金属有机铼配合物催化环氧化合物理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文在实验的基础上,我们用密度泛函理论(DFT)中的B3LYP方法,研究了以下三个方面的问题。我们的主要目的是研究下面所提到的金属有机化合物参与反应的反应机理和各个化合物的结构及成键特征。
     (1)在2009年,Abu-Omar及其合作者报道了用MeReO3 (缩写为MTO)为催化剂,用H2还原环氧化合物及双醇,使其脱氧脱水得到烯烃,并给出了H2先与催化剂MTO作用的反应机理。通过理论计算发现,第一步H2通过[2+3]机理与MTO作用不管是在热力学上还是动力学上都是不可行的。在本论文中,我们利用密度泛函理论(DFT)计算得出了较为合理的与Abu-Omar及其合作者提出的不同的反应机理。1)环氧化合物与催化剂MTO首先反应得到含金属五元环中间体2;2)H2以[2+3]方式进攻中间体2得到双羟基化合物中间体4;3)中间体4经过质子转移得到有水分子配位的含金属五元环中间体6;4)最后一步,直接从中间体6脱出产物烯烃,并伴随催化剂MTO再生,催化循环反应结束。
     在反应的开始有大量的双醇生成,是由于主反应生成的副产物水与中间体2作用,并且存在两个互相竞争的路径,通过理论计算发现,双醇的生成及双醇再转化为中间体2是一个快速的可逆过程,又从中间体2到产物烯烃是一个不可逆过程,随着时间的推移,生成的双醇最终全部转化为烯烃。同时也解释了双醇作为反应物时得到烯烃的反应机理,1)双醇与催化剂MTO反应,经过质子转移得到含金属五元环中间体2;2)H2以[2+3]方式进攻中间体2得到双羟基化合物中间体4;3)中间体4经过质子转移得到有水分子配位的含金属五元环中间体6;4)最后一步,直接从中间体6脱出产物烯烃,并伴随催化剂MTO再生,催化循环反应结束。本论文中提出的反应机理很好的验证了Abu-Omar及其合作者实验现象。
     (2)2005年,Jiang及其合作者首次利用五羰基铼化合物Re(CO)5Br或者CpRe(CO)3作为催化剂催化环氧化合物与CO2耦合反应合成环碳酸酯,反应在无溶剂高温条件下,产率最高能达到97%。Jiang及其合作者给出他们设想的可能机理,指出该反应机理可能类似于Ni催化剂作用机理。在2010年,Guo及其合作者依托Jiang及其合作者的实验利用密度泛函理论(DFT)研究了五羰基铼化合物Re(CO)5Br作为催化剂催化环氧化合物与CO2耦合反应合成环碳酸酯的反应机理。提出了Ⅰ和Ⅱ两种不同的反应机理,机理Ⅰ第一步是环氧化合物与催化剂Re(CO)5Br作用,而机理Ⅱ是催化剂首先活化CO2,通过理论计算,Guo及其合作者得出结论认为机理Ⅰ为可能的反应机理。我们认为,Guo及其合作者提出的机理Ⅰ总的反应势垒太高,可能不是真正的反应机理,在此基础上,我们利用同样的方法(DFT理论)研究了五羰基铼化合物Re(CO)5Br作为催化剂催化环氧化合物与CO2耦合反应合成环碳酸酯的反应机理,得出了其真正的反应机理V-b,即第一步,催化剂Re(CO)5Br脱去一个羰基得到一个16e的活性中间体Re(CO)4Br;第二步,环氧化合物配位到金属铼上,形成18e中间体2″;第三步,环氧化合物中C上有-CH2Cl取代基的C-O键与Re-Br键之间以[2σ+2σ]方式相互作用,形成一个5元环中间体a′;第四步,逐渐拉开Re-Br键形成16e中间体,使得C02可以进攻金属铼;第五步,C02插入到Re-O键之间,形成一个4元环中间体c′;第六步,断开Re←O配位键,使Br原子逐渐靠近金属中心得到中间体f;第七步,还原消除,形成C-O键同时伴随Br原子回到金属中心Re上,得到产物环碳酸酯与金属Re配位的中间体g′;最后一步产物环碳酸酯脱出同时伴随催化剂]Re(CO)4Br再生。总的来说,该反应机理包括三个过程,即环氧化合物氧化加成,C02插入,还原消除得到产物。值得注意的是,Br原子在此起到了很大作用。
     同时,我们还研究了CpRe(CO)3作为催化剂催化环氧化合物与C02耦合反应合成环碳酸酯的反应机理,找出了三种可能的反应机理Ⅰ′、Ⅱ′及Ⅲ′,最终分析得出机理Ⅲ′为其真实的反应机理,即第一步,催化剂CpRe(CO)3脱去一个羰基得到一个16e的活性中间体CpRe(CO)2;第二步,环氧化合物1配位到(CPRe(CO)2上得到中间体h;第三步,环氧化合物与CpRe(CO)2发生相互作用断开C上有-CH2Cl取代基的C-O键生成一个含金属的4元环中间体i;第四步,C02直接插入到Re-O键之间得到一个6元环中间体n′;第五步,中间体n′异构化得到中间体n;第六步,还原消除得到产物环碳酸酯与金属Re配位的中间体o;最后一步,得到产物并伴随催化剂CpRe(CO)2再生。
     (3)在Templeton实验(West, N. M.; et al. Organometallics 2008,27,5252)的基础上利用密度泛函理论,研究了(Cl-nacnac)Pt(H) (Cl-nacnac=bis(N-ary)-β-diiminate)与端炔的主、副反应机理。研究表明,叔丁基乙炔以1,2-方式插入到Pt—H键之间生成主产物,C一C键生成为决速步骤;以2,1-方式插入到Pt—H键之间生成副产物,炔烃插入为决速步骤。基于主副反应机理,合理的解释了主、副产物生成的原因。分析表明,主产物是热力学控制的产物,而副产物是动力学控制的产物。
In this paper, density functional theory (DFT) calculations at the B3YLP level are carried out to study and analyze the following three problems on the basis of experiments. Our major intention is to investigate the molecular sturetures, bonding, and mechanisms on the organometallic reactions mentioned below.
     (1) In 2009, Abu-Omar and coworkers reported MeReO3-catalyzed deoxygenation of epoxides and diols and proposed a mechanism starting with addition of H2 to MeReO3 (abbreviated as MTO). Our calculations showed that addition of H2 to MTO via the [2+3] mechanism is significantly endothermic and the barrier is inaccessibly high. In this work, we proposed an alternative mechanism with the aid of density functional theory (DFT) calculations. In the alternative mechanism, MTO and epoxide react first to give a five-membered-ring rhenium diolate intermediate (2). To the intermediate, addition of H2 via a [2+3] mechanism gives an oxo-hydroxy species (4). A proton transfer in 4 results in formation of a rhenium diolate intermediate (6) having a water ligand. Subsequent extrusion of olefin from the rhenium diolate intermediate (6) completes the reaction and regenerates the catalyst MTO.
     Formation of diol at the beginning of the reaction observed experimentally is related to the hydrolysis of epoxide with the co-product water through the rhenium diolate intermediate (2) via two possible paths. Our calculation results confirmed that the rhenium diolate intermediate (2)+ H2O and the hydrolysis products (MTO+diol) are in fast equilibrium, resulting in the eventual conversion of diol to olefin. Meanwhile, we obtained the mechanism of the reactions about the diol as the reactant. MTO and diol react first to give a five-membered-ring rhenium diolate intermediate (2). To the intermediate, addition of H2 via a [2+3] mechanism gives an oxo-hydroxy species (4). A proton transfer in 4 results in formation of a rhenium diolate intermediate (6) having a water ligand. Subsequent extrusion of olefin from the rhenium diolate intermediate (6) completes the reaction and regenerates the catalyst MTO. This explained Abu-Omar's experimental phenomenon successfully.
     (2) In 2005, Jiang and coworkers reported the first example of the Re(CO)5Br or CpRe(CO)3-catalyzed coupling of CO2 with epoxides to give cyclic carbonates at 383.15 K under solvent-free conditions and the yield up to 97%. Re(CO)5Br was shown to be an efficient, simple catalyst in this coupling reaction. They also postulated a possible mechanism for the reaction based on experimental observations, which is closely related to that of the Ni-catalyzed reactions. Most recently, Guo and coworkers carried out a DFT study on the mechanism of the coupling reaction between chloromethyloxirane and carbon dioxide catalyzed by Re(CO)5Br. Two possible mechanisms I and II were proposed. Mechanism I starts with epoxide oxidative addition, while mechanism starts with the CO2 activation by Re(CO)4Br. But we found that the overall barriers calculated for the two mechanisms are inaccessibly high, which promotes us to explore an alternative mechanism for the reaction on the basis of our DFT calculations. In this paper, we proposed an alternative mechanism in which the overall activation barrier height is much lower and the intermediates involved are found to be significantly more stable. In the alternative mechanism (V-b), initially, decarbonylation of Re(CO)5Br affords the active 16e intermediate, Re(CO)4Br. Oxidative addition of the C-0 bond of epoxides to Re-Br bond of Re(CO)4Br gives the metallaoxetane intermediate a'. Insertion of CO2 into the Re-O bond gives the metallaoxetane intermediate c', and finally reductive elimination of C-0 bond from f produces the cyclic carbonate and regenerates the active form of the catalyst Re(CO)4Br. In summary, three main stages are involved:epoxide oxidative addition, CO2 insertion and reductive elimination of product. It is noteworthy that the Br atom played an important role in the catalyticcycle reaction.
     In this paper, we also investigated the mechanism of the reactions where the CpRe(CO)3 was employed as catalyst. We proposed three mechanismsⅠ',Ⅱ' andⅢ'. The mechanismⅢ' is found to be reasonable. Initially, decarbonylation of CpRe(CO)3 affords the active 16e intermediate, CpRe(CO)2. Oxidative addition of the C-0 bond of epoxides to CpRe(CO)2 gives the metallaoxetane intermediate i. Insertion of CO2 into the Re-O bond gives the metallaoxetane intermediate n', and then isomerization of n'results in the metallaoxetane intermediate n. Finally, reductive elimination of C-0 bond from n produces the cyclic carbonate and regenerates the active form of the catalyst CpRe(CO)2.
     (3) On the basis of Templeton's experiment (West, N. M.; et al. Organometallics 2008,27, 5252), the mechanisms of the main and the side reactions between (Cl-nacnac)Pt(H) (Cl-nacnac: bis(N-aryl)-β-diiminate) and a terminal alkyne were investigated by density functional theory. Our study shows that the 1,2-insertion of t-BuC=CH into the Pt—H bond generates the main products and that C—C bond formation is the rate-determining step. The 2,1-insertion of t-BuC≡CH into the Pt—H bond generates the byproducts and alkyne insertion is the rate-determining step. Based on the mechanisms of the main and side reactions the presence of the main product and the by-product could be explained. We found that the main product is thermodynamically controlled while the side product is kinetically controlled.
引文
[1]黄仲涛,高孔荣,叶振华.生物质能的研究与开发[J].中国科学基金,1994(3)
    [2]司晶星.生物质能源的开发利用[J].科技信息,2009,11:51-52
    [3]Corma, A.; Iborra, S.; Velty, A. Chemical Routes for the Transformation of Biomass into Chemicals [J]. Chem. Rev.2007,107:2411-2502.
    [4]Kamata, K.; Ishimoto, R.; Hirano, T.; Kuzuya, S.; Uehara, K.; Mizuno, N. Inorg. Chem.2010, 49:2471.
    [5]Leeladee, P.; Goldberg, D. P. Inorg. Chem.2010,49:3083.
    [6]Egami, H.; Oguma, T.; Katsuki, T. J. Am. Chem. Soc.2010,132:5886.
    [7]Seayad, J.; Seayad, A. M.; Chai, C. L. L. Org. Lett.2010,12:1412.
    [8]Park, C. P.; Lee, J. H.; Yoo, K. S.; Jung, K. W. Org. Lett.2010,12:2450.
    [9]Costa, P. J.; Calhorda, M. J.; Kiihn, F. E. Organometallics 2010,29:303.
    [10]Al-Ajlouni, A.; Veljanovski, D.; Capape, A.; Zhao, J.; Herdtweck, E.; Calhorda, M. J.; Kiihn, F. E. Organometallics 2009,28:639.
    [11]Nakagawa, Y.; Mizuno, N. Inorg. Chem.2007,46:1727.
    [12]Cook, G. K.; Andrews, M. A. Toward Nonoxidative Routes to Oxygenated Organics: Stereospecific Deoxydehydration of Diols and Polyols to Alkenes and Allylic Alcohols Catalyzed by the Metal Oxo Complex (C5Me5)ReO3 [J]. J. Am. Chem. Soc.,1996,118: 9448-9449.
    [13]Ziegler, J. E.; Zdilla, M. J.; Evans, A. J.; Abu-Omar, M. M. "H2-Driven Deoxygenation of Epoxides and Diols to Alkenes Catalyzed by Methyltrioxorhenium [J]. Inorg. Chem.2009, 48:9998-10000.
    [14]Vkuturi, S.; Chapman, G.; Ahmad, I.; Nicholas, K. M. "Rhenium-Catalyzed Deoxydehydration of Glycols by Sulfite [J]. Inorg. Chem.2010,49:4744-4746.
    [15](a) Chong, J. M.; Mar, E. K. J. Org. Chem.1992,57,46. (b) Rudolph, J.; Reddy, K. L.; Chiang, J. P.; Sharpless, K. B. J. Am. Chem. Soc.1997,119,6189. (c) Jonsson, S. Y.; Farnegardh, K.; Backvall, J.-E. J. Am. Chem. Soc.2001,123,1365. (d) Tullo, A. Chem. Eng. News 2004,82,15. (e) Kamata, K.; Ishimoto, R.; Hirano, T.; Kuzuya, S.; Uehara, K.; Mizuno, N. Inorg. Chem.2010,49,2471. (f) Leeladee, P.; Goldberg, D. P. Inorg. Chem. 2010,49,3083. (g) Berndt, T.; Kreipl, A.; Lenski, U. Ind. Eng. Chem. Res.2010,49,3957. (h) Egami, H.; Oguma, T.; Katsuki, T. J. Am. Chem. Soc.2010,132,5886. (i) Adam, W.; Saha-Moller, C. R.; Weichold, O. J. Org. Chem.2000,65,5001. (j) Seayad, J.; Seayad, A. M.; Chai, C. L. L. Org. Lett.2010,12,1412. (j) Park, C. P.; Lee, J. H.; Yoo, K. S.; Jung, K. W. Org. Lett.2010,12,2450. (k) Costa, P. J.; Calhorda, M. J.; Kiihn, F. E. Organometallics 2010,29,303. (1) Al-Ajlouni, A.; Veljanovski, D.; Capape, A.; Zhao, J.; Herdtweck, E.; Calhorda, M. J.; Kuhn, F. E. Organometallics 2009,28,639. (m) Deubel, D. V.; Frenking, G.; Gisdakis, P.; Herrmann, W. A.; Rosch, N.; Sundermeyer, J. Acc. Chem. Res.2004,37, 645. (n) Nakagawa, Y.; Mizuno,N. Inorg. Chem.2007,46,1727.
    [16](a) Gable, K. P.; Brown, E. C. Organometallics 2000,19,944. (b) Zhu, Z.; Espenson, J. H. J. Mol. Catal. A 1995,103,87. (c) Gable, K. P.; Brown, E. C. J. Am. Chem. Soc.2003,125, 11018.
    [17](a) Stankovic, S.; Espenson, J. H. J. Org. Chem.2000,65,5528. (b) Adam, W.; Saha-Moller, C. R.; Weichold, O. J. Org. Chem.2000,65,2897. (c) Wang, Y.; Espenson, J. H. J. Org. Chem.2000,65,104. (d) Saladino, R.; Neri, V.; Cardona, F.; Goti, A. Adv. Synth. Catal. 2004,346,639. (e) Santos, A. M.; Pedro, F. M.; Yogalekar, A. A.; Lucas, I. S.; Romao, C. C.; Kuhn, F. E. Chem. Eur. J.2004,10,6313. (f) Zauche, T. H.; Espenson, J. H. Inorg. Chem. 1998,37,6827. (g) Owens, G. S.; Arias, J.; Abu-Omar, M. M. Catal. Today 2000,55,317. (h) Kaple, K.P. In Advances in Organometallic Chemistry; Academic Press Inc.:San Diego, CA,1997; Vol.41, p 127. (i) Herrmann, W. A.; Kiihn, F. E. Acc. Chem. Res.1997,30,169. (j) Kuhn, F. E.; Herrmann, W. A. In Structure and Bonding; Meunier, B., Ed.; Springer-Verlag:Heidelberg, Berlin,2000; Vol.97, p 213. (k) Mathew, T. M.; du Plessis, A. J. K.; Prinsloo, J. J. J. Mol. Catal. A 1999,148,157. (1) Kiihn, F. E.; Scherbaum, A.; Herrmann, W. A. J. Organomet. Chem.2004,689,4149.
    [18]Broeeker, W.S. Thermohaline circulation, the Achilles heel of our climate system:will man-made CO2 upset the current balance? [J]. Science,1997,278(5343):1582-1588.
    [19]Meehl, G.A., Washington, W.M. El Nino-like climate change in a model with increased atmospheric CO2 concentrations [J]. Nature,1996,382(6586):56-60.
    [20]Arakawa, H.; Aresta, M.; Armor, J.N. etc. Catalysis research of relevance to carbon management:progress, challenges, and opportunities [J].Chem. Rev.,2001,101(4):953-996.
    [21]张坤民.21世纪中国环境面临的挑战与决策[J].环境保护,1999,(1):33-35.
    [22]Khoo, H.H.; Tan, R.B.H. Life cycle investigation of CO2 recovery and sequestration [J]. Environ. Sci. Technol.,2006,40(12):4016-4024.
    [23]Santer, B.D.; Taylor, K.E.; Wigley, T.M.L.; etc. A search for human influences on the thermal structure of the atmosphere [J]. Nature,1996,382(6586):39-46.
    [24]Kennedy, C.; Steinberger, J.; Gasson, B.; etc. Greenhouse gas emissions from global cities [J]. Environ. Sci. Technol.,2009,43(19):7297-7302.
    [25]Grossmann, W.D.; Steininger, K.; Grossmann, I.; etc. Indicators on economic risk from global climate change [J]. Environ. Sci. Technol.,2009,43(16):6421-6426.
    [26]Hellevang, H.; Aagaard, P.; Oelkers, E.; etc. Can dawsonite permanently trap CO2 [J]. Environ. Sci. Technol.,2005,39(21):8281-8287.
    [27]Inoue, S.; Koinuma, H.; Tsuruta, T. Copolymerization of carbon dioxide and epoxide [J]. J. Polym. Sci., Part B:Polym. Lett.,1969,7:287-292.
    [28]Kihara, N.; Hara, N.; Endo, T. Catalytic activity of various salts in the reaction of 2,3-epoxypropyl phenyl ether and carbon dioxide under atmospheric pressure [J]. J. Org. Chem.,1993,58(23):6198-6202.
    [29]Yano, T.; Matsui, H.; Koiki T.; etc. Magnesium oxide-catalysed reaction of carbon dioxide with an epoxide with retention of stereochemistry [J]. Chem. Commun.,1997, (12): 1129-1130.
    [30]Yamaguchi, K.; Ebitani, K.; Yoshida, T.; etc. Mg-Al mixed oxides as highly active acid-base catalysts for cycloaddition of carbon dioxide to epoxides [J]. J. Am. Chem. Soc., 1999,121(18):4526-4527.
    [31]Yasuda, H.; He, L.; Sakakura, T. Cyclic carbonate synthesis from supercritical carbon dioxide and epoxide over lanthanide oxychloride [J]. J. Catal.,2002,209(2):547-550.
    [32]Nomura, R.; Matsuda, A.; Ninagawa, H. Synthesis of cyclic carbonates from carbon dioxide and epoxides in the presence of organoantimony compouds as novel catalysts [J]. J. Org. Chem.,1980,45(19):3735-3738.
    [33]Aida, T.; Inoue, S. Activation of carbon dioxide with aluminum porphyrin and reaction with epoxide. studies on(tetraphenylporphinato)aluminum alkoxide having a long oxyalkylene chain as the alkoxide group [J]. J. Am. Chem. Soc.,1983,105(5):1304-1309.
    [34]Kruper, W.J.; Deller, D.V. Catalytic formation of cyclic carbonates from epoxides and CO2 with chromium metalloporphyrinates [J]. J. Org. Chem.,1995,60(3):725-727.
    [35]Kim, H.S.; Kim, J.J.; Lee, B.G.; etc. Isolation of a pyridinium alkoxy ion bridged dimeric zinc complex for the coupling reactions of CO2 and epoxides [J]. Angew. Chem. Int.Ed., 2000,39(22):4096-4098.
    [36]Man, M.L.; Lam, K.C.; Sit, W.N.; etc. Synthesis of heterobimetallic Ru-Mn complexes and the coupling reactions of epoxides with carbon dioxide catalyzed by these complexes [J]. Chem. Eur. J.,2006,12(4):1004-1015.
    [37]Paddock, R.L.; Ngugen, S.T. Chemical CO2 fixation:Cr(III)salen complexes as highly efficient catalysts for the coupling of CO2 and epoxides [J]. J. Am. Chem. Soc.,2001, 123(46):11498-11499.
    [38]Shen, Y.-M; Duan, W.-L.; Shi, M. Chemical fixation of carbon dixode catalyzed by binaphthyldiamino Zn,Cu,and Co Salen-type complexes [J]. J. Org. Chem.,2003,68(4): 1559-1562.
    [39]Lu, X.-B.; Liang, B.; Zhang, Y.-J.; etc. Asymmetric catalysis with CO2:direct synthesis of optically active propylene carbonate from racemic epoxides [J]. J. Am. Chem. Soc.,2004, 126(12):3732-3733.
    [40]Sun, J.; Wang, L.; Zhang, S.J.; etc. ZnCl2/phosphonium halide:An efficient Lewis acid/base catalyst for the synthesis of cyclic carbonate [J]. J. Mol. Catal. A:Chem.,2006,256(1-2): 295-300.
    [41]Doskocil, E.J.; Bordawekar, S.V.; Kaye, B.G.; etc. UV-Vis spectroscopy of iodine adsorbed on alkali-metal-modified zeolite catalysts for addition of carbon dioxide to ethylene oxide [J]. J. Phys. Chem. B,1999,103(30):6277-6282.
    [42]Peng, J.J.; Deng, Y.Q. Cycloaddition of carbon dioxide to propylene oxide catalyzed by ionic liquids [J]. New J. Chem.,2001,25(4):639-641.
    [43]Kim, Y.J.; Varma, R.S. Tetrahaloindate(III)-based ionic liquids in the coupling reaction of carbon dioxide and epoxides to generate cyclic carbonates:H-bonding and mechanistic studies [J]. J. Org. Chem.,2005,70(20):7882-7891.
    [44]Park, D.-W.; Mun, N.-Y.; Kim K.-H.; etc. Addition of carbon dioxide to allyl glycidyl ether using ionic liquid catalysts [J]. Catal. Today,2006,115(1-4):130-133.
    [45]Jiang, J.-L.; Gao, F.; Hua, R.; etc. Re(CO)5Br-catalyzed coupling of epoxides with CO2 affording cyclic carbonates under solvent-free condition [J]. J. Org. Chem.,2005,70(1): 381-383.
    [46]Guo, C.-H.; Song, J.-Y.; Jia, J.-F.; Zhang, X.-M.; Wu, H.-S. A DFT Study on the Mechanism of the Coupling Reaction between Chloromethyloxirane and Carbon Dioxide Catalyzed by Re(CO)5Br [J]. Organometallics 2010,9(29):2069-2079.
    [47]Trost, B. M. The atom economy:a search for synthetic efficiency [J]. Science 1991,254, 1471-1477.
    [48]Nicolaou, K. C.; Dai, W. M.; Tsay, S. C.; Estevez, V. A.; Wrasidlo, W. Designed enediynes: a new class of DNA-cleaving molecules with potent and selective anticancer activity [J]. Science 1992,256,1172-1178.
    [49]Hubner, H.; Haubmann, C.; Utz, W.; Gmeiner, P. Conjugated Enynes as Nonaromatic Catechol Bioisosteres:Synthesis, Binding Experiments, and Computational Studies of Novel Dopamine Receptor Agonists Recognizing Preferentially the D3 Subtype [J]. J. Med. Chem.2000,43,756-762.
    [50]Trost, B. M.; Toste, D.; Pinkerton, A. Non-Metathesis Ruthenium-Catalyzed C-C Bond Formation [J]. Chem. Rev.2001,101,2067-2096.
    [51]Bruneau, C.; Dixneuf, P. H. Metal Vinylidenes in Catalysis [J]. Acc. Chem. Res.1999,32, 311-323.
    [52]Duchateau, R.; van Wee, C. T.; Teuben, J. H. Insertion and C-H Bond Activation of Unsaturated Substrates by Bis(benzamidinato)yttrium Alkyl, [PhC(NSiMe3)2]2YR (R= CH2Ph-THF, CH(SiMe3)2), and Hydrido,{[PhC(NSiMe3)2]2Y(μ-H)}2, Compounds [J]. Organometallics 1996,15,2291-2302.
    [53]Field, L. D.; Ward, A. J.; Turner, P. The Dimerization and Cyclotrimerization of Acetylenes Mediated by Phosphine Complexes of Cobalt(I), Rhodium(I), and Iridium(I) [J]. Aust. J. Chem.1999,52,1085-1092.
    [54]Ohmura, T.; Yorozuya, S.; Yamamoto, Y.; Miyaura, N. Iridium-Catalyzed Dimerization of Terminal Alkynes to (E)-Enynes, (Z)-Enynes, or 1,2,3-Butatrienes [J].Organometallics 2000,19,365-367.
    [55]Akita, M.; Yasuda, H.; Nakamura, A. Regioselective Homo-and Codimerization of 1-Alkynes Leading to 2,4-Disubstituted 1-Buten-3-ynes by Catalysis of a (η5-C5Me5)2TiCl2/RMgX System [J]. Bull. Chem. Soc. Jpn.1984,57,480-487.
    [56]Trost, B. M.; Sorum, M. T.; Chan, C.; Harms, A. E.; Ruhter, G. Palladium-Catalyzed Additions of Terminal Alkynes to Acceptor Alkynes [J]. J. Am. Chem. Soc.1997,119, 698-708.
    [57]Schafer, M.; Wolf, J.; Werner, H. Binding Two C2 Units to an Electron-Rich Transition-Metal Center:The Interplay of Alkyne(alkynyl), Bisalkynyl(hydrido), Alkynyl(vinylidene), Alkynyl(allene), Alkynyl(olefin), and Alkynyl(enyne) Rhodium Complexes [J]. Organometallics 2004,23,5713-5728.
    [58]Gao, Y.; Puddephatt, R. J. Selective head-to-tail dimerization of phenylacetylene catalyzed by a diruthenium η-methylene complex [J]. Inorg. Chim. Acta.2003,350,101-106.
    [59]Sans, V.; Trzeciak, A. M.; Luis, S.; Ziolkowski, J. J. PdCl2(P(OPh)3)2 catalyzed coupling and carbonylative coupling of phenylacetylenes with aryl iodides in organic solvents and in ionic liquids [J]. Catal. Lett.2006,109,37-41.
    [60]Ananikov, V. P.; Mitchenko, S. A.; Beletskaya, I. P. The mechanism of C---C bond formation on the Pt(IV) center involving chelate metallocycle ligands [J]. J. Organomet. Chem.2000,604,290-295.
    [61]Ananikov, V. P.; Mitchenko, S. A.; Beletskaya, I. P. Stereo-and regioselective alkynes activation catalyzed by platinum(IV) and palladium(II) complexes in the I--,I31--, H2O/MeOH system [J]. Russ. J. Org. Chem.2002,38,636-650.
    [62]Kong, J. R.; Krische, M. J. Catalytic Carbonyl Z-Dienylation via Multicomponent Reductive Coupling of Acetylene to Aldehydes and a-Ketoesters Mediated by Hydrogen: Carbonyl Insertion into Cationic Rhodacyclopentadienes [J]. J. Am. Chem. Soc.2006,128, 16040-16041.
    [63]Bianchini, C.; Frediani, P.; Masi, D.; Peruzzini, M.; Zanobini, F. Regio-and Stereoselective Dimerization of Phenylacetylene to (Z)-1,4-Diphenylbut-3-en-1-yne by Ruthenium(II) Catalysis. Reaction Mechanism Involving Intermolecular Protonation of.sigma.-Alkynyl by 1-Alkyne [J]. Organometallics 1994,13,4616-4632.
    [64]Weng, W.; Guo, C.; Celenligil-Cetin, R.; Foxman, B. M.; Ozerov, O. V. Skeletal change in the PNP pincer ligand leads to a highly regioselective alkyne dimerization catalyst [J]. Chem. Commun.2006,197-199.
    [65]Ciclosi, M.; Estevan, F.; Lahuerta, P.; Passarelli, V.; Perez-Prieto, J.; Sanau, M. Unprecedented Iridium(III) Catalyst for Stereoselective Dimerization of Phenylacetylene [J]. AdV. Synth. Catal.2008,350,234-236.
    [66]Ghosh, R.; Zhang, X.; Achord, P.; Emge, T. J.; Krogh-Jespersen, K.; Goldman, A. S. Dimerization of Alkynes Promoted by a Pincer-Ligated Iridium Complex. C-C Reductive Elimination Inhibited by Steric Crowding [J]. J. Am. Chem. Soc.2007,129,853-866.
    [67]Ogoshi, S.; Ueta, M.; Oka, M.-A.; Kurosawa, H. Dimerization of terminal alkynes catalyzed by a nickel complex having a bulky phosphine ligand [J]. Chem. Commun.2004, 2732-2733.
    [68]Slugovc, C.; Mereiter, K.; Zobetz, E.; Schmid, R.; Kirchner, K. Ruthenium-Catalyzed Dimerization of Terminal Alkynes Initiated by a Neutral Vinylidene Complex [J]. Organometallics 1996,15,5275-5277.
    [69]Li, X.; Vogel, T.; Incarvito, C. D.; Crabtree, R. H. Electronic and Steric Effects in the Insertion of Alkynes into an Iridium(III) Hydride [J]. Organometallics 2005,24,62-76.
    [70]Li, X.; Incarvito, C. D.; Crabtree, R. H. A Rare η2-Butadienyl Complex from an Alkyne Double Insertion with Double Vinylidene Rearrangement [J]. J. Am. Chem. Soc.2003,125, 3698-3699.
    [71]Selnau, H. E.; Merola, J. S. Coupling of a vinyl ligand and a vinylidene ligand at an iridium center:generation of an unusual iridium(III) butadienyl complex stabilized by a δ-agostic C-H-Ir interaction [J]. J. Am. Chem. Soc.1991,113,4008-4009.
    [72]West, N. M.; Peter, S.; Templeton, J. L. Alkyne Insertion into the Pt-H Bond of Pt(H)(1-pentene)(P-diiminate) Initiates a Reaction Cascade That Results in C-H Activation or C-C Coupling [J]. Organometallics 2008,27,5252-5262.
    [1]胡维平.桌面上的计算化学[J]. THE CHINESE CHEM. SOC.,2001, (59):585-589.
    [2]Lin, Z. Interplay between Theory and Experiment:Computational Organometallic and Transition Metal Chemistry [J]. Acc. Chem. Res.2010,43,602-611.
    [3]W. J. Hehre, L. Radom, P. V. R. Schleyer, et al. Ab initio Molecular Orbital Theory. New York:John Wiley & sons,1986.
    [4]D. P. Chong. Recent Advances in Density Functional Methods. Part Ⅰ. Singapore:World Scientific,1995.
    [5]D. P. Chong, Recent Advances in Density Functional Methods. Part Ⅱ. Singapore:World Scientific,1995.
    [6]A.D.Beeke. [J]. Phys. Rev.1988, A38,3098.
    [7]A.D.Beeke. [J]. J. Chem. Phys.1993,98,1372.
    [8]A.D.Beeke, [J]. J. Chem. Phys.1993,98,5648. C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988,37,785.
    [9]J. P. Perdue, [J]. Phys. [J]. Rev. B 1986,33,8822.
    [10]J.P.Perdue, Y. Wang. [J]. Phys. Rev. B 1991,45,13244.
    [11]Shuqiang Ni, H. B. Michael. Theoretical Studies on Reaetions of Transition-Metal Complexes [J]. Chem. Rev.2000, (100):353-406.
    [12]K. B. Lipkowitz, D. B. Boyd, Eds; VCH:New York,1990-1999, Vols.1-13.
    [13]K. Koga, K. Morokuma. Ab initio molecular orbital studies of catalytic elementary Reactions and catalyticcycles of transition-metal complexes [J]. Chem. Rev.1991, (91): 823-842.
    [14]D. G. Musaev, K. Morokuma, In Advances in Chemical Physics:S. A. Rice, I. Prigogine, New York:Eds.; John Wiley & Sons:1996:Vol. XCV, p61.
    [15]P. E. M. Siegbahn, M. R. A Blomberg, In Theoretical Aspects of Homogeneous Catalysts, Applications of Ab Iitio Molecular Orbital Theory; van P. W. N. M. Leeuwen, van J. H. Lenthe, K. Morokuma, Eds. MA, ingham:Kluwer Academic Publishers,1995.
    [16]T. Ziegler. Chem. Rev.1991, (91):651-667.
    [17]D. R. Salahub,M. Castro, R. Fournier, P. Calaminici, N. Godbout, A. Goursot, C. Jamorski, H. Kobayashi, A. Martinez, I. Papai, E. Proynov, N. Russo, S. Sirois, J. Ushio, A.Vela, In Theoretical and Computational Approaches to Interface Phenomena; H. Sellers, J. Olab, Eds.; Plenum Press, New York:1995, p187.
    [18]P. E. M. Siegbahn, In Advances in Chemical Physics:S. A. Rice, I. Prigogine, Eds.; John Wiley & Sons, NewYork,1996, Vol. XCIII, p333.
    [19]Transition Metal Hydrides, Edited by A. Dedieu, VCH Publishers:1992.
    [20]Theoretical Aspects of Homogeneous Gatalysis, Applications of Ab Initio molecular Orbital Theory; van P. W. N. M. Leeuwen, van J. H. Lenthe, K. Morokuma, Eds.; The Netherlands, 1994.
    [21]S. Yoshida, S.Sakaki, H. Kobayashi, Electronic Processes in Catalyst; VCH:NewYork, 1992.
    [1](a) Huber, G. W.; Iborra, S.; Corma, A. Chem. Rev.2006,106,4044. (b) van Haveren, J.; Scott, E. L.; Sanders, J. Biofuels Bioprod. Biorefining Bioprod.2008,2,41.
    [2](a) Chong, J. M.; Mar, E. K. J. Org. Chem.1992,57,46. (b) Rudolph, J.; Reddy, K. L. Chiang, J. P.; Sharpless, K. B. J. Am. Chem. Soc.1997,119,6189. (c) Jonsson, S. Y.; Farnegardh, K.; Backvall, J.-E. J. Am. Chem. Soc.2001,123,1365. (d) Tullo, A. Chem. Eng. News 2004,82,15. (e) Kamata, K.; Ishimoto, R.; Hirano, T.; Kuzuya, S.; Uehara, K.; Mizuno, N. Inorg. Chem.2010,49,2471. (f) Leeladee, P.; Goldberg, D. P. Inorg. Chem. 2010,49,3083. (g) Berndt, T.; Kreipl, A.; Lenski, U. Ind.Eng. Chem. Res.2010,49,3957. (h) Egami, H.; Oguma, T.; Katsuki, T. J. Am. Chem. Soc.2010,132,5886. (i) Adam, W.; Saha-Moller, C. R.; Weichold, O. J. Org. Chem.2000,65,5001. (j) Seayad, J.; Seayad, A. M.; Chai, C. L. L. Org. Lett.2010,12,1412.(j) Park, C. P.; Lee, J. H.; Yoo, K. S.; Jung, K. W. Org. Lett.2010,12,2450. (k) Costa, P. J.; Calhorda, M. J.; Kiihn, F. E. Organometallics 2010,29,303. (1) Al-Ajlouni, A.; Veljanovski, D.; Capape, A.; Zhao, J.; Herdtweck, E.; Calhorda, M. J.; Kiihn, F. E. Organometallics 2009,28,639. (m) Deubel, D. V.; Frenking, G.; Gisdakis, P.; Herrmann, W. A.; Rosch, N.; Sundermeyer, J. Acc. Chem. Res.2004,37, 645. (n) Nakagawa, Y.; Mizuno, N. Inorg. Chem.2007,46,1727.
    [3](a) Gable, K. P.; Brown, E. C. Organometallics 2000,19,944. (b) Zhu, Z.; Espenson, J. H. J. Mol. Catal. A 1995,103,87. (c) Gable, K. P.; Brown, E. C. J. Am. Chem. Soc.2003,125, 11018.
    [4](a) Block, E. In Organic Reactions; Dauben, W. G., Ed.; John Wiley and Sons:New York, 1984; Chapter 2, Vol.30, p 458. (b) Ando, M.; Ohhara, H.; Takase, K. Chem. Lett.1986, 879.
    [5]Cook, G. K.; Andrews, M. A. J. Am. Chem. Soc.1996,118,9448.
    [6](a) Gable, K. P.; Phan, T. N. J. Am. Chem. Soc.1994,116,833. (b) Gable, K. P. Organometallics 1994,13,2486. (c) Gable, K. P.; Juliette, J. J. J. Am. Chem. Soc.1996, 118,2625. (d) Gable, K. P.; Zhuravlev, F. A. J. Am. Chem. Soc.2002,124,3970. (e) Gable, K. P.; Abu-Baker, A.; Zientara, K.; Wainwright, A. M. Organometallics 1999,18,173. (f) Gable, K. P.; Ross, B. ACS Symp. Ser.2006,921 (Feedstocks for the Future),143.
    [7]Arceo, E.; Marsden, P.; Bergman, R. G.; Ellman, J. A. Chem. Commun.2009,3357.
    [8]Ziegler, J. E.; Zdilla, M. J.; Evans, A. J.; Abu-Omar, M. M. Inorg. Chem.2009,48,9998.
    [9]Vkuturi, S.; Chapman, G.; Ahmad, I.; Nicholas, K. M. Inorg. Chem.2010,49, 4744.
    [10](a) Stankovic, S.; Espenson, J. H. J. Org. Chem.2000,65,5528. (b) Adam, W.; Saha-Moller, C. R.; Weichold, O. J. Org. Chem.2000,65,2897. (c) Wang, Y.; Espenson, J. H. J. Org. Chem.2000,65,104. (d) Saladino, R.; Neri, V.; Cardona, F.; Goti, A. Adv. Synth. Catal. 2004,346,639. (e) Santos, A. M.; Pedro, F. M.; Yogalekar, A. A.; Lucas, I. S.; Romao, C. C.; Kuhn, F. E. Chem. Eur. J.2004,10,6313. (f) Zauche, T. H.; Espenson, J. H. Inorg. Chem. 1998,37,6827. (g) Owens, G. S.; Arias, J.; Abu-Omar, M. M. Catal. Today 2000,55,317. (h) Kaple, K. P. In Advances in Organometallic Chemistry; Academic Press Inc.:San Diego, CA,1997; Vol.41, p 127. (i) Herrmann, W. A.; Kuhn, F. E. Acc. Chem. Res.1997,30,169. (j) Kiihn, F. E.; Herrmann, W. A. In Structure and Bonding; Meunier, B., Ed.; Springer-Verlag:Heidelberg, Berlin,2000; Vol.97, p 213. (k) Mathew, T. M.; du Plessis, A. J. K.; Prinsloo, J. J. J. Mol. Catal. A 1999,148,157. (1) Kuhn, F. E.; Scherbaum, A.; Herrmann, W. A. J. Organomet. Chem.2004,689,4149.
    [11](a) Becke, A. D. J. Chem. Phys.1993,98,5648. (b) Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Chem. Phys. Lett.1989,157,200. (c) Lee, C.; Yang, W.; Parr, G. Phys. Rev. B 1988,37,785. (d) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F. J. Phys. Chem.1994,98, 11623.
    [12](a) Fukui, K. J. Phys. Chem.1970,74,4161. (b) Fukui, K. Acc. Chem. Res.1981,14,363.
    [13](a) Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys.1972,56,2257. (b) Hariharan, P. C.; Pople, J. A. Theor. Chim. Acta 1973,28,213. (c) Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.; Gordon, M. S.; Defrees, D. J.; Pople, J. A. J. Chem. Phys.1982,77,3654. (d) Clark, T.; Chandrasekhar, J.; Spitznagel, G. W.; Schleyer, P. v. R. J. Comput. Chem. 1983,4,294.
    [14](a) Hay, P. J.; Wadt, W. R. J. Chem. Phys.1985,82,270. (b) Wadt, W. R.; Hay, P. J. J. Chem. Phys.1985,82,284. (c) Hay, P. J.; Wadt, W. R. J. Chem. Phys.1985,82,299.
    [15]Selected examples of the successful application of B3LYP/LanL2DZ in calculations of osmium compounds:(a) Torrent, M.; Sola, M.; Frenking, G. Chem. Rev.2000,100,439. (b) Liang, B.; Andrews, L. J. Phys. Chem. A 2002,106,4042. (c) Deubel, D. V. J. Am. Chem. Soc.2004,126,996. (d) Gobetto, R.; Nervi, C.; Romanin, B.; Salassa, L.; Milanesio, M.; Croce, G. Organometallics 2003,22,4012. (e) Grey, J. K.; Butler, I. S.; Reber, C. Inorg. Chem.2004,43,5103. (f) Ferrando-Miguel, G.; Gerard, H.; Eisenstein, O.; Caulton, K. G. Inorg. Chem.2002,41,6440. (g) Castarlenas, R.; Esteruelas, M. A.; Gutierrez-Puebla, E.; Jean, Y.; Lledos, A.; Martin, M.; Onate, E.; Tomas, J. Organometallics 2000,19,3100.
    [16]Frisch, M. J. et al. Gaussian 03, revision B05; Gaussian, Inc.:Pittsburgh, PA,2003.
    [17](a) Collman, J. P.; Slaughter, L. M.; Eberspacher, T. S.; Strassner, T.; Brauman, J. I. Inorg. Chem.2001,40,6272. (b) Dehestani, A.; Lam, W. H.; Hrovat, D. A.; Davidson, E. R.; Borden, W. T.; Mayer, J.M. J. Am. Chem. Soc.2005,127,3423.
    [18]Torrent, M.; Deng, L.; Ziegler, T. Inorg. Chem.1998,37,1307.
    [19]Limberg, C.; Koppe, R. Inorg. Chem.1999,38,2106.
    [20]Bergant, A.; Cerkovnik, J.; Plesnicar, B.; Tuttle, T. J. Am. Chem. Soc.2008,130,14086.
    [21](a) Delmonte, A. J.; Haller, J.; Houk, K. N.; Sharpless, K. B.; Singleton, D. A.; Strassner, T.; Thomas, A. A. J. Am. Chem. Soc.1997,119,9907 and references therein.(b) Dapprich, S.; Ujaque, G.; Feliu, M.; Lledos, A.; Musaev, D. G.; Morokuma, K. J. Am. Chem. Soc.1996, 118,11660. (c) Pidum, U.; Boehme, C.; Frenking, G. Angew. Chem.1996,108,3008. (d) Deubel, D. V.; Frenking, G. Acc. Chem. Res.2003,36,645. (e) Torrent, M.; Deng, L. Duran, M.; Sola, M.; Ziegler, T. Organometallics 1997,16,13. (f) Strassner, T. Adv. Phys. Org. Chem.2003,38,131.
    [22]Kolb, H. C.; Van Nieuwenhze, M. S.; Sharpless, K. B. Chem. Rev.1994,94,2483.
    [23](a) Zhu, Z. L.; Al-Ajlouni, A. M.; Espenson, J. H. Inorg. Chem.1996,35,1408. (b) Al-Ajlouni, A.; Espenson, J. H. J. Am. Chem. Soc.1995,117,9243. (c) Espenson, J. H. Chem. Commun.1999,479. (d) Al-Ajlouni, A.; Espenson, J. H. J. Org. Chem.1996,61, 324. (e) Romao, C. C.; Kiihn, F. E.; Herrmann, W. A. Chem. Rev.1997,97,3197.
    [24]Haider, J. J.; Kratzer, R. M.; Herrmann, W. A.; Zhao, J.; Kuhn, F. E. J. Organomet. Chem. 2004,689,3735.
    [1]Broeeker, W.S. Thermohaline circulation, the Achilles heel of our climate system:will man-made CO2 upset the current balance? [J]. Science,1997,278(5343):1582-1588.
    [2]Meehl, G.A., Washington, W.M. El Nino-like climate change in a model with increased atmospheric CO2 concentrations [J]. Nature,1996,382(6586):56-60.
    [3]Arakawa, H.; Aresta, M.; Armor, J.N. etc. Catalysis research of relevance to carbon management:progress, challenges, and opportunities [J].Chem. Rev.,2001,101(4):953-996.
    [4]张坤民.21世纪中国环境面临的挑战与决策[J].环境保护,1999,(1):33-35.
    [5]Khoo, H.H.; Tan, R.B.H. Life cycle investigation of CO2 recovery and sequestration [J]. Environ. Sci. Technol.,2006,40(12):4016-4024.
    [6]Santer, B.D.; Taylor, K.E.; Wigley, T.M.L.; etc. A search for human influences on the thermal structure of the atmosphere [J]. Nature,1996,382(6586):39-46.
    [7]Kennedy, C.; Steinberger, J.; Gasson, B.; etc. Greenhouse gas emissions from global cities [J]. Environ. Sci. Technol.,2009,43(19):7297-7302.
    [8]Grossmann, W.D.; Steininger, K.; Grossmann, I.; etc. Indicators on economic risk from global climate change [J]. Environ. Sci. Technol.,2009,43(16):6421-6426.
    [9]Hellevang, H.; Aagaard, P.; Oelkers, E.; etc. Can dawsonite permanently trap CO2 [J]. Environ. Sci. Technol.,2005,39(21):8281-8287.
    [10]Inoue, S.; Koinuma, H.; Tsuruta, T. Copolymerization of carbon dioxide and epoxide [J]. J. Polym. Sci., Part B:Polym. Lett.,1969,7:287-292.
    [11]Kihara, N.; Hara, N.; Endo, T. Catalytic activity of various salts in the reaction of 2,3-epoxypropyl phenyl ether and carbon dioxide under atmospheric pressure [J]. J. Org. Chem.,1993,58(23):6198-6202.
    [12]Yano, T.; Matsui, H.; Koiki T.; etc. Magnesium oxide-catalysed reaction of carbon dioxide with an epoxide with retention of stereochemistry [J]. Chem. Commun.,1997, (12): 1129-1130.
    [13]Yamaguchi, K.; Ebitani, K.; Yoshida, T.; etc. Mg-Al mixed oxides as highly active acid-base catalysts for cycloaddition of carbon dioxide to epoxides [J]. J. Am. Chem. Soc., 1999,121(18):4526-4527.
    [14]Yasuda, H.; He, L.; Sakakura, T. Cyclic carbonate synthesis from supercritical carbon dioxide and epoxide over lanthanide oxychloride [J]. J. Catal.,2002,209(2):547-550.
    [15]Nomura, R.; Matsuda, A.; Ninagawa, H. Synthesis of cyclic carbonates from carbon dioxide and epoxides in the presence of organoantimony compouds as novel catalysts [J]. J. Org. Chem.,1980,45(19):3735-3738.
    [16]Aida, T.; Inoue, S. Activation of carbon dioxide with aluminum porphyrin and reaction with epoxide. studies on(tetraphenylporphinato)aluminum alkoxide having a long oxyalkylene chain as the alkoxide group [J]. J. Am. Chem. Soc.,1983,105(5):1304-1309.
    [17]Kruper, W.J.; Deller, D.V. Catalytic formation of cyclic carbonates from epoxides and CO2 with chromium metalloporphyrinates [J]. J. Org. Chem.,1995,60(3):725-727.
    [18]Kim, H.S.; Kim, J.J.; Lee, B.G.; etc. Isolation of a pyridinium alkoxy ion bridged dimeric zinc complex for the coupling reactions of CO2 and epoxides [J]. Angew. Chem. Int.Ed., 2000,39(22):4096-4098.
    [19]Man, M.L.; Lam, K.C.; Sit, W.N.; etc. Synthesis of heterobimetallic Ru-Mn complexes and the coupling reactions of epoxides with carbon dioxide catalyzed by these complexes [J]. Chem. Eur. J.,2006,12(4):1004-1015.
    [20]Paddock, R.L.; Ngugen, S.T. Chemical CO2 fixation:Cr(III)salen complexes as highly efficient catalysts for the coupling of CO2 and epoxides [J]. J. Am. Chem. Soc,2001, 123(46):11498-11499.
    [21]Shen, Y.-M; Duan, W.-L.; Shi, M. Chemical fixation of carbon dixode catalyzed by binaphthyldiamino Zn,Cu,and Co Salen-type complexes [J]. J. Org. Chem.,2003,68(4): 1559-1562.
    [22]Lu, X.-B.; Liang, B.; Zhang, Y.-J.; etc. Asymmetric catalysis with CO2:direct synthesis of optically active propylene carbonate from racemic epoxides [J]. J. Am. Chem. Soc.,2004, 126(12):3732-3733.
    [23]Sun, J.; Wang, L.; Zhang, S.J.; etc. ZnCl2/phosphonium halide:An efficient Lewis acid/base catalyst for the synthesis of cyclic carbonate [J]. J. Mol. Catal. A:Chem.,2006,256(1-2): 295-300.
    [24]Doskocil, E.J.; Bordawekar, S.V.; Kaye, B.G.; etc. UV-Vis spectroscopy of iodine adsorbed on alkali-metal-modified zeolite catalysts for addition of carbon dioxide to ethylene oxide [J]. J. Phys. Chem. B,1999,103(30):6277-6282.
    [25]Peng, J.J.; Deng, Y.Q. Cycloaddition of carbon dioxide to propylene oxide catalyzed by ionic liquids [J]. New J. Chem.,2001,25(4):639-641.
    [26]Kim, Y.J.; Varma, R.S. Tetrahaloindate(III)-based ionic liquids in the coupling reaction of carbon dioxide and epoxides to generate cyclic carbonates:H-bonding and mechanistic studies [J]. J. Org. Chem.,2005,70(20):7882-7891.
    [27]Park, D.-W.; Mun, N.-Y.; Kim K.-H.; etc Addition of carbon dioxide to allyl glycidyl ether using ionic liquid catalysts [J]. Catal. Today,2006,115(1-4):130-133.
    [28]Jiang, J.-L.; Gao, F.; Hua, R.; etc. Re(CO)5Br-catalyzed coupling of epoxides with CO2 affording cyclic carbonates under solvent-free condition [J]. J. Org. Chem.,2005,70(1): 381-383.
    [29]De Pasquale, R.J. Unusual catalysis with Nickel(0)complexes [J]. J. Chem. Soc, Chem. Commun.,1973, (5):157-158.
    [30]Guo, C.-H.; Song, J.-Y.; Jia, J.-F.; Zhang, X.-M.; Wu, H.-S. A DFT Study on the Mechanism of the Coupling Reaction between Chloromethyloxirane and Carbon Dioxide Catalyzed by Re(CO)5Br [J]. Organometallics 2010,9(29):2069-2079.
    [31](a) Becke, A. D. J. Chem. Phys.1993,98,5648. (b) Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Chem. Phys. Lett.1989,157,200. (c) Lee, C.; Yang, W.; Parr, G. Phys. Rev. B 1988,37,785. (d) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F. J. Phys. Chem.1994,98, 11623.
    [32](a) Fukui, K. J. Phys. Chem.1970,74,4161. (b) Fukui, K. Acc. Chem. Res.1981,14,363.
    [33](a) Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys.1972,56,2257. (b) Hariharan, P. C.; Pople, J. A. Theor. Chim. Acta 1973,28,213. (c) Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.; Gordon, M. S.; Defrees, D. J.; Pople, J. A. J. Chem. Phys.1982,77,3654. (d) Clark, T.; Chandrasekhar, J.; Spitznagel, G. W.; Schleyer, P. v. R. J. Comput. Chem. 1983,4,294.
    [34](a) Hay, P. J.; Wadt, W. R. J. Chem. Phys.1985,82,270. (b) Wadt, W. R.; Hay, P. J. J. Chem. Phys.1985,82,284. (c) Hay, P. J.; Wadt, W. R. J. Chem. Phys.1985,82,299.
    [35]Selected examples of the successful application of B3LYP/LanL2DZ in calculations of osmium compounds:(a) Torrent, M.; Sola, M.; Frenking, G. Chem. Rev.2000,100,439. (b) Liang, B.; Andrews, L. J. Phys. Chem. A 2002,106,4042. (c) Deubel, D. V. J. Am. Chem. Soc.2004,126,996. (d) Gobetto, R.; Nervi, C.; Romanin, B.; Salassa, L.; Milanesio, M.; Croce, G. Organometallics 2003,22,4012. (e) Grey, J. K.; Butler, I. S.; Reber, C. Inorg. Chem.2004,43,5103. (f) Ferrando-Miguel, G.; Gerard, H.; Eisenstein, O.; Caulton, K. G. Inorg. Chem.2002,41,6440. (g) Castarlenas, R.; Esteruelas, M. A.; Gutierrez-Puebla, E.; Jean, Y.; Lledos, A.; Martin, M.; Onate, E.; Tomas, J. Organometallics 2000,19,3100.
    [36]Frisch, M. J. et al. Gaussian 03, revision B05; Gaussian, Inc.:Pittsburgh, PA,2003.
    [37]Kirgan, R.; Simpson, M.; Rillema, D.P.; etc. Synthesis, characterization, photophysical, and computational studies of rhenium(I)tricarbonyl complexes containing the derivatives of bipyrazine [J]. Inorg. Chem.,2007,46(16):6464-6472.
    [38]Howell, S.L.; Scott, S.M.; Gordon, K.C.; etc. The effect of reduction on rhenium(I) complexes with binaphthyridine and biquinoline ligands:A spectroscopic and computational study [J]. J. Phys. Chem. A,2005,109(16):3745-3753.
    [39]Bergamo, M.; Beringhelli, T.; D'Alfonso, G.; etc. NMR and DFT analysis of [Re2H2(CO)9]:Evidence of an η2-H2 intermediate in a new type of fast mutual exchange between terminal and bridging hydrides [J]. J. Am. Chem. Soc.,2002,124(18):5117-5126.
    [40]Jolly, P. W.; Stone, F. G. A. J. Chem. Soc.,1965,5259.
    [41]Zingales, F.; Sartorelli, U.; Canziani, F.; Raveglia, M. Inorg. Chem.,1967,6,154.
    [42]Torrent, M.; Sola, M.; Frenking, G. Theoretical Studies of Some Transition-Metal-Mediated Reactions of Industrial and Synthetic Importance [J]. Chem. Rev.2000,100(2):439-493.
    [43]Bauer, A.; Capps, K. B.; Wixmerten, B.; Abboud, K. A.; Hoff, C. D. The Enthalpy of Insertion of Sulfur into the Metal-Hydrogen Bond. Synthetic, Structural, and Calorimetric Study of the Complexes HS-M(CO)3C5R5 [M=Cr, Mo, W; R=H, Me] [J]. Inorg. Chem. 1999,38(9):2136-2142.
    [44]Shultz, C. S.; DeSimone, J. M.; Brookhart, M. Four-and Five-Coordinate CO Insertion Mechanisms in d8-Nickel(II) Complexes [J]. J. Am. Chem. Soc.2001,123(37),9172-9173.
    [45]Cheong, M.; Schmid, R.; Ziegler, T. Density Functional Study of the Migratory Insertion Step in the Carbonylation of Methanol Catalyzed by [M(CO)2I2]- (M=Rh, Ir) [J]. Organometallics 2000,19(10),1973-1982.
    [46]Haynes, A.; Haslam, C. E.; Bonnington, K. J.; Parish, L.; Adams, H.; Spey, S. E.; Marder, T. B.; Coventry, D. N. Facile Alkene Insertion into a Rhodium(III)-Acetyl Bond:Potential Catalysts for CO/Alkene Copolymerization [J]. Organometallics 2004,23(25),5907-5909.
    [47]Chuang, S. S. C.; Srinivas, G.; Brundage, M. A. Role of Tilted CO in Dynamics of CO Insertion on Ce-Rh/SiO2 [J]. Energy Fuels 1996,10 (3),524.
    [1]Trost, B. M. The atom economy:a search for synthetic efficiency [J].Science 1991,254, 1471-1477.
    [2]Nicolaou, K. C.; Dai, W. M.; Tsay, S. C.; Estevez, V. A.; Wrasidlo, W. Designed enediynes: a new class of DNA-cleaving molecules with potent and selective anticancer activity [J]. Science 1992,256,1172-1178.
    [3]Hubner, H.; Haubmann, C.; Utz, W.; Gmeiner, P. Conjugated Enynes as Nonaromatic Catechol Bioisosteres:Synthesis, Binding Experiments, and Computational Studies of Novel Dopamine Receptor Agonists Recognizing Preferentially the D3 Subtype [J]. J. Med. Chem.2000,43,756-762.
    [4]Trost, B. M.; Toste, D.; Pinkerton, A. Non-Metathesis Ruthenium-Catalyzed C-C Bond Formation [J]. Chem. Rev.2001,101,2067-2096.
    [5]Bruneau, C.; Dixneuf, P. H. Metal Vinylidenes in Catalysis [J]. Acc. Chem. Res.1999,32, 311-323.
    [6]Duchateau, R.; van Wee, C. T.; Teuben, J. H. Insertion and C-H Bond Activation of Unsaturated Substrates by Bis(benzamidinato)yttrium Alkyl, [PhC(NSiMe3)2]2YR (R= CH2Ph-THF, CH(SiMe3)2), and Hydrido,{[PhC(NSiMe3)2]2Y(μ-H)}2, Compounds [J]. Organometallics 1996,15,2291-2302.
    [7]Field, L. D.; Ward, A. J.; Turner, P. The Dimerization and Cyclotrimerization of Acetylenes Mediated by Phosphine Complexes of Cobalt(I), Rhodium(I), and Iridium(I) [J]. Aust. J. Chem.1999,52,1085-1092.
    [8]Ohmura, T.; Yorozuya, S.; Yamamoto, Y.; Miyaura, N. Iridium-Catalyzed Dimerization of Terminal Alkynes to (E)-Enynes, (Z)-Enynes, or 1,2,3-Butatrienes [J].Organometallics 2000,19,365-367.
    [9]Akita, M.; Yasuda, H.; Nakamura, A. Regioselective Homo-and Codimerization of 1-Alkynes Leading to 2,4-Disubstituted 1-Buten-3-ynes by Catalysis of a (η5-C5Me5)2TiCl2/RMgX System [J]. Bull. Chem. Soc. Jpn.1984,57,480-487.
    [10]Trost, B. M.; Sorum, M. T.; Chan, C.; Harms, A. E.; Ruhter, G. Palladium-Catalyzed Additions of Terminal Alkynes to Acceptor Alkynes [J]. J. Am. Chem. Soc.1997,119, 698-708.
    [11]Schafer, M.; Wolf, J.; Werner, H. Binding Two C2 Units to an Electron-Rich Transition-Metal Center:The Interplay of Alkyne(alkynyl), Bisalkynyl(hydrido), Alkynyl(vinylidene), Alkynyl(allene), Alkynyl(olefin), and Alkynyl(enyne) Rhodium Complexes [J]. Organometallics 2004,23,5713-5728.
    [12]Gao, Y.; Puddephatt, R. J. Selective head-to-tail dimerization of phenylacetylene catalyzed by a diruthenium μ-methyl ene complex [J]. Inorg. Chim. Acta.2003,350,101-106.
    [13]Sans, V.; Trzeciak, A. M.; Luis, S.; Ziolkowski, J. J. PdCl2(P(OPh)3)2 catalyzed coupling and carbonylative coupling of phenylacetylenes with aryl iodides in organic solvents and in ionic liquids [J]. Catal, Lett.2006,109,37-41.
    [14]Ananikov, V. P.; Mitchenko, S. A.; Beletskaya, I. P. The mechanism of C---C bond formation on the Pt(IV) center involving chelate metallocycle ligands [J]. J. Organomet. Chem.2000,604,290-295.
    [15]Ananikov, V. P.; Mitchenko, S. A.; Beletskaya, I. P. Stereo-and regioselective alkynes activation catalyzed by platinum(IV) and palladium(II) complexes in the I--,I3--, H2O/MeOH system [J]. Russ. J. Org. Chem.2002,38,636-650.
    [16]Kong, J. R.; Krische, M. J. Catalytic Carbonyl Z-Dienylation via Multicomponent Reductive Coupling of Acetylene to Aldehydes and a-Ketoesters Mediated by Hydrogen: Carbonyl Insertion into Cationic Rhodacyclopentadienes [J]. J. Am. Chem. Soc.2006,128, 16040-16041.
    [17]Bianchini, C.; Frediani, P.; Masi, D.; Peruzzini, M.; Zanobini, F. Regio-and Stereoselective Dimerization of Phenylacetylene to (Z)-1,4-Diphenylbut-3-en-1-yne by Ruthenium(II) Catalysis. Reaction Mechanism Involving Intermolecular Protonation of.sigma.-Alkynyl by 1-Alkyne [J]. Organometallics 1994,13,4616-4632.
    [18]Weng, W.; Guo, C.; Celenligil-Cetin, R.; Foxman, B. M.; Ozerov, O. V. Skeletal change in the PNP pincer ligand leads to a highly regioselective alkyne dimerization catalyst [J]. Chem. Commun.2006,197-199.
    [19]Ciclosi, M.; Estevan, F.; Lahuerta, P.; Passarelli, V.; Perez-Prieto, J.; Sanau, M. Unprecedented Iridium(III) Catalyst for Stereoselective Dimerization of Phenylacetylene [J]. AdV. Synth. Catal.2008,350,234-236.
    [20]Ghosh, R.; Zhang, X.; Achord, P.; Emge, T. J.; Krogh-Jespersen, K.; Goldman, A. S. Dimerization of Alkynes Promoted by a Pincer-Ligated Iridium Complex. C-C Reductive Elimination Inhibited by Steric Crowding [J]. J. Am. Chem. Soc.2007,129,853-866.
    [21]Ogoshi, S.; Ueta, M.; Oka, M.-A.; Kurosawa, H. Dimerization of terminal alkynes catalyzed by a nickel complex having a bulky phosphine ligand [J]. Chem. Commun.2004, 2732-2733.
    [22]Slugovc, C.; Mereiter, K.; Zobetz, E.; Schmid, R.; Kirchner, K. Ruthenium-Catalyzed Dimerization of Terminal Alkynes Initiated by a Neutral Vinylidene Complex [J]. Organometallics 1996,15,5275-5277.
    [23]Li, X.; Vogel, T.; Incarvito, C. D.; Crabtree, R. H. Electronic and Steric Effects in the Insertion of Alkynes into an Iridium(III) Hydride [J]. Organometallics 2005,24,62-76.
    [24]Li, X.; Incarvito, C. D.; Crabtree, R. H. A Rare η2-Butadienyl Complex from an Alkyne Double Insertion with Double Vinylidene Rearrangement [J]. J. Am. Chem. Soc.2003,125, 3698-3699.
    [25]Selnau, H. E.; Merola, J. S. Coupling of a vinyl ligand and a vinylidene ligand at an iridium center:generation of an unusual iridium(III) butadienyl complex stabilized by a 8-agostic C-H-Ir interaction [J]. J. Am. Chem. Soc.1991,113,4008-4009.
    [26]West, N. M.; Peter, S.; Templeton, J. L. Alkyne Insertion into the Pt-H Bond of Pt(H)(1-pentene)(β-diiminate) Initiates a Reaction Cascade That Results in C-H Activation or C-C Coupling [J]. Organometallics 2008,27,5252-5262.
    [27]Siegbahn, P. E. M.; Blomberg, M. R. A. Density Functional Theory of Biologically Relevant Metal Centers [J]. Annu. Rev. Phys. Chem.1999,50,221-249.
    [28]Foresman, J. B.; Frisch, M. J. Exploring Chemistry with Electrinic Structure Methods; Gaussian Inc.:Pittsburgh, PA 1993.
    [29]Chong, D. P. Recent Advances in Density Functional Methods, Part I; World Scientific: Singapore 1995.
    [30]Kohn, W.; Becke, A. D.; Parr, R. G. Density Functional Theory of Electronic Structure [J]. J. Phys. Chem.1996,100,12974-12980.
    [31]Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density [J]. Phys. Rev. B 1988,37,785-789.
    [32]Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior [J]. Phys. Rev. A 1988,38,3098-3100.
    [33]Fukui, K. Formulation of the reaction coordinate [J]. J. Phys. Chem.1970,74,4161-4163.
    [34]Fukui, K. The path of chemical reactions-the IRC approach [J]. Acc. Chem. Res.1981,14, 363-368.
    [35]Frisch, M. J.; Trucks, G. W.; Schlegel, H. B. et al. Gaussian 03, revision B05; Gaussian, Inc.:Pittsburgh, PA 2003.
    [36]Dolg, M. Modern Methods and Algorithms of Quantum Chemistry; Grotendorst, J. Ed.; John von Neumann Institute for Computing:Julich, Germany 2000; Vol.1, pp 479-508.
    [37]Wadt, W. R.; Hay, P. J. J. Chem. Phys.1985,82,284.
    [38]Davidson, E. R. Computational Transition Metal Chemistry [J]. Chem. Rev.2000,100, 351-352.
    [39]Bi, S. W.; Lin, Z. Y.; Jordan, R. F. Theoretical Investigation of C-H/Olefin Coupling Catalyzed by Zirconium(IV) Complexes [J]. Organometallics 2004,23,4882-4890.
    [40]Bi, S. W.; Ariafard, A.; Jia, G. C. Isomerism of Cp-Containing Transition Metal Allyl Complexes [J]. Organometallics 2005,24,680-686.
    [41]Xue, P.; Bi, S. W.; Sung, H. Y. Isomerism of [Ru(η3-allyl)Cl(CO)(PPh3)2] [J]. Organometallics 2004,23,4735-4743.
    [42]Ariafard, A.; Bi, S.W.; Lin, Z. Y. Mechanism of Endo-Exo Interconversion in η3-Allyl Cp Complexes:A Longstanding Unresolved Issue [J]. Organometallics 2005,24,2241-2244.
    [43]Zhu, X. F.; Zhao, B.; Bi, S. W. Theoretical study on three-membered silametallacycles toward MeOH:mechanisms on formation of ring-opening products [J]. Chem. Phys. Lett. 2006,422,6-10.
    [44]毕思玮,王宾,高一箴.[Cp*FRh(GO)2Me]BF4和二环庚二烯的反应机理研究[J].无机化学学报2006,22,13-19.
    [45]Fung, W. K.; Huang, X.; Man, M. L.; Ng, S. M.; Hung, M. Y.; Lin, Z.; Lau, C. P. Dihydrogen-Bond-Promoted Catalysis:Catalytic Hydration of Nitriles with the Indenyl ruthenium Hydride Complex (η5-C9H7)Ru(dppm)H (dppm= Bis(diphenylphosphino)methane) [J]. J. Am. Chem. Soc.2003,125,11539-11544.
    [46]Solin, N.; Kjellgren, J.; Szabo, K. J. Pincer Complex-Catalyzed Allylation of Aldehyde and Imine Substrates via Nucleophilic η1-Allyl Palladium Intermediates [J]. J. Am. Chem. Soc. 2004,126,7026-7033.
    [47]Petz, W.; Kutschera, C.; Heitbaum, M.; Frenking, G.; Tonner, R.; Neumuller, B. Experimental and Theoretical Studies of Carbodiphosphorane-CX2 Adducts with Unusual Bonding Situations:Preparation, Crystal Structures, and Bonding Analyses of S2CC(PPh3)2, O2CC(PPh3)2, and [(CO)4MS2CC(PPh3)2] (M=Cr, Mo, W) [J]. Inorg. Chem.2005,44, 1263-1274.
    [48]Barton, D. H. R.; Hall, M. B.; Lin, Z.; Parekh, S. I.; Reibenspies, J. Unusual attractive interactions between selenium and oxygen in selenoiminoquinones [J]. J Am. Chem. Soc. 1993,115,5056-5059.
    [49]West, N. M.; White, P. S.; Templeton, J. L. Facile Dehydrogenation of Ethers and Alkanes with aβ-Diiminate Pt Fragment [J]. J. Am. Chem. Soc.2007,129,12372-12373.
    [50]West, N. M.; Templeton, J. L. Approaches to alkane functionalization with Tp'Pt and (nacnac)Pt reagents [J]. Can. J. Chem.2009,87,288-296.
    [51]Brookhart, M.; Green, M. L. H. Carbon---hydrogen-transition metal bonds [J]. J. Organomet. Chem.1983,250,395-408.
    [52]Brookhart, M.; Green, M. L. H.; Wong, L. L. Carbon-Hydrogen-Transition Metal Bonds [J]. Prog. Inorg. Chem.1988,36,1.
    [53]McGrady, G. S.; Downs, A. J. Molecules with hydride or alkyl ligands and including d0 transition metal centers:problem cases for the simple VSEPR model [J]. Coord. Chem. ReV. 2000,197,95-124.
    [54]Zhao, H. T.; Lin, Z. Y.; Marder, T. B. Density Functional Theory Studies on the Mechanism of the Reduction of CO2 to CO Catalyzed by Copper(I) Boryl Complexes [J]. J. Am.Chem. Soc.2006,128,15637-15643.
    [55]Xia, Y. Z.; Huang, G. P. Mechanisms of the Au-and Pt-Catalyzed Intramolecular Acetylenic Schmidt Reactions:A DFT Study [J]. J. Org. Chem.2010,75,7842-7854.
    [56]Sakaki, S.; Sumimato, M.; Fukuhara, M.; Sugimoto, M.; Fujimoto, H.; Matsuzaki, S. Why Does the Rhodium-Catalyzed Hydrosilylation of Alkenes Take Place through a Modified Chalk-Harrod Mechanism? A Theoretical Study [J]. Organometallics 2002,21,3788-3802.
    [57]Dang, L.; Lin, Z. Y.; Marder, T. B. DFT Studies on the Carboxylation of Arylboronate Esters with CO2 Catalyzed by Copper(I) Complexes [J]. Organometallics 2010,29, 917-927.
    [58]Chen, M. J.; Nielsen, R. J.; Ahlquist, M.; Goddard, W. A. Carbon-Oxygen Bond Forming Mechanisms in Rhenium Oxo-Alkyl Complexes [J]. Organometallics 2010,29,2026-2033.
    [59]Wang, J. P.; Xu, H. Y.;Gao, H.; Su, C.Y.; Zhao, C. Y.; Phillips, D. L. DFT Study on the Mechanism of Amides to Aldehydes Using Cp2Zr(H)Cl [J]. Organometallics 2010,29, 42-51.
    [60]Liu, W.-G.; Zybin, S. V.; Dasgupta, S.; Klapootke, T. M.; Goddard, W. A., III. Explanation of the Colossal Detonation Sensitivity of Silicon Pentaerythritol Tetranitrate (Si-PETN) Explosive [J]. J. Am. Chem. Soc.2009,131,7490-7491.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700