不确定非完整运动学系统鲁棒镇定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文探讨了非完整轮式移动机器人的不确定链式模型、鲁棒镇定和跟踪控制问题。旨在推出一系列与以往不同的新的不确定运动学系统模型,并且对不确定模型设计新的指数镇定控制器和动态反馈跟踪控制器。本文的主要结果和创新之处有如下几点:
     1、基于视觉反馈信息和状态-输入变换,得到了一系列新的非完整不确定链式模型并将它们推广到更为一般的形式。创新之处是:通过固定单目摄相机的视觉反馈模型和状态-输入变换,推导出了未标定摄像机视觉参数的四种非完整机器人、带有一个拖车和多个拖车的非完整系统的不确定链式模型。与以往研究模型不同的是,这些模型的结构不满足所谓的三角条件,所以,是一系列新的不确定链式模型
     2、给出了两种不同情形下的(1,1)型机器人不确定链式模型的指数镇定控制器。创新点是,基于特殊情形下(1,1)型机器人不确定链式系统的指数镇定控制方法,提出了新的更一般情形下的(1,1)型机器人不确定链式系统的控制器设计方案,并给出了严格证明。
     3、对于(1,2)型机器人的不确定链式系统,基于State-scaling、状态-输入变换和切换技术,分别提出了四种不同情形下的新的指数镇定控制器设计方案。并对每一种情形,给出了严格证明和Matlab仿真,验证了所提出的控制器的正确性。这一章内容是本文的重要创新成果之一。
     4、研究了两类机器人不确定非完整系统的轨迹跟踪问题。首先介绍了基于视觉反馈的(2,0)型机器人不确定系统的动态反馈跟踪控制器设计。然后对基于视觉伺服的(1,2)型机器人的不确定链式系统,借鉴Backstepping方法,构建了两个变换和Lyapunov函数,提出了新的在特定情形下的自适应动态反馈跟踪控制器,该控制器使得跟踪误差和动态变量渐近趋于零。对控制器设计的鲁棒性给出了严格证明和仿真实验。
     总之,非完整轮式移动机器人是一个复杂的非线性系统。由于未标定参数、外部扰动、测量和未建模动态等不确定性,实际中难以得到非完整系统精确的运动学模型。本文所提出的一系列非完整不确定链式模型、对两种不确定链式模型在多种情形下所设计的指数镇定控制器和自适应跟踪控制器,不仅丰富了不确定非完整系统控制理论的内容,而且对轮式机器人控制具有重要的实际意义。
For nonholonomic wheeled mobile robots with uncertainties, we discuss theexponential stabilization problems and the adaptive dynamic feedback trackingproblems in this thesis. Our objective is to propose a few new exciting uncertainchained form models, then design new robust controllers of exponential stabilizationand propose the new tacking controllers for the uncertain systems. The main results andthe innovations for this thesis are shown as follows:
     1. A few new uncertain chained models are obtained based on visual feedback andstate-input transformations for nonholonomic wheeled mobile robots. The innovationsare that a few new uncertain chained models of four types of nonholonomic wheeledmobile robots and a car with one or n trailers are obtained by using state-inputtransformations and visual feedback of fixed camera with unknown parameters. Then,we derived the more general uncertain chained models from the deduced uncertainmodels. The deduced uncertain chained models are different from those discussed bycontrol experts before. The structures of our new uncertain models do not satisfy theso-called triangularity condition. So the deduced models are a series of novel uncertainchained models.
     2. For the uncertain chained systems of type (1,1) robots, the exponentialstabilization controllers are addressed in two particular cases. The innovation is that anew exponential stabilization controller in more general case for the uncertain chainedsystem of type (1,1) robot is proposed based on the exponential regulation algorithm inthe particular case. The strict proof is given and the simulation results are shown.
     3. For the uncertain chained system of type (1,2) robot, four kinds of new controlschemes are presented in four different cases based on the state-scaling, state-inputtransformations and switching strategies. The strict proof is given and the simulationresults are shown for every case which means that the new controllers are effective.
     4. For the uncertain nonholonomic system of type (2,0) mobile robot, a newdynamic feedback tracking controller is introduced. Then, the new adaptive dynamictracking controller is obtained for type (1,2) robot in particular case. The innovation isthat a new adaptive and dynamic feedback tracking controller is obtained based on thebackstepping method, two transformations and Lyapunov function for the uncertain chained system of type (1,2) nonholonomic wheeled mobile robot. The controller canmake the tracking errors converge to zero asymptotically.
     To sum up, nonholonomic wheeled mobile robots are kinds of quite complexnonlinear control systems. In practice, precise kinematic models of robots are difficultto obtained due to imprecise measurements, unmodeling and disturbance etc.. Theproposed new uncertain chained models, the new exponential stabilization controllersand the tracking controller for the uncertain chained systems in this thesis not onlyenrich the contents of nonholonomic control theories of uncertain systems but also haveimportant practical significance for the control of wheeled mobile robots.
引文
[1] NNilsson A mobile automation: An application of artificial intelligence techniques.In: Proceedings of IJCA I,1969.509-520
    [2] Daily M. Autonomous cross-navigation with the ALV. IEEE,In: Proceedings ofRobotic and Automation.1998.718-726.
    [3] Triend E, Kringman D J. Stereo vision and navigation within buildings. IEEE In:Proceedings of Robotics and Automation.1987.1725-1730.
    [4]刘海波.21世纪智能机器人发展预测.机器人,1991,13(4):39-46.
    [5]徐国,华谭民.移动机器人的发展现状及其趋势,机器人技术与应用,2001(3):7-14.
    [6]金周英.关于我国智能机器人发展的几点思考.机器人技术与应用,2001(4):5-7.
    [7]蔡自兴.机器人学,北京:清华大学出版社,2000.
    [8]王麟琨,徐德,谭民.机器人视觉伺服研究进展,机器人,2004,26(3):277-282.
    [9]赵清杰,连广宇,孙增圻.机器人视觉伺服综述.控制与决策,2001,16(6):849-853.
    [10]郑大钟,线性系统理论.北京:清华大学出版社,2002.
    [11]王越超,景兴建.轮式非完整移动机器人控制.
    [12] Bloch A, Reyhanoglu M, McClamroch N. Control and stabilization ofnonholonomic caplygin dynamic systems. In: Proceedings of30th IEEEConference of decision and Control. Brighton, England,1991.1127-1133.
    [13] Bloch A, Reyhanoglu M, McClamroch N. Control and stabilization ofnonholonomic dynamic systems, IEEE Transactions on Automatic Control,1992,37(11):1746-1757.
    [14] Gerge J, Kostas J, Stabilization of nonholonomic vehicleunder kinematicsconstrains. International Journal of Control,1995,61(4):933-947.
    [15] Brussel H. About CIM. Concurrent engineering and mechatronics. AdvancedManufacturing Technology,1994(9):25-30.
    [16] Chaumette F, Hutchinson s. Visual servo control part I: basicapproaches. IEEE Robotics Automation Magazine,2006(12):82-90.
    [17] Chaumette F, Hutchinson s. Visual servo control part II: advancedapproaches.IEEE Robotics Automation Magazine,2007(3):109-118.
    [18] Hill J, Park W. Real time control of a robot with a mobile camera. In:9thInternational Symposium on Industrial Robots,1979.233-246.
    [19] Hutchinson S, Hager G, Peter I. A tutorial on visual servo control, IEEETranstractions onRobotics and Automation,1999,12(5):2651-2670.
    [20] Hamel T, Mahony R. Visual servoing of an under-actuated dynamic rigid-bodysystem: An image based approach. IEEE Transtractions on Robotics andAutomation,2002,18(2):187-198.
    [21]薛定宇,项龙江,司秉玉,等.视觉伺服分类及其动态过程[J],东北大学学报(自然科学版),2003,24(6):543-547.
    [22] Malis E, Chaumette F, Bodet S.21/2D visual servoing.IEEE Transactions onRobotics and Automation,1999,15(2):238-250.
    [23] Deguchi K. Optimal motion control for image-based servoing by decouplingtranslation and rotation, In: Proceedings of Intelligent Robots and Systems,1998.705-711.
    [24] Fang Y. Dixon W,Dawson D. Adaptive2.5D visual servoing of cartesian robots.Proe of the Eighth International Confefrence on Contro1.Automation,Roboticsand Vision.Kunming,China,2004.68-73.
    [25] Malis E, Chaumette F, Bodet S.21/2D visual servoing, IEEE Trans. Robot.Autom.1999,15(2):238-250.
    [26] Taylor G,Kleeman I.Hybrid position based visual servoing with online calibrationfor a humanoid robot. In:Proceedings of IEEE/RsJ International Conference onIntelligent Robots and Systems.Sandai,Japan,2004:686-691.
    [27] Chaumette F. Potential problems of stability and convergence in image-basedandposition-based visual servoing. In: Proc of the Conference of Vision and Control。Volume237of Lecture Notes an Control and Information Sciences.IS.1:Springer-Verlag,1998.
    [28] Conticeilli F, Allotta B. Nonlinear controllability and stability analysis of adaptiveimage-based systems.IEEE Transactions on Robotics and Automation,2001,17(2):208-214.
    [29] Cunha R, Silvestre C, Hespanha J, Aguiar A P. Vision-based control for rigid bodystabilization. In:Proceedings of the46th IEEE Conference on Decision andControl New Orleans, LA, USA,2007:2345-2350.
    [30]方勇纯.机器人视觉伺服研究综述,智能系统学报, CAAI, Transactions onIntelligents,2008,3(2):109-114.
    [31] Dixon W,Fand Y,Dawson D M,Flynn T.Range identification for perspectivevision systems.IEEE Transactions on Automatic Control,2003,48(12):2232-2238.
    [32] Karagiannis D, Asrolfi A. A new solution to the problem of range identification inperspective vision systems.IEEE Trans on Automatic Control,200550(12):2074-2077.
    [33] Yi M, Jana K, Shankar S. Sastry. Vision guided navigation for a nonholonomicmobile robot. IEEE Transtractions on Robotics and Automation,1999,15(3):521-536.
    [34] Dixon W, Dawson D, Zergeroglu E, Behal A. Adaptive tracking control of awheeled mobile robot via an uncalibrated camera sys-tem, in Proc. IEEE AmericanControl Conf.,Chicago, IL,2000,1493-1497.
    [35] Piepmeier J,Mcmurray G, Ipkin H. Unealibrated dynamic visual servoing.IEEETransactions on Robotics and Automation,2004,20(12):143-147.
    [36] Fang Y,Dixson W,Dawson D,et al.An exponential class ofmodel-free visualservoing controllers in the presence of uncertain camera calibration.InternationalJournal of Robotics and Automation,2006,21(4):247-255.
    [37] Liu Y, Wang H, Lam K. Dynamic visual servoing of robots in uncalibratedenvironment. In: Proc of the IEEE Conference on Robotics and AutomationBarcelona,Spain,2005:3142-3147.
    [38] Dixon W, Dawson D, Zergeroglu, et al. Tracking and regulation control of amobile robot system with kinematic disturbances: a variable structure-likeapproach. Journal of Dynamic Systems, Measurement, and Control.2000,122(4):616-623.
    [39] Chen J, Dixon W, Dawson D, McIntyre M. Homography based visual servotracking control of a wheeled mobile robot. IEEE Transactions on Robotics,2006,22(2):406-415.
    [40] Burschka D, Hager G. Vision-based control of mobilerobots, In: Proceedings ofRobotics and Automation,2001.1707-1713.
    [41] Hagar G, Kriegman D, Georghiades A, Ben-Shahar O.Toward domain-independentnavigation: dynamic vision and control, In: proceedings of IEEE Conference onDecision and Control,1998,3257-3262.
    [42] Chen J, Dawson D, Dixon W, Behal A. Adaptive homography-based visual servotracking for fixed and camera-in-hand configurations, IEEE Trans. Contr. Syst.Technol.,2005,13(5):814-825.
    [43] Wang C, Niu W, Li Q, Jia Q. Visual servoing based regulation of nonholonomicmobilerobots with uncalibrated monocular camera. In: proceedings of IEEEinternational Conference on Control and Automation, Guangzhou, China: IEEE,2007.214-219.
    [44] Wang C, Mei Y, Liao Q. Rubust regulation of nonholonomic mobile robots withvisual servoing. In: Proceedings of the7th World Congress on Intelligent Controland Automation, Chongqing, China: IEEE,2008.2153-2158.
    [45] Wang C, Liang Z, Jia Q. Dynamic feedback robust regulation of nonholonomicmobile robots based on visual servoing. Journal of Control Theory andApplications,2010,8(2):139-144.
    [46] Wang C, Mei Y, Liang Z, Jia Q. Dynamic feedback tracking control ofnonholonomic mobile robots with unknown camera parameters. Transactions ofthe Institute of Measurment and Control,2010,32(2):155-169.
    [47] Wang C, Liang Z, Du J, Liang S. Robust stabilization of nonholonomic movingrobots with uncalibrated visual parameters. In: Proceedings of American ControlConference. HyattRegency Riverfront, USA: IEEE,2009,1347-1352.
    [48] Liang Z, Wang C, Sun Y, Yang Y, Liu Y. Uncalibrated visual servoing feedbackbased exponential stabilization of nonholonomic mobile robots. In: TheInternational Conference on Robotics and Biomimetics, Guilin, China: IEEE,2009.671-676.
    [49] Fliess M, Levine J, Martin P, Rouchon P. Flatness and defect of non-linear systems:introductory theory and examples. International Journal of Control,1995,61(6):1327-1361.
    [50] Allen P, Timcenko A, Yoshimi B, Michelman P. Automated tracking and graspingof a moving object with a robotic hand-eye system. IEEE Transactions onRobotics and Automation,1993,9(2):152-165.
    [51] Dixon W, Dawson D, Zergeroglu E. Adaptive tracking control of a wheeled mobilerobot via an uncalibrated camera system. IEEE Transactions on Systems, Man, andCybernetics-Part B: Cybernetics,2001,31(3):341-352.
    [52] Fang Y, Dixon W, Dawson D M. Homography-based visual servo regulation ofmobile robots. IEEE Transactions on Systems, Man, and Cybernetics-Part B:Cybernetics,2005,35(5):1041-1050.
    [53] Liu Y, Wang H, Wang C, Lam K. Uncalibrated visual servoing of robots using adepth-independent interaction matrix. IEEE Transactions on Robotics,2006,22(4):804-817.
    [54] Wang H, Liu Y, and Zhou D. Adaptive visual servoingusing point and line featureswith an uncalibrated eye-in-hand camera. IEEE Transactions on Robotics,2008,24(4):843-856.
    [55] Campion G, Bastin G, D’Andr′ea-Novel B. Structural properties and classificationof kine-matic and dynamic models of wheeled mobile robots. IEEE Transactionson Robotics and Automation,1996,12(1):47-62.
    [56] Pomet J. Explicit Design of time-varying stabilizing control laws for a class ofcontrollable systems without drift. Systems and Control Letters,1992(18):147-158.
    [57]王朝立,北京航空航天大学博士论文.非完整控制系统的鲁棒镇定研究,1999,3.
    [58] Murray R, Li Z, Sastry S. A mathematical introduction to robotic manuipulation,Taylor and Francis, Inc.1st Edition, In: Proceedings of33rd IEEE Conference onDecision and Control. Florida: IEEE,1994.3469-3474.
    [59] Murray R, Sastry S. Nonholonomic motion planning: Steering using sinusoids.IEEE Transactions on Automatic Control,1993,38(5):700-716.
    [60] Walsh G, Bushnell L. Stabilization of multiple input chained form control systems.Systems and Control Letters,1995,25(3):227-234.
    [61]李世华,田玉平,非完整移动机器人的有限时间跟踪控制算法研究,控制与决策,2005,20(7):750-754.
    [62]胡冬须,胡跃明.非完整移动机器人的分段反馈稳定控制,(英文)控制理论与应用2000,17(3):358-362.
    [63]梅凤翔,非完整系统动力学基础,北京工业出版社.1985
    [64]王朝立,霍伟.用滑动模态实现一类非完整动力学系统的指数镇定,自动化学报,2000,26(2):254-257.
    [65]马保离,宗光华,霍伟。非完整链式系统的输出跟踪控制一动态扩展线性化方法,自动化学报,1999,25(3):316-322.
    [66]李清湘,胡跃明,裴海龙,周其节,移动机器人的鲁棒输出跟踪,控制理论与应用,1998,15(4):515-524.
    [67]董文杰,霍伟.动态非完整控制系统的指数镇定及其在一类车式机器人中的应用,机器人,1998,20(2):88―92.
    [68]谢明江,代颖,施颂椒.机器人鲁棒控制研究进展.机器人,2000,2(1):73-80.
    [69]曹洋,项龙江,徐心和.基于全局视觉的轮式移动机器人轨迹跟踪控制.机器人2004,26(1):78-82.
    [70]李胜,马国梁,胡维礼.一类不确定非完整移动机器人的时变自适应镇定.机器人,2005,27(1):10-13.
    [71]马保离,霍伟.非完整链式系统的时变光滑指数镇定.自动化学报,2003,29(2):301-305.
    [72]董文杰,霍伟.一类不确定非完整动力学系统的时变镇定.自动化学报,1999,25(3):402-405.
    [73] Wang J, Qu Z, Hull R, Martin J. Cascaded feedback linearization and itsapplication to stabilization of nonholonomic systems. Systems and Control Letters,2007,56(4):285-295.
    [74] Kanayama Y, Kimura Y, Miyazaki F et al. A stable tracking control method for anautonomous mobile robot. Proceedings of IEEE International Conference onRobotics and Automation, Cincinnati, OH,1990.384-389.
    [75] Kolmanovsky I, McClamroch N. Developments innonholonomic control problems.IEEE Control Systems Magazine,1995,15(6):20-36.
    [76] Brockett R. Asymptotic stability and feedback stabilization.In: Diferentialgeometric control theory, Brockett R W, Millman R S, Sussmann H J, Eds.1983.181-191.
    [77] Teel A, Murray R,Walsh G. Nonholonomic control systems: from steering totabilization withsinusoids. International Journal of Control,1995,62(4):849-870.
    [78] Bloch A, Drakunov S. Stabilization of a nonholonomic systemvia sliding modes.Proceedings of the33rd IEEE Conference on Decision and Control,1994.2961-2963.
    [79] Sussmann H. Subanalytic sets and feedback control. Journal of DifferentialEquations,1979,31(4):31-52.
    [80] Lafferriere G, Sontag E. Remarks on control Lapunov functions for discontinuousstabilizing feedback. Proceedings of the32nd IEEE Conference on Decision andControl,1993(l):306-308.
    [81] Guldner J, Utkin V I. Stabilization of nonholonomic mobile robots using Lyapunovfunctions of for navigation and sliding mode control In: Proceeding of the33rdIEEE Int.Conference on Decision and Control,1994(3):2967-2972.
    [82] Wang C, Huo W. Stabilization of Chained Systems with Input Constraints,Proceeding of American Control Conference, San Diego, California,1999:3950-3954.
    [83] Tayebi A, Tadjine M, Rachid A. Discontinuous control designfor the stabilizationof non-holonomic systems in chained form using the backstepping approach.Proceedings of the Decision and Control,1997(3):3089-3090.
    [84] Kolmanovksy I, Reyhanoglu M, McClamroch N H. Discontinuous feedbackstabilization of nonholonomic systems in extended power form1994.
    [85] Fontes F. Discontinuous feedback stabilization usingnonlinear model predictivecontrollers. Proceedings of the39th IEEE Conference on Decision and Control,2000(5):4969-4971.
    [86] Coron J. Global asymptotic stabilization for controllable systems without drift.Mathematics of Control, Signals and Systems,1991(5):295-312.
    [87] Murray R. Control of Nonholonomic systems using chainedform. Fields InstituteCommunications.1993(l):219-245.
    [88] Closkey R, Murray R. Exponential stabilization of driftless nonlinear controlsystems via time-varying, homogeneous feedback, Proceedings of33rd IEEEConference on Decision and Control,1994(2):1317-1322.
    [89] Spong M, Vidyasagar M. Robust linear compensator design for nonlinear roboticcontrol. IEEE J Rob Auto,1987,3(8),345-351.
    [90] Abdallah D, et al. Survey of robust control for rigid robots. IEEE Control SystemsMagazine,1991,11(2):24-30.
    [91] Jauasuriya S, Hwang C N. Tracking controllers for robot manipulators a high gainperspective. Journal of Dynamics Systems, Measurment and Control,1998(110):39-45.
    [92] Young K. Controller design for a manipulator using theory of variable structuresystems.IEEE Trans, Syst Man and Cyber.1978,8(2):210-128.
    [93] Stepanenko Y, Cao Y, Su C. Variable structurecontrol of robotic manipulator withPID sliding surface. Int J of Robust And Nonlinear Control,1998(8):79-90.
    [94] Yeung K, Chen Y. A new controller design for manipulators using the theory ofvariable structure system. IEEE Trans. on Automatic Control,1988,35(2):995-1003.
    [95] Man Z, Paplinski A, Wu H. A robust MIMO terminal sliding mode control schemefor rigid robotic manipulators. IEEE Trans. on Automatic Control,1994,39(8):2462-2469.
    [96] Dong S, Mills J. Adaptive learning control of roboticsystem with modeluncertainty. Proceedings of the1998IEEE International Conference on Roboticsand Automation,1998:1847-1853.
    [97] Yu H. Robust combined adaptive and variable structure adaptive control of robotmanipulators.Robotica,1998,1(16):623-659.
    [98] Jiang Z, Nijmeijer H. A recursive technique for tracking control of nonholonomicsystems in chained form. IEEE Transactions on Automatic Control,1999,44(2):265-279.
    [99] S rdalen0. Conversion of the kinematics of a car with n trailers into a chainedform. In: Proceedings of IEEE International Conference on Robot and Automation,Atlanta: IEEE,1993.382-387.
    [100] LeroquaisW, d’Andr′ea-Novel B. Transformation of the kinematic models ofrestricted mobility wheeled mobile robots with a single platform into chain forms.In: Proceedings of the34th Conference on Decision and Control, New Orleans:IEEE,1995.3811-3816.
    [101] Tilbury D, Sordalen O, Bushnell L, Sastry S. A multi-steering trailer system:conversion into chained form usingdynamic feedback. IEEE Trans. Robot.Automat,1995,11(6):807-818.
    [102] S rdalen0, Egeland0. Exponential stabilization of nonholonomic chainedsystems. IEEE Transactions on Automatic Control,1995,40(1):35-49.
    [103] Astolfi A, Schaufelberger W. State and output feedback stabilization of multiplechained systems with discontinuous control. Systems and Control Letters,1997,32(1):49-56.
    [104] Sun Z, Ge S, Huo W, Lee T. Stabilization of nonholonomic chained systems vianonregular feedback linearization.Systems and Control Letters,2001,44(4):279-289.
    [105] Qu Z, Wang J, Plaisted C, Hull R. Global-stabilizing near-optimal control designfor non-holonomic chained systems. IEEE Transactions on Automatic Control,2006,51(9):1440-1456.
    [106] Wang C. Semiglobal practical stabilization of nonholonomic wheeled mobilerobots with saturated inputs. Automatica,2008,44(3):816-822.
    [107] Ma B, Tso S. Unified controller for both trajectory tracking and point regulationof second-order nonholonomic chained systems. Robotics and AutonomousSystems,2008,56(4):317-323.
    [108] Wu Y, Wang B, Zong G. Finite-time tracking controller design for nonholonomicsystem with extended chainedform. IEEE Transactions on Circuts and Systems,2005,50(11):798-802.
    [109] Cao K. Global k-exponential tracking control of nonholonomic systems inchained-form by output feedback. Acta Automatica Sinica,2009,35(5):568-576.
    [110] Bennani M, Rouchon P. Robust stabilization of flatand chained systems. In:Proceedings of European Control Conference, Rome: IEEE,1995.2642-2646.
    [111] Hu Y, Ge S, Su C. Stabilization of uncertain nonholonomic systems viatime-varying sliding mode control. IEEE Transactions on Automatic Control,2004,49(5):757-763.
    [112] Wang Y, Peng J, Sun W, Yu H, Zhang H. Robust adaptive trackingcontrol ofrobotic systems with uncertainties. Journal of Control Theory and Applications,2008,6(3):281-286.
    [113] Dong W, Farrell J. Decentralized cooperative controlof multiple nonholonomicdynamic systems with uncertainty. Automatica,2009,45(3):706-710.
    [114] Li Z, Ge S, Adams M, Wijesoma W S. Robust adaptive control of uncertainforce/motion constrained nonholonomic mobile manipulators. Automatica,2008,44(3):776-784.
    [115] Wu J, Xu G, Yin Z. Robust adaptive control for a nonholonomic mobile robotwith unknown parameters. Journal of Control Theory and Applications,2009,7(2):212-218.
    [116] Morin P, Pomet J, Samson C. Developments in time varying feedbackstabilization of nonlinear systems. In: Proceedings of Nonlinear control systemsdesign symposium, Enschede.1998.587-594.
    [117] Canudas D, Khennouf H. Quasi-continuous stabilizing controllers fornonholonomic systems: design and robustness considerations. In: Proceedings ofthe European control conference (ECC’95), Rome: IEEE,1995.2630-2635.
    [118] Hespanha J, Liberzon S, Morse A. Towards the supervisory control of uncertainnonholonomic systems. In:Preceedings of the American Control Conference, SanDiego CA, USA:IEEE,1999.3520-3524.
    [119] Pourboghrat F, KarlssonM. Adaptive control of dynamicmobile robots withnonholonomic constraints. Computers and Electrical Engineering. July2002(28):241-253.
    [120] Do K, Pan J. Adaptive global stabilization ofnonholonomic systems with strongnonlinear drifts. Systems and Control Letters,2002,46(3):195-205.
    [121] Ge S, Wang Z, Lee T. Stabilization of uncertain nonholonomic systems usingadaptive backstepping technique. In: Proceedings of International Symposium onInteligent Control Vancover, Canada: IEEE,2002,862-867.
    [122] Ge S, Wang Z, Lee T. Adaptive stabilization of uncertain nonholonomic systemsby state and output feedback. Automatica,2003,39(8):1451-1460.
    [123] Jiang Z, Pomet J. Combining backstepping and time-varying techniques for anew set of adaptive controllers. In: Proceedings of33rd IEEE Conference onDecision and Control.Florida: IEEE,1994.2207-2212.
    [124] Wang Q, Wei C. Robust adaptive control of nonholonomic systems withnonlinear parameterization. Acta Automatica Sinica,2007,33(4):399-403.
    [125] Gao F, Yuan F, Yao H. Robust adaptive control for nonholonomic systems withnonlinear parameterization. Nonlinear Analysis,2010,11(4):3242-3250.
    [126] Liu Y, Zhang J. Output feedback adaptive stabilization control design fornonholonomic systems with strongnonlinear drifts. International Journal ofControl,2005,474-490.
    [127] Zheng X, Wu Y. Adaptive output feedback stabilization for nonholonomicsystems with strong nonlinear drifts.Nonlinear Analysis,2009,70(2):904-920.
    [128] Wang Z, Ge S, Lee T. Robust adaptive neural network control of uncertainnonholonomic systems with strong nonlinear drifts. IEEE Transactions onSystems, Man, and Cyberentics-part B,2004,34(5):2048-2059.
    [129] Huo W, Ge S. Exponential stabilization of non-holonomic systems: an ENIapproach. International Journal of Control,2001,74(15):1492-1500.
    [130] Tian Y, Li S. Exponential stabilization of nonholonomic dynamic systems bysmooth time-varying control. Automatica,2002,38(7):1139-1146.
    [131] Ma B, Tso S. Robust discontinuous exponential regulation ofdynamicnonholonomic wheeled mobile robots with parameter uncertainties. InternationalJournal of Robust Nonlinear Control,2008,18:960-974.
    [132] Jiang Z. Robust exponential regulation of nonholonomic systems withuncertainties. Automatica,2000,36(2):189-209.
    [133] Xi Z, Feng G, Jiang Z, Cheng D. A switching algorithm for global exponentialstabilization of uncertain chained systems. IEEE Transactions onAutomaticControl,2003,48(10):1793-1798.
    [134] Xi Z, Feng G, Jiang Z, Cheng D. Output feedback exponential stabilization ofuncertain chainedsystems. Journal of the Franklin Institute,2007,344(1):36-57.
    [135] Ma B. Robust smooth time-varying exponential stabilization of dynamicnonholonomic mobile cart with parameter uncertainties. Acta Automatica Sinica,2005,31(2):314-319.
    [136] Hong Y, Wang J, Xi Z. Stabilization of uncertain chained form systems withinfinite settling time. IEEE Transactions onAutomatic Control,2005,50(9):1379-1384.
    [137] Slotine J, Li W. Applied Nonlinear Control.Englewood Cliffs, New Jersey:Prentice-Hall, Inc,1991.115-116.
    [138] Dorf R C, Bishop H R. Modern Control System. Pearson Education, New Jersey:Prentice-Hall, Inc,1986.295-299.
    [139] Samson C. Control of chained systems application to path following andtime-varying point-stabilization of mobile robots. IEEE Transactions onAutomatic Control,1995,40:64-67.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700