水溶性稀土RE(Ⅲ)配合物的制备及对Cr(Ⅲ)传感性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会的发展,重金属离子污染已成为全世界共同关注的一个课题。在重金属离子污染中,Cr~(3+)污染污染日益严重,但是以往的研究方法,诸如原子吸收,原子发射及生物吸附,它们共同的缺陷就是样品需要预处理、灵敏度底、检测不够快速等。光传感材料就是用光信号来体现被分析物性质的一种材料。它具有方便,快捷,廉价等优点,因此被广泛应用于环境化学,临床病毒学,生物探针,食品安全及废物处理等领域。通常检测重金属Cr~(3+)的光传感材料多为有机大分子化合物,合成步骤繁琐,成本昂贵且大部分为非水溶性的,因此也限制了它在实际中的应用。稀土离子除了具有特征的锐线光谱、大的斯托克位移及长的激发态寿命等优点外,还有一个很大的优势就是价格低廉,因此如果能用稀土配合物检测水溶液中Cr~(3+),那么它在很大程度上会对检测工作提供一定的理论依据。为此本论文针对这个问题开展如下工作:
     (1)我们用2,6吡啶-二甲酸(PDA)作为配体,合成了两个水溶性的稀土传感材料Na_3RE(PDA)_3 (RE = Eu, Tb),通过紫外吸收,元素分析,荧光光谱等测试,发现荧光光谱的强度随着Cr~(3+)浓度的增加而下降。实验结果表明,这两个配合物对Cr~(3+)均具有较好的选择性,其中铽的配合物对Cr~(3+)的灵敏度最高,且具有良好的线性,因此有望应用在水溶液中对Cr~(3+)的检测。
     (2)基于上一章的结论,我们又尝试把中心稀土离子换成了Sm和Dy,并进行了一系列的测试和表征,得出了与上一章相似的结论,但是这两个配合物检测的浓度比Eu, Tb配合物低,我们推测原因可能是因为中心离子不同造成的。
With the development of society, the heavy metal ion pollution has become a topic of common concern around the world. The pollution of Cr3 + is a serious problem. Although instrumental analyses such as atomic absorption or atomic emission spectroscopy (AAS or AES), colorimetry, bio-sorption, electrochemical and potentiometric are currently used in applications relevant to the detection of chromium ion, they have sophisticated experimental methods and low sensitivity . Therefore, great attention is attached to develop selective chemosensors for chromium. Due to its simplicity, instantaneous response and high selectivity, fuorimetric detection of Cr~(3+) has great advantages over other detection techniques. So it is widely used in environmental chemistry, clinical virology, the food safety , waste treatment, etc. To our best knowledge, the reported chemosensors have some disadvantages :(1) the crude materials are expensive ; (2) the procedures are troublesome; (3) they are not water solubility,so these disadvantage prevent them from actual applications for Cr~(3+) sensors. Rare-earth (RE) based emitters have some advantage such as can give sharp, narrow emission bands, large sharpen stoke displacement, long excited lifetime and very cheap, if we can use it to detection Cr~(3+) in aqueous solution, it will provide certain theoretical basis for the actual applications to a large extent.In addition ,very few Cr~(3+) fluorescent sensors in aqueous system have been successfully designed so far.
     First: Tow water soluble rare-earth (Ⅲ) fluorescent chemosensors of Na_3RE(PDA)_3 (PDA = pyridine-2,6-dicarboxylic acid; RE = Eu, Tb,) have been synthesized and characterized by UV/Vis absorption, elemental analysis, and fluorescence spectra. It is observed that their emission intensity and excited state lifetimes decrease with increasing concentration of trivalent chromium (Cr~(3+)). Their sensing behavior towards Cr~(3+) is investigated by fluorescence spectroscopy. Results suggest that Na_3Tb(PDA)_3 exhibits the highest sensitivity and linear spectral response towards Cr~(3+) (Stern-Volmer constant = 0.829×10~6 L/mol, linearity = 0.989). These important advantages make themselves promising candidates to be utilized in actual applications.
     Second: We tried to put center rare earth ions replaced by Sm and Dy, and conducted a series of tests and characterization.Then we obtained the similar conclusion, but the two complexes's detect limit is lower than Eu and Tb complexes .we speculate the reasons may be is the difference of central ions.
引文
[1](a)V. J. Inglezakis, M. D. Loizidou, H. P. Grigoropoulou[J]. Water Res,2002, 36 (11): 2784-92. (b)V. K. Gupta, A. K. Jain, P. Kumar1, et al. [J]. Sensors and Actuators B,2006, 113 (1): 182-186.
    [2]Zayed, M.; Norman,[J].T. Plant Soil,2003, 249:139.
    [3]N. K. Srivastava, C.B. Majumder[J]. J. Hazard. Mater,2008, 1 (1): 1-8.
    [4]M. Karvelas, A. Katsoyiannis, C. Samara[J]. Chemosphere,2003,53 (10): 1201-1210.
    [5]S.A.Katz,H.Salem,The Biological and Environmental Chemistry of Chromium,VCH,New York,1994.
    [6]D.Burrows(Ed.),Chromium Metabolism and Toxicity,CRC Press,Boca Raton,FL,1983.
    [7]G.Saner,Chromium in Nutrition and Disease,Liss,New York,1980.
    [8](a)Aruna J. Weerasinghe, Carla Schmiesing, Ekkehard Sinn [J]. Tetrahedron Letters,2009, 50: 6407-6410; (b)Sarkar, M.; Banthia, S.; Samanta, A. [J]. Tetrahedron Lett,2006, 47: 7575-7578; (c)Latva S., Jokiniemi J, Peraniemi S, et al. [J].Spectrom,2003, 18:84; (d)Huang K, Yang H., Zhou Z., et al. [J]. Org.Lett ,2008, 10(12):2557-2560.
    [9]Metrz W. Chromium research from a distance: from 1959 to 1980 [J].J Am College Nutr,1998,17: 544
    [10]Singh, A. K. ; Gupta, V. K.; Gupta, B. [J]. Anal. Chim. Acta, 2007, 585(1): 171-178.
    [11]J.Mao, L.Wang,W. Dou, et al. [J].Org. Lett,2007,9 (22) :4567-4570.
    [12]Y. Wan, Q.J. Guo, X. F. Wang, et al. [J].Anal. Chim. Acta, 2010, 665(2):215-220.
    [13]Renzoni A,Zino F,Franchi E.Mercury levels along the food chain and risk for exposed populations[J].Environmental Research.1998,77(2):68-72.
    [14]Boening D. W. Ecological effects, transport, and fate of mercury: a general review [J].Chemosphere. 2000, 40 (12): 1335-1351.
    [15]Richardson S.D.,Temes T.A.,Water Analysis:Emerging Contaminants and Current Issues[J].Analytical Chemistry.2005,77(12):3807-3838.
    [16]Y.E. Ishida, K. Hiraga, Nippon Kagaku Kaishi ,1980 1453.
    [17]K.S. Subramanian [J]. Anal. Chem, 1988,60 (1): 11-15.
    [18](a) K. Chojnacka, A. C. H. Górecka [J].Chemosphere ,2005,59 (1): 75-84; (b)L. Yao, Z. F. Ye, M. P. Tong, et al. [J].J. Hazard. Mater, 2009,165 (1-3) 250-255. (c)D. Tiwari, S. P. Mishra , M. Mishrab, et al. [J]. Appl. Radiat. Isot. 50 (1999) 631.
    [19]Singh, A. K.; Singh, R.; Saxena, P. [J].Sensors, 2004, 4:187-195.
    [20]Hassan, S. S. M.; El-Shahawi, et al. [J]. Anal. Sci. 2005, 21(6):673-8.
    [21]H. A. Zamani, G. Rajabzadeh, M. Masrornia, et al. [J].Desalination.2009,249(2): 560-565.
    [22]Lehn,J.M.Perspectives in supramolecular chemistry-from molecular recognition towards molecular information processing and self-organization[J].Angew.Chem.Int.Ed.1990,29(1):1304-1319.
    [23]Lehn J.M. supramolecular Chemistry-Scope and Perspeetives Moleeules,Supermoleeules,and Moleeular Deviees(NobelLeeture).Angew.Chem. Int.Ed.1988,27(1):89-112.
    [24]GokelGW.AdvaneesinSupramoleeularChemistry.GreenwiehCT:JAIPr.,1992.
    [25]吴世康,超分子光化学导论一基础与应用[M].北京科学出版社,2005。
    [26]崔存丽,新型荧光化学传感器的合成及性能研究[D],青岛,青岛科技大学硕士学位论文,2010年6月。
    [27]刘卫敏,光化学传感器的设计、合成及其识别性质研究[D],北京,中国科学院研究生院(理化技术研究所)博士学位论文,2008年5月。
    [28]De Silva A P,David B F,Allen J M H et a1.Combining luminescence coordination and electron transfer for signalling purposes[J].Coordination Chemistry Reviews.2000,205:41-57.
    [29]Fan J L,Wu Y K,Peng X J.A naphthalimide fluorescent sensor for Zn~(2+) based onphotoinduced electron transfer[J].Chemistry Letters.2004,33(10):1392-1393.
    [30]Gunnlaugsson T,All H D P,Glynn M,et a1.Fluorescent photoinduced electron transfer (PET)sensors for anions:From design to potential appl ication[J].Journal of Fluorescence.2005,15(3):287-299.
    [31]Thiagarajan V,Ramamurthy P,Thirumalai D et a1.A novel colorimetric and fluorescent chemosensor for anions involving PET and ICT pathways[J].Org.Lett.2005,7(4):657-660.
    [32]Trautwein,A.X.Wiley-VCH,Weinheim[J].Bioorganic chemistry.1997,710-724.
    [33]Speiser,S.Photophysics and mechanisms of intramolecular electron energy transfer in bichromophoric molecular systems:solution and supersonic jet studies [J].Chem.Rev.1996,96:1953-1976.
    [34]De Silva,A.P.,Gunatatne.H.Q.N.,Gunnlauggson,T.et a1.,Signaling Recognition events with fluorescent sensors and switches[J].Chem.Rev.l997,97(5):l5l5-l566.
    [35]Grabowski Z R, Rotki ewiez K, Rettig W. Structural changes accompanying intramolecular electron transfer:focus on twisted intramolecular charge-transfer states and structures. Chem. Rev. 2003, 103: 3899-4031.
    [36]Valeur B. Molecular fluorescence principles and applications, edition. Wiley-VCH, 2001.
    [37]Martinez-Manez R,Sancenon F.Fluorogenic and chromogenic chemosensors and reagents for anions.Chemical Reviews.2003,103(11):4419-4476.
    [38]Lochbrunner S , Wurzer A J , Riedle E. Microscopic mechanism of ultrasfast excited-state intramolecular proton transfer : a 30-fs study of 2-(2'-hydroxyphenyl)benzothiazole. J . Phys. Chem. A. 2003, 107: 10580-10590.
    [39]Vivie Riedle R de,Waele V D,Kurtz L, et al.Ultrasfast excited-state proton transfer of 2-(2'-hydroxyphenyl)benzothiazole:theoretical analysis of the skeletal deformations and the active vibrational modes [J].J.Phys.Chem.A.2003,107(49):10591-10599.
    [40]Chang S M , Hsueh K L , Huang B K, Wu J. H., Liao C. C., Lin K. C. Solvent effect of excited state intermolecular proton transfer in 2-(2'-hydroxyphenyl)benzothiazole upon luminescent properties. Surface & Coatings Technology. 2006, 200: 32783-282.
    [41]Martinez-Mafiez R., Sanenon F. Fluorogenic and chromogenic chemosensors and reagents for anions. Chem. Rev. 2003, l03: 4419~4476.
    [42]Sarkar M, Banthia S, Samanta A. A Highly Seleetive‘off-on’Fluoreseenee Chemosensor for Cr(111) [J].TetrahedronLetters,2006,47(43):7575-7578.
    [43]吴红梅,基于丹磺酞胺光敏体的分子探针研究[D],大连,大连理工大学博士学位论文,2009年5月
    [44]李文连.有机/无机光电功能材料及其应用[M].北京:科学出版社,2005.1-11.
    [45]刘式墉,赵毅,李峰,等.有机电致发光研究与应用进展[J].物理,2003,32 (5):315-318.
    [46]唐小真,杨宏秀,丁马太编.材料化学导论[M].北京:高等教育出版社,1997.7-12.
    [47]王术立,过渡金属钌配合物纳米球及铱配合物的复合纳米纤维的发光及传感性能研究[D],长春,东北师范大学硕士学位论文,2010年5月
    [48]刘青春,静电纺丝法制备过渡金属(钌、铼)有机配合物纳米发光纤维[D],长春,东北师范大学硕士学位论文,2008年5月
    [49]应俊,含氮双齿配体及金属配合物的合成、表征及发光性质的研究[D],长春,东北师范大学硕士学位论文,2009年5月
    [50]孙迎辉,邻菲啰啉衍生物铼、钌和铂及异腈铂发光配合物的合成及性能研究[D],长春,吉林大学博士学位论文,2005年5月
    [51]邢雅洁,共价嫁接铱配合物介孔材料制备及氧传感性能的研究[D],长春,东北师范大学硕士学位论文,2009年5月
    [52]王燕平,过渡金属铼(Ⅰ)配合物的合成、表征及其光致和电致发光的研究[D],长春,东北师范大学硕士学位论文,2007年6月
    [53]刘东阳,双功能稀土配合物的合成、表征及其光电性能的研究[D],长春,东北师范大学硕士学位论文,2007年6月
    [54]王丹,共价嫁接铕Eu(Ⅲ)、钌Ru(Ⅱ)配合物杂化材料的制备及发光性能的研究[D],长春,东北师范大学硕士学位论文,2010年5月
    [55]孙旭,掺杂稀土铒(Ⅲ)、铕(Ⅲ)配合物纳米发光材料的研究[D],长春,东北师范大学硕士学位论文,2008年5月
    [56]张明,若干联吡啶类配体及金属配合物的合成、电子结构与光电性质的研究[D],长春,吉林大学博士学位论文,2004年6月
    [57]范瑞清,吡啶二亚胺金属配合物的合成、表征及发光性能的研究[D],长春,吉林大学博士学位论文,2004年12月
    [58]张成波,磷光材料钌(Ⅱ)配合物的合成及性质研究[D],长春,吉林大学硕士学位论文,2005年5月
    [59]刘琦,具有近红外发光性质的稀土铒有机配合物的制备与表征[D],长春,吉林大学硕士学位论文,2008年4月[60]刘晓冬,发光金属配合物中的吸推电子效应对电子能级结构和电子光谱影响的理论研究[D],长春,吉林大学博士学位论文,2004年6月
    [61]赵珊珊,含苯酚、吡啶片段Pt(Ⅱ)配合物光电性质的理论研究[D],长春,东北师范大学硕士学位论文,2009年5月
    [62]G. A. Crosby, R. E. Whan, R. M. Alire [J]. J. Chem. Phys. 1961, 34:743.
    [63]M. Guan, L.H. Gao, S.S.Wang, et al. [J]. J. Lumin.2007,127 (2) :89-493.
    [64]Balzani V,Carassiti V.Photochemistry of Coordination Compounds[M].London:Academic Press.970.16-20.
    [65]Balzani V,Barigelletti F,De Cola L.Metal-complexes as light-absorption and light-emission sensitizers[J].Top Curr Chem.990,158:31-71.
    [66]Horva′th O,Stevenson K L.Charge Transfer Photochemistry of Coordination Compounds[M].New York:VCH,1993.12-17.
    [67]Crosby G A.Spectroscopic investigations of excited-states of transition-metal complexes[J].Acc Chem Res,1975,8(7):231-238.
    [68]北京师范大学无机化学教研室等编.无机化学[M]:下册.第4版.北京高等教育出版社,2003
    [69]张宁,赵邦屯,刘育,高等学友必学学茂2002,8:1533
    [70]S.Petoud,SethM.Cohen, K.N.Raymond [J]. J.Am.Chem.Soc,2003,125(44):13324-13325.
    [71]C.Piguet,J.C.G.Bullzli,G.Bernardinelli,et al. [J]. J.Am.Chem.Soc.,1993,115(18):8197-8206.
    [72]N.Martin,J.C.G. Bünzli,V.Mekee,et al. Inorg.Chem.,1998,37(3):577-589.
    [73]M.Elhabiri,R.SeoPelliti,J.C.G.BUnzli,et al. [J].J.Chem.Soc. Chem.Commun. 1998, 2347.
    [74]M.Elhabiri,R.SeoPelliti,J.C.G.Bunzli,et al. [J]. J.Am.Chem.Soc. 1999,121(46):10747-10762.
    [75]S.Floquet,N.Ouali,B.Boequet, et al. [J]. Chem.Eur.J. 2003,9:1860-1875
    [76]J Jeon B S, Hong G Y, Yoo Y K, et al. Spherical BaMgAl10O17:Eu2+ phosphor prepared by aerosol pyrolysis technique for PDP applications[J]. J Electrochem Soc.2001,148(9): H128-H131.
    [77]Kim E J, Kang Y C, Park H D, et al. UV and VUV characteristics of (YGd)_2O_3:Eu phosphor particles prepared by spray pyrolysis from polymeric precursors[J]. Mater Rears Bull, 2003, 38: 515-518.
    [78]Legendziewicz J, Gawryszewska P, Ga(?)decka E, et al. Novel polynuclear compound of europium with N-phosphonomethylglycine: spectroscopy and structure[J]. J Alloys Compd, 1998, 257-277: 356-360.
    [79]Carlos L D,Assun(?)(a|~)o M,Mour(a|~)o P M, et al. Luminescence of non-hygroscopic polymer electrolytes modified by europium picrate complexes[J]. Electro acta, 1998, 43: 1365-1369.
    [80]Szuszkiewicz W, Keller B, Guzik M, et al. Application of lanthanide (Eu, Nd) spectroscopy as a structural probe of diluted double phosphates[J]. J Alloys Compd, 2002, 341(1-2): 297-306.
    [81]L.M. Zhang, B. Li, Z. M. Su, S. M. Yue, Sensors and Actuators B[J].2010,143 (2): 595-599.
    [82]A. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M. Huxley, C. P. McCoy, J. T. Rademacher, T. E. Rice, Signaling Recognition Events with Fluorescent Sensors and Switches[J].Chem. Rev. 97 (1997) 1515.
    [83]J. Liu, Y. Lu,[J].J. Am. Chem. Soc. 2004, 126, 12298.
    [84]L. Huang, K.Z. Wang, C.H. Huang, F. You, Y.Y. Huang, Bright red electroluminescent devices using novel second-ligand contained europium complexes as emitting layers[J]. J. Mater. Chem. 11 (2001) 790–793.
    [85]L.S. Li, D.Q. Chen, X.T. Chen, B.S. Kang, L.P. Jin, Synthesis and crystal structure of the lanthanide complexes with pyridine-2,6-dicarboxylic acid, Chin. [J]. J. Inorg.Chem. 1993,9:418–422.
    [86](a) Judd, B. R. Phys. Re . 1962, 127:750-61. (b) Ofelt, G. S. J. Chem.Phys. 1962, 37: 511.
    [87]B. Lei, B. Li, H. Zhang, L. Zhang, W. Li, Synthesis, characterization, and oxygen sensing properties of functionalized mesoporous SBA-15 and MCM-41 with a covalently linked ruthenium(II) complex, J. Phys. Chem. C 111 (2007) 11291–11301.
    [88]张黎明,廉价金属配合物的设计合成与发光性质研究[D],长春,中国科学院研究生院(长春光学精密机械与物理研究所)博士学位论文, 2010年4月

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700