunitz, Pure Appl. Chem., 1991, 63, 177
    3. G.R. Desiraju (ed.), The Crystal as a Supramolecular Entity. Perspectives in Supramolecular Chemistry 2, Wiley, Chichester, 1996
    4. G.R. Desiraju, Chem. Commun., 1997, 1475
    5. G.R. Desiraju, Crystal Engineering. The Design of Organic Solids, Materials Science Monograph 54, Elsevier, Amsterdam, 1989
    6. G.M.J. Schmidt, et al., Solid State Photochemistry, D. Ginsburg (ed.), Verlag Chemie, Weinheim, 1976
    7. L. Leiserowitz and A.T. Hagler, Proc. R. Soc. Lond., 1983, A388, 133
    8. J.A.R.P. Sarma and G.R. Desiraju, Acc. Chem. Res. 1986, 19, 222
    9. T.W. Panunto, Z. Urbànczyk-Lipkowska, R. Johnson and M.C. Etter, J. Am. Chem. Soc. 1987, 109, 7786
    10. G.R. Desiraju, Angew. Chem., Int. Ed. Engl. 1995, 34, 2311
    11. D. Braga, Chem. Commun. 2003, 2751
    12. G.A. Jeffrey and W. Saenger, Hydrogen Bonding in Biological Structures, Springer, Berlin 1991
    13. G.R. Desiraju, Acc. Chem. Res. 1996, 29, 441
    14. T. Steiner, Cryst. Rev. 1996, 6, 1
    15. F.H. Allen, V.J. Hoy, J.A.K. Howard, V.R. Thalladi, G.R. Desiraju, C.C. Wilson and G.J. Mclntyre, J. Am. Chem. Soc. 1997, 119, 3477
    16. N.N.L. Madhavi, A.K. Katz, H.L. Carrell, A. Nangia and G.R. Desiraju, Chem. Commun., 1997, 1953
    17. A.I. Kitaigorodskii, Molecular Crystal and Molecules, Academic Press, New York, 1973
    18. W. Nowacki, Helv. Chim. Acta 1942, 25, 863; (b)W. Nowacki, Helv. Chim. Acta 1943, 26, 459;(c) H.B. Bürgi and J.D. Dunitz, Helv. Chim. Acta 1993, 76, 1115
    19. G.R. Desiraju, in Comprehensive Supramolecular Chemstry. (Eds.: D.D. MacNicol, F. Toda, R. Bishop). Pergamon. Oxford. 1996, Vol. 6
    20. G.R. Desiraju and K.V.R. Kishan, J. Am.Chem. Soc. 1989, 111, 4838; G.R. Desiraju and R.L. Harlow, ibid. 1989, 111, 6757; J.K. Whitesell, R.E. Davis, L.L. Saunders, R.J. Wilson and J.P. Feagins, ibid. 1991, 113, 3267; G.. Filippini and A. Gavezzotti, Chem. Phys. Lett. 1994, 2331, 86
    21. C.P. Brock, W.B. Schweizer and J.D. Dunitz, J. Am. Chem. Soc. 1991, 113, 9811; S.J. Geib, C. Vicent, E. Fan and A.D. Hamilton, Angew. Chem. 1993, 105, 83; Angew. Chem. Int. Ed. Engl. 1993, 32, 119
    22. J. Konnert and D. Britton, Inorg. Chem. 1966, 5, 1193
    23. M.R. Bryce and L.C. Murphy, Nature (London) 1984, 309, 119
    24. M. C. Etter and T. W. Panunto, J. Am. Chem. Soc. 1988, 110, 5896
    25. G.R. Desiraju, CrystEngComm 2003, 5(82), 466
    26. F.H. Herbstein, Acta Crystallogr. 2003, B59, 303
    27. E.J. Corey, Pure Appl. Chem. 1967, 14, 19
    28. W.M. Latimer and W.H. Rodebush, J. Am. Chem. Soc. 1920, 42, 1419
    29. L. Pauling, The Nature of Chemical Bond and the Structure of Molecules and Crystals-An Introduction to Modern Structural Chemstry, 2nd Edn., Oxford University Press, London, 1940
    30. G.C. Pimentel and A.L. MeClellan, The Hydrogen Bond, Freeman, San Francisco, 1960
    31. P.W. Atkins, General Chemistry, Scientific American Books, New York, 1989
    32. Th. Zeeger-Huyskens and P. Huyskens, in Intermolecular Forces-An Introduction to Modern Methods and Results, ed. P.L. Huyskens, W.A.P. Luck and T. Zeeger-Huyskens, Springer-Verlag, Berlin, 1991, p.l.
    33. T. Steiner, Angew. Chem. Int. Ed. 2002, 41, 48
    34. K. Morokuma, Acc Chem. Res. 1977, 10, 294
    35. G.A. Jeffrey,An Introduction to Hydrogen Bonding, Oxford University Press, Oxford, 1997
    36. S. Scheiner, Hydrogen bonding: A Theoretical Perspective, Oxford University Press, New York, 1997; P. Schuster, G. Zundel and C. Sandorfy, The Hydrogen Bond Recent Developments in Theory and Experiments. North Holland, Amsterdam, 1976, Vols. I-III
    37. T. Steiner and G.R. Desiraju, Chem. Commun. 1998, 891
    38. A. Allerhand and P. Von P. Schleyer, J. Am. Chem. Soc. 1963, 85, 1715
    39. J.J. Novoa, B. Tarron, M.H. Whangbo and J.M. Williams, J. Chem. Phys. 1991, 95, 5179; X. Yan, S. Wang, M. Hodoscek and G.W.A. Milne, J. Mol. Struct.:THEOCHEM 1994, 309, 279; T. Van Mourik and F.B. Van Duijneveldt, J. Mol. Struct.:THEOCHEM 1995, 342, 63
    40. D.M. Burland, Chem. Rev. 1994, 94, 1
    41. R.M. Corn and D.A. Higgins, Chem. Rev. 1994, 94, 107
    42. D.R. Kanis, M.A. Ratner and T.J. Marks, Chem. Rev. 1994, 94, 195
    43. J.L. Bredas, C. Adant, P. Tackx, A. Persoons and B.M. Pierce, Chem. Rev. 1994, 94, 243
    44. V.A. Russell, M.C. Etter and M.D. Ward, Chem. Mater. 1994, 6, 1206
    45. J.A.R.P. Sarma, M.S.K. Dhurjati, K. Ravikumar and K. Bhanuprakash, Chem. Mater. 1994, 6, 1369
    46. S.R. Marder, J.W. Perry and C.P. Yakymyshyn, Chem. Mater. 1994, 6, 1137
    47. P.N. Prasad and D.J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers, John Wiley & Sons, Inc.: New York, 1991
    48. M.C. Etter, K.S. Huang, G.M. Frankenbach, D.A. Adsmond, In Materials for Nonlinear Optics: Chemical Perspectives, S.R. Marder, J.E. Sohn, G.D. Stucky, Eds.; Americal Chemical Society: Washington, DC, 1991, Vol. 455, pp 446-456
    49. M.C. Etter, G.M. Frankenbach and D.A. Adsmond, Mol. Cryst. Liq. Cryst. 1990, 187, 25
    50. M.C. Etter and G.M. Frankenbach, Chem. Mater. 1989, 1, 10
    51. J.S. Miller and A.J. Epstein, Angew. Chem., Int. Ed. Engl. 1994, 33, 385
    52. E. Hernandez, M. Mas, E. Molins, C. Rovira and J. Veciana, Angew. Chem., Int. Ed. Engl. 1993, 32, 882
    53. P.L. Fagan and M.D. Ward, Sci. Am. 1992, 48
    54. M.D. Ward, P.L. Fagan, J.C. Calabrese and D.C. Johnson, J. Am. Chem. Soc. 1989, 111, 1719
    55. P.L. Fagan, M.D. Ward and J.C. Calabrese, J. Am. Chem. Soc. 1989, 111, 1689
    56. J.S. Miller, D.T. Glazhofer, J.C. Calabrese and A.J. Epstein, J. Chem. Soc., Chem. Commun. 1988, 322
    57. J.B. Torrance, S. Oostra and A. Nazzal, Synth. Met. 1986, 19, 709
    58. J.B. Torrance, Acc. Chem. Res. 1979, 12, 79
    59. A.F. Garito and A.J. Heeger, Acc. Chem. Res. 1974, 7, 232
    60. D. Braga and F. Grepioni, Acc. Chem. Res. 1994, 227, 51
    61. F. V?gtle, Supramolecular Chemstry; John Willey & Sons: New York, 1991
    62. J.D. Wright, Molecular Crystals; Cambridge University Press: Cambridge, NY, 1987
    63. R. Laversanne, E. Dupart and P. Delhaes, Mol. Cryst. Liq. Cryst. 1986, 137, 179
    64. J.M. Williams, M.A. Beno, H.H. Wang, P.C.W. Leung, T.J. Emge, U. Geiser and K.D. Carlson, Acc. Chem. Res. 1985, 18, 261
    65. F. Wudl, Acc. Chem. Res. 1984, 17, 227
    66. K.A. Wheeler and B.M. Foxman, Chem. Mater. 1994, 6, 1330
    67. V. Enkelmann, Chem. Mater. 1994, 6, 1337
    68. M.C. Etter, G.M. Frankenbach and J. Bernstein, Tetrahedron Lett. 1989, 30, 3617
    69. J.M. McBride, Acc. Chem. Res. 1983, 16, 304
    70. D.Y. Curtin and I.C. Paul, Chem. Rev. 1981, 81, 525
    71. I.C. Paul and D.Y. Curtin, Science 1975, 187, 19
    72. I.C. Paul and D.Y. Curtin, Acc. Chem. Res. 1973, 7, 217
    73. G..M.J. Schmidt, J. Pure Appl. Chem. 1971, 27, 647
    74. M.D. Cohen and G..M.J. Schmidt, J. Chem. Soc. 1964, 1996
    75. M.D. Cohen, G..M.J. Schmidt and F.I. Sonntag, J. Chem. Soc. 1964, 2000
    76. G..M.J. Schmidt, J. Chem. Soc. 1964, 2014
    77. J. Bregman, K. Osaki, G.M.J. Schmidt and F.I. Sonntag, J. Chem. Soc. 1964, 2021
    78. G.R. Desiraju, Curr. Opin. Solid State Mater. Sci. 1997, 2, 451
    79. J.M. Robertson, Proc. R. Soc. London 1951, A207, 101
    80. A. Gavezzotti and G.R. Desiraju, Acta Crystallogr. 1988, B44, 427
    81. G.R. Desiraju and A. Gavezzotti, J. Chem. Soc., Chem. Commun., 1989, 621
    82. A. Gavezzotti and G.R. Desiraju, Acta Crystallogr. 1988, B45, 473
    83. Y. Ducharme and J.D. Wuest, J. Org. Chem. 1988, 53, 5787
    84. M. Gallant, M.T.P. Viet and J.D. Wuest, J. Am. Chem. Soc. 1991, 113, 721
    85. E. Boucher, M. Simard and J.D. Wuest, J. Org. Chem. 1995, 60, 1408
    86. D.S. Reddy, Y.E. Ovchinnikov, O.V. Shishkin, Y.T. Struchkov and G.R. Desiraju, J. Am. Chem. Soc. 1996, 118, 4085
    87. D.S. Reddy, D.C. Craig and G.R. Desiraju, J. Am. Chem. Soc. 1996, 118, 4090
    88. A. Gavezzotti, Curr. Opin. Solid State Mater. Sci. 1996, 1, 501
    89. M.C.T. Fyfe and J.F. Stoddart, Acc. Chem. Res. 1997, 30, 430
    90. S.C. Zimmerman, Science 1997, 276, 543
    91. C.B. Aaker?y, Acta Crystallogr. 1997, B53, 569; G.R. Desiraju, Science 1997, 278, 404
    92. D.D. MacNicol, F. Toda, and R. Bishop (eds.), Comprehensive Supramolecular Chemistry, Pergamon, Oxford, 1996, Vol. 6.
    93. T. Minami, K. Nishimura, I. Hirao, H. Suganuma and T. Agawa, J. Org. Chem. 1982, 47, 2360
    94. R.K.R. Jetti, S.S. Kuduva, D.S. Reddy, F. Xue, T.C.W. Mak, A. Nangia and G.R. Deseriju, Tetrahedron Lett. 1998, 39, 313;
    95. L.R. MacGillivray and J.L. Atwood, J. Am. Chem. Soc. 1997, 119, 6931
    96. M.D. Hollingsworth, B.D. Santarsiero and K.D.M. Harris, Angew. Chem., Int. Ed. Engl. 1994, 33, 649
    97. V. Ramamurthy and D.F. Eaton, Chem. Mater. 1994, 6, 1128
    98. K. Sada, T. Kondo and M. Miyata, Chem. Mater. 1994, 6, 1103
    99. F.H. Herbstein, In Molecular Inclusion and Molecular recognition: I. Clathrates , E. Weber, Ed.; Topics in Current Chemistry; Springer-Verlag: Berlin, New York, 1987, Vol. 140
    100. J.L. Atwood, J.E.D. Davies and D.D. MacNicol, Ed. Inclusion Compounds; Academic Press: London, 1984, Vols. 1-3
    101. M.P. Byrn, C.J. Curtis, I. Goldberg, Y. Hsiou, S.I. Khan, P.A. Sawin, S.K. Tendick and C.E. Strouse, J. Am. Chem. Soc. 1991, 113, 6549
    102. O. Ermer and L. Lindenberg, Helvetica Chim. Acta 1991, 74, 825
    103. W. Tam, D.F. Eaton, J.C. Calabrese, I.D. Walliams, Y. Wang and A.G. Anderson, Chem. Mater. 1989, 1, 128
    104. O. Ermer and A. Eling, Angew. Chem., Int. Ed. Engl. 1988, 27, 829
    105. M. Zakrzewski and M.A. Condens, Matter News 1993, 2, 7
    106. M. Vaida, L.J.M. Shimon, J. Van Mil, K. Ernst-Babrera, L. Addai, L. Leiserowitz and M. Lahav, J. Am. Chem. Soc. 1989, 111, 1029
    107. Y. Weisinger-Lewin, F. Frolow, R.K. McMullan, T.F. Koetzle, M. Lahav and L. Leiserowitz, J. Am. Chem. Soc. 1989, 111, 1035
    108. I. Weissbuch, L. Addadi, L. Leiserowitz and M. Lahav, J. Am. Chem. Soc. 1988, 110, 561
    109. I. Weissbuch, L. Addadi, Z. Berkovitch-Yellin, E. Gati, S. Weinstein, M. Lahav and L. Leiserowitz, J. Am. Chem. Soc. 1983, 105, 6615
    110. D. Braga, G.R. Desiraju, J.S. Miller, A.G. Orpen and S.L. Price, CrystEngComm 2002, 4(83), 500
    111. J.D. Dunitz, Chem. Commun. 2003, 545
    112. J.D. Dunitz and J. Bernstein, Acc. Chem. Res. 1995, 28, 193

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700