玻璃纤维增强树脂基复合材料的细观破坏研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纤维增强聚合物基复合材料因其良好的力学性能在航空航天、造船、汽车、建筑、体育器材及医疗器械等方面的应用日益广泛。复合材料多变量、可设计的特征成就了其许多优良的特殊性能,但其多尺度、多层次的缺陷也导致了其强度预测及破坏过程分析的复杂性。基于宏观强度准则将复合材料看作单一材料的研究,无法分析其组分、内部缺陷及界面的脱粘和滑移对复合材料整体力学性能的影响,也无法从机理上对复合材料的破坏过程进行研究,更不能提供充分的材料优化设计和服役安全性判据。开展复合材料细观层次及细观尺度的缺陷形成机理分析、服役条件下细观缺陷的演化规律及调控机制研究,并在此基础上进行复合材料强度预测,具有非常重要的科学意义和工程价值。
     单纤维复合材料模型具备复合材料的最基本的组成单元:纤维、基体和界面,是实际复合材料的最基本模型,被广泛用于研究复合材料的细观力学行为,相应的理论模型—剪切滞后模型也日益发展。目前国内外相关的研究工作主要集中于单纤维复合材料模型中已断纤维对周围环境应力场的扰动,以及在准静载情况下纤维、基体及两者之间界面的性能对复合材料力学性能与破坏过程的影响,但基于多纤维复合材料细观力学实验模型的相关研究工作开展较少。
     在国家重点基础研究发展计划(973计划)项目的资助下,本文选用玻璃纤维/环氧树脂复合材料为研究体系,以单/多纤维复合材料模型为研究对象,采用实验与数值模拟相结合的手段,研究了各组分对复合材料破坏过程的影响,并且考察了应变速率对复合材料力学性能及破坏行为的影响,将细观缺陷演化与宏观破坏行为联系起来,总结了复合材料破坏模式的重要影响因素。本文作者参与研发了所用的部分实验设备,如纤维定位仪、显微拉伸机等,其中纤维定位仪的定位精度高、制样方便,显微拉伸机配有带偏光系统的显微摄像头,不仅能实时监测复合材料的细观破坏过程,还能实时捕获并记录拉伸试样中的应力集中现象。
     界面对复合材料的力学性能及破坏行为起着至关重要的作用。基于本文实验中所观测到的,在不同界面强度的复合材料中,纤维断点所引起的裂纹扩展模式不同,本文采用显式动力学有限元模拟软件ANSYS/LS-DYNA与自主开发程序相结合的方法,建立了带有复合材料缺陷的细观力学分析模型。以节点的有效塑性应变作为断裂判据,数值模拟了在不同界面强度下复合材料细观裂纹的扩展过程以及已断纤维对局部应力分布的影响,预测了在不同界面强度下复合材料局部和整体的抗破坏能力,数值模拟结果与实验结果吻合良好。结果表明,随着界面强度由低逐渐增高,已断纤维所引发的裂纹有五种典型的扩展模式;界面强度越高,复合材料的局部抗裂纹扩展能力越强但整体抗破坏能力越低。当界面达到一定强度以后,界面强度对局部抗裂纹扩展能力及整体抗破坏能力不再有影响。
     在复合材料固化过程中,纤维对液态树脂中某些分子的优先吸附将使纤维周围的界面层形成非化学计量比的固化产物。本文实验研究了基体的力学性质、纤维与环氧树脂基体之间的界面性能(界面破坏模式和界面剪切强度)、基体对纤维的润湿性等物理量与固化剂含量的依赖性关系。结果表明,除初始弹性模量以外,基体的其它力学性质,如屈服强度、屈服应变及断裂强度,都对固化剂含量有依赖性关系,当固化剂与环氧树脂配比为化学计量比时,力学性能指标达到极值。同时,纤维与基体之间的界面性能以及润湿性也达到最佳。研究结果还表明,当基体中具有不同的固化剂含量时,复合材料的界面剪切强度(IFSS)和粘附功(W_a)基本成线性关系。
     由于基体中的固化剂含量改变,基体的力学性质发生了改变,而基体的力学性质对于纤维与基体之间的界面剪切强度有不可忽视的影响。为了更准确地量化粘附功与界面剪切强度之间的关系,本文在保持基体中固化剂含量不变的前提下,进行了改变纤维的表面性质,进而改变纤维与基体之间的界面性能的研究工作。即在玻璃纤维表面自组装疏水膜,使玻璃纤维表面性质归一化,然后控制表面自组装疏水膜的玻璃纤维在一定浓度的臭氧中的氧化时间,以控制纤维表面的亲水性。实验结果表明,在本文的研究体系中,界面剪切强度与粘附功基本成线性关系,即界面粘结强度可以从力学和热力学两个角度来评价,且评价结果是基本一致的。本文还估算出界面上原子(分子)的平衡距离基本在0.3-0.6 nm范围内波动,且平衡距离与界面剪切强度和粘附功分别成线性关系,即界面粘结强度越高(粘附功或界面剪切强度越大),纤维与基体之间界面上原子(分子)的平衡距离越小。
     利用现有的实验条件,本文研究了在低应变速率水平(2E-5 s~(-1)-2E-2 s~(-1))下拉伸应变速率对单/多纤维复合材料及纯环氧树脂基体的力学性质、应力松弛及破坏行为的影响。结果发现,纯环氧树脂基体和纤维复合材料的初始弹性模量对应变速率的依赖性不显著,但极限应力和断裂强度随着应变速率的增加而增大;随着应变速率的增加,纯环氧树脂基体和纤维复合材料的破坏模式都由韧性破坏向脆性破坏转变,但发生转变时的应变速率范围不同;应变速率越高,在试样断裂后,纤维断点周围的残余切应力所引起的双折射现象越弱、消失越快,本文提出了界面相-链式模型对这一现象进行解释;对于多纤维复合材料,随着应变速率的增加,纤维与纤维之间的相互作用有逐渐减弱的趋势。
     本文在综合研究了三种不同纤维与两种不同基体交叉复合所得的不同的复合材料对应变速率的响应后,得到应变速率对复合材料力学性质影响的一般规律,如初始弹性模量的率不敏感性,极限应力和破坏模式的率敏感性等,还进一步总结出应变速率及各组分相对复合材料破坏模式综合影响的规律。如纤维断裂释放能量的大小(与纤维的断裂强度、弹性模量和断裂应变有关)、断点周围的基体和界面吸收能量的能力(与界面强度、基体屈服强度、屈服应变及弹性模量有关)、断点尺寸(与纤维直径有关)、纤维断点产生的时期(即断点产生在基体或界面的弹性变形阶段还是塑性变形阶段)及外载速率大小(即拉伸应变速率)等对复合材料破坏模式的影响规律。
Fiber-reinforced composites have been used increasingly in aviation,aerospace, shipbuilding,automobile,building,sports,medical instrument,and so on due to their good mechanical properties.The multivariable and designable features make composites possess many good and special performances,which result in their complex strength prediction and failure process.Composites have been seen as homogenous materials based on traditional strength criterion,which can not reveal the influences of the components,internal defects,interface debonding and sliding on the mechanical properties of the whole composites.The optimum design of the material can not be conducted without clear failure mechanisms.Thus,it is very important to study the strength prediction,multi-level/-scale damage forming mechanism,damage evaluation in service and the controlling mechanism of composites.
     There are complete composite components in the single-fiber composite,including fiber,matrix and interface,which is the basic composite model and has been widely used in studying mesoscopic failure behaviors of composites.And the relevant theoretical model-shear-lag model has been improving.However,the main researches were concentrated on stress disturbances of the broken fiber on the surroundings,and influences of fiber,matrix and interface on mechanical properties and failure process of composites in the case of quasi-static loading.The multi-fiber composite investigations were incomplete due to the difficult specimen preparation.
     As being financed by the National Major Fundamental Research Program of China (973 Project),meso-mechanical failure performances of glass fiber/epoxy matrix composites were studied using single-/multi-fiber composite models by both numerical and experimental methods.Further more,the strain rate dependence has been investigated.As a result,the relation between mesoscopic failure evolution and macroscopic failure behavior were established,and the important influencing factors on failure mode were concluded.The present author participated in developing some of the used equipments,such as the fiber-positioning apparatus and the tensile tester. Typically,the fiber arrays are controlled much more precisely and the operation is more convenient by conducting the fiber-positioning apparatus.And the tensile tester is equipped with a microscope attached with a polarizer,which brings off real-time monitoring the mesoscopic failure process and further capturing stress concentration images during testing.
     Interface plays a vital important role in mechanical properties of composites and the failure behavior.Based on the experimental result that there are different crack propagation modes in composites with different interfaces,a meso-mechanical finite element model with a defect was constructed to simulate the crack propagation routes and local stress distributions affected by the broken fiber under different interfacial strengths by using the ANSYS/LS-DYNA soft and the designed program.The failure criterion is a certain effective plastic strain.The local and whole resistance abilities to failure of the composite under different interfacial strengths have been evaluated,and the simulation results agreed well with the experimental results.The results show that, with the interfacial strength varying from weak to strong,there are five kinds of representative crack propagation modes observed in the composite in tension.The stronger the interface is,the better the local resistance to crack propagation,but the worse the resistance to the whole destroyed is.The resistance to crack propagation and the whole destroyed will not be improved any more if the interfacial strength increases to some certain values.
     During the curing process of composite,some kinds of the molecules in matrix will be adsorbed to fibers preferentially,which results in non-stoichiometric cured epoxy matrix at the interphase around fiber.So,the effect of curing agent ratio to epoxy on mechanical properties of matrix,interface properties between fiber and matrix (interface failure behaviors and the interfacial shear strength),and the wettability of matrix to fiber were studied experimentally.It was found that,excluding the initial elastic modulus,the mechanical properties of epoxy matrix such as yield strength, yield strain and fracture strength were all dependent on the curing agent ratio to epoxy, which reached their maximum values at the stoichiometric ratio.The interface property and the wettability between fiber and matrix performed the best around the stoichiometric ratio also.Further more,it has been found that the interfacial shear strength is linear to the work of adhesion approximately by varying the curing agent ratio.
     However,there are variations in the mechanical properties of matrix with varying curing agent ratio which do have effects on the interfacial shear strength as well.In order to quantify the relationship between the interfacial shear strength and the work of adhesion definitely,the investigation of changing fiber surface treatment with the curing agent ratio to epoxy invariable has been carried out.First,self-assembled hydrophobic monolayers were prepared on the glass fiber surface to normalize the glass fiber surface property.The hydrophilicity of the glass fiber surface was controlled by the oxidation time in ozone.According to the comprehensive analysis of the experimental data,it is indicated that the interfacial shear strength does be linear to the work of adhesion in the current researching system.That is to say,the mechanical parameter—the interfacial shear strength and the thermodynamical parameter—the work of adhesion are indeed in close agreement with each other when characterizing the interface cohesive property.Additionally,the equilibrium interatomic/intermolecular distance at the interface has been evaluated to be approximately within 0.3-0.6 nm,which is linear to the interfacial shear strength and the work of adhesion,respectively.Concretely,the stronger the interface is,the smaller the equilibrium interatomic/intermolecular distance at the interface will be.
     Based on the current experimental conditions,the effect of tensile strain rate on mechanical properties,stress relaxation and failure behaviors of single-/multi-fiber composites and pure epoxy matrix were investigated at low strain rate level(range from 2E-5 s~(-1) to 2E-2 s~(-1)).It was found that,the dependence of the initial elastic modulus of the pure epoxy matrix and fiber composite on strain rate is indistinct, however,the ultimate stress and the fracture strength increase with strain rate increasing.The fracture modes of both pure epoxy matrix and fiber composite change from ductile fracture to brittle fracture with strain rate increasing,but the strain rate of changing fracture mode for them are different.The higher the pre-tensile strain rate is, the weaker the birefringence induced by residual shear stress around fiber break is and the faster it fades,to which the conclusion obtained "the relaxation time decreases with pre-tensile strain rate increase" and the interphase-chain model introduced in the thesis can give a reasonable explanation.By studying the mesoscopic failure modes of multi-fiber composites,it was found that fiber-fiber interactions showed a sign of decrease while increasing tensile strain rate.
     The influences of strain rate on different composites cross-compounded by three kinds of fibers and two kinds of matrices were investigated systematically in this thesis.The results of general effects of strain rate on mechanical properties were obtained,including the rate independence of the initial elastic modulus,the rate dependence of the ultimate stress and fracture mode.Further more,the combined effects of strain rate and components on fracture mode of composites were summarized.For example,the released fracture energy of the fiber(is related to fracture strength/elastic modulus/fracture strain of the fiber),the capacity of the surroundings to absorb the released energy(is related to yield strength/yield strain/elastic modulus of the matrix and the interfacial strength),the dimension of the breakpoint(is related to fiber diameter),the stage of fiber breakpoint generates(in elastic or plastic stage of the matrix or the interface),and the external loading rate (tensile strain rate) all have effects on the fracture mode of composite.
引文
[1]鲁云,朱世杰,马鸣图,潘复生.先进复合材料[M].北京:机械工业出版社,2004.
    [2]曾庆敦.复合材料的细观破坏机制与强度[M].北京:科学出版社,2002.
    [3]宋焕成,赵时熙.聚合物基复合材料[M].北京:国防工业出版社,1986.
    [4]孙曼灵.环氧树脂应用原理与技术[M].北京:机械工业出版社,2002.
    [5]马晓光,刘越.先进复合材料用高性能纤维发展概述[J].合成纤维,2001,30(2):21-25.
    [6]高启源.高性能芳纶纤维的国内外发展现状[J].化纤与纺织技术,2007,(3):31-36.
    [7]沈观林,胡更开.复合材料力学[M].北京:清华大学出版社,2006.
    [8]杨庆生.复合材料细观结构力学与设计[M].北京:中国铁道出版社,2000.
    [9]傅志平,曹志远.复合材料构件性能的细观元分析[J].复合材料学报,1998,15(1):108-111.
    [10]李红周.纤维增强聚合物基复合材料的细观应力分析和概率破坏过程模拟[D].中国科学院长春应用化学研究所博士学位论文,2006.
    [11]栾世方.纤维增强复合材料的细观力学破坏研究[D].中国科学院长春应用化学研究所博士学位论文,2006.
    [12]王歆.纤维增强复合材料断裂过程的有限元模拟[D].山东大学硕士学位论文,2005.
    [13]刘书田,程耿东.复合材料应力分析的均匀化方法[J].力学学报,1997,29(3):306-313.
    [14]范赋群,王震鸣,嵇醒,黄小清.关于复合材料力学几个基本问题的研究[J].力学与实践,1995,17(1):4-9.
    [15]H.L.Cox.The elasticity and strength of paper and other fibrous materials[J].British Journal of Applied Physics,1952,3:72-79.
    [16]J.M.Hedgepeth.Stress concentrations in filamentary structures[C].NASA (National Aeronautics and Space Administration) Technical Note D-882,1961.
    [17]J.M.Hedgepeth,P.Van Dyke.Local stress concentration in imperfect filamentary composite materials[J].Journal of Composite Materials,1967,1(3):294-309.
    [18]D.G.Harlow,S.L.Phoenix.The chain-of-bundles probability model for the strength of fibrous materials Ⅰ:analysis and conjectures[J].Journal of Composite Materials,1978,12(2):195-214.
    [19]D.G.Harlow,S.L.Phoenix.The chain-of-bundles probability model for the strength of fibrous materials Ⅱ:a numerical study of convergence[J].Journal of Composite Materials,1978,12(3):314-334.
    [20]P.Van Dyke,J.M.Hedgepeth.Stress concentration from single-filament failures in composite materials[J].Textile Research Journal,1969,39(10):618-626.
    [21]R.E.Pitt,S.L.Phoenix.Probability distributions for the strength of composite materials.Ⅲ:The effect of fiber arrangement[J].International Journal of Fracture,1982,20(4):291-311.
    [22]R.E.Pitt,S.L.Phoenix.Probability distributions for the strength of composite materials.Ⅳ:Localized load-sharing with tapering[J].International Journal of Fracture,1983,22(4):243-276.
    [23]C.Zweben.An approximate method of analysis for notched unidirectional composites[J].Engineering Fracture Mechanics,1974,6(1):1-10.
    [24]范赋群.单向纤维增强复合材料的荷载集中因子和裂纹扩展统计理论[J].固体力学学报,1981,2(3):287-294.
    [25]曾庆敦.割口单向复合材料的应力集中及强度问题研究[J].华南理工大学学报(自然科学版),1995,23(2):59-66.
    [26]H.Fukuda,K.Kawata.On the stress concentration factor in fibrous composites [J].Fiber Science and Technology,1976,9(3):189-203.
    [27]H.Fukuda,K.Kawata.On the strength distribution of unidirectional fiber composites[J].Fiber Science and Technology,1977,10(1):53-63.
    [28]S.Ochiai,K.Schulte,P.W.M.Peters.Strain concentration factors for fibers and matrix in unidirectional composites[J].Composites Science and Technology,1991,41(3):237-256.
    [29]Q.D.Zeng,Z.L.Wang,L.Ling.A study of the influence of interfacial damage on stress concentration in unidirectional composites[J].Composites Science and Technology,1997,57(1):129-135.
    [30]J.N.Rossettos,M.Shishesaz.Stress concentration in fiber composite sheets including matrix extension[J].Journal of Applied Mechanics,1987,54:723-725.
    [31]H.D.Wagner,A.Eitan.Stress concentration factors in two-dimensional composites:effects of material and geometrical parameters[J].Composites Science and Technology,1993,46(4):353-362.
    [32]A.Eitan,H.D.Wagner.Fiber interactions in 2-dimensional composites[J]. Applied Physics Letters, 1991, 58(10): 1033-1035.
    [33] X. F. Zhou, H. D. Wagner. Stress concentrations caused by fiber failure in two-dimensional composites [J]. Composites Science and Technology, 1999, 59(7): 1063-1071.
    [34] M. R. Nedele, M. R. Wisnom. Three-dimensional finite element analysis of the stress concentration at a single fiber break [J]. Composites Science and Technology, 1994, 51(4): 517-524.
    [35] M. R. Nedele, M. R. Wisnom. Finite element micromechanical modelling of a unidirectional composite subjected to axial shear loading [J]. Composites, 1994, 25(4): 263-272.
    [36] P. W. J. van den Heuvel, M. K. Wubbolts, R. J. Young, T. Peijs. Failure phenomena in two-dimensional multi-fiber model composites: 5. A finite element study [J]. Composites Part A, 1998, 29(9-10): 1121-1135.
    [37] P. W. J. van den Heuvel, S. Goutianos, R. J. Young, T. Peijs. Failure phenomena in fiber-reinforced composites. Part 6: a finite element study of stress concentrations in unidirectional carbon fiber-reinforced epoxy composites [J]. Composites Science and Technology, 2004, 64(5): 645-656.
    [38] Z. Z. Du, R. M. McMeeking. Creep models for metal matrix composites with long brittle fibers [J]. Journal of the Mechanics and Physics of Solids, 1995, 43(5): 701-726.
    [39] C. M. Landis, M. A. McGlockton, R. M. McMeeking. An improved shear lag model for broken fibers in composite materials [J]. Journal of Composite Materials, 1999, 33(7): 667-680.
    [40] C. M. Landis, R. M. McMeeking. A shear-lag model for a broken fiber embedded in a composite with a ductile matrix [J]. Composites Science and Technology, 1999, 59(3): 447-457.
    [41] S. Sirivedin, D. N. Fenner, R. B. Nath, C. Galiotis. Effects of inter-fiber spacing and matrix cracks on stress amplification factors in carbon-fiber/epoxy matrix composites. Part I: planar array of fibers [J]. Composites Part A, 2003, 34(12): 1227-1234.
    [42] T. Okabe, N. Takeda. Estimation of strength distribution for a fiber embedded in a single-fiber composite: experiments and statistical simulation based on the elasto-plastic shear-lag approach [J]. Composites Science and Technology, 2001,61(12): 1789-1800.
    [43] T. Okabe, N. Takeda, Y. Kamoshida, M. Shimizu, W. A. Curtin. A 3D shear-lag model considering micro-damage and statistical strength prediction of unidirectional fiber-reinforced composites [J]. Composites Science and Technology,2001,61(12):1773-1787.
    [44]N.Ohno,S.Okabe,T.Okabe.Stress concentrations near a fiber break in unidirectional composites with interfacial slip and matrix yielding[J].International Journal of Solids and Structures,2004,41(16-17):4263-4277.
    [45]B.D.Coleman.On the strength of classical fibers and fiber bundle[J].Journal of the Mechanics and Physics of Solids,1958,7(1):60-70.
    [46]H.E.Daniels.The statistical theory of the strength of bundles of threads[C].Proceedings of the Royal Society of London:Series A,1945,183(995):405-435.
    [47]D.E.G(u|¨)cer,J.Gurland.Comparison of the statistics of two fracture modes.Journal of the Mechanics and Physics of Solids,1962,10(4):365-373.
    [48]B.W.Rosen.Tensile failure of fibrous composites[J].AIAAJ(American Institute of Aeronautics and Astronautics-Journal),1964,2(11):1985-1991.
    [49]C.Zweben.Tensile failure of fiber composites[J].AIAAJ(American Institute of Aeronautics and Astronautics-Journal),1968,6(12):2325-2331.
    [50]C.Zweben,B.W.Rosen.A statistical theory of material strength with application to composite materials[J].Journal of the Mechanics and Physics of Solids,1970,18(3):189-206.
    [51]A.S.Argon.Statistical Aspects of Fracture[M].In "Composite Materials"(edited by L.J.Brotman),Academic Press,New York,1974,5:154-190.
    [52]D.G.Harlow,S.L.Phoenix.Bounds on the probability of failure of composites [J].International Journal of Fracture,1979,15(4):321-336.
    [53]范赋群,曾庆敦.单向纤维增强复合材料的随机扩大临界核理论[J].中国科学:A辑,1994,24(2):209-217.
    [54]曾庆敦,马锐,范赋群.复合材料正交叠层板最终拉伸强度的细观强度分析[J].力学学报,1994,26(4):453-461.
    [55]曾庆敦,范赋群.具有纤维损伤的单向复合材料强度的统计分析[J].华南理工大学学报(自然科学版),1995,23(4):29-35.
    [56]H.Fukunaga,T.W.Chou,H.Fukuda.Probabilistic strength analyses of interlaminated hybrid composites[J].Composites Science and Technology,1989,35(4):331-345.
    [57]H.Fukuda,T.W.Chou.Monte Carlo simulation of the strength of hybrid composites[J].Journal of Composite Materials,1982,16(5):371-385.
    [58]K.P.Oh.A Monte Carlo study of the strength of unidirectional fiber-reinforced composites[J].Journal of Composite Materials,1979,13(4):311-328.
    [59]C.Y.Hui,S.L.Phoenix,M.Ibnabdeljalil,R.L.Smith.An exact closed form solution for fragmentation of Weibull fibers in a single filament composite with applications to fiber-reinforced ceramics [J]. Journal of the Mechanics and Physics of Solids, 1995,43(10): 1551-1585.
    [60] P. W. Manders, M. G. Bader, T. W. Chou. Monte Carlo simulation of the strength of composite fiber bundles [J]. Fiber Science and Technology, 1982, 17(3): 183-204.
    [61] K. Goda, S. L. Phoenix. Reliability approach to the tensile strength of unidirectional CFRP composites by Monte-Carlo simulation in a shear-lag model [J]. Composites Science and Technology, 1994, 50(4): 457-468.
    [62] M. Lienkamp, P. Schwartz. A Monte Carlo simulation of the failure of a seven fiber microcomposite [J]. Composites Science and Technology, 1993, 46(2): 139-146.
    [63] A. T. Dibenedetto, M. R. Gurvich. Statistical simulation of fiber fragmentation in a single-fiber composite [J]. Composites Science and Technology, 1997, 57(5): 543-555.
    [64] S. Ochiai, M. Hojo. Stress disturbances arising from cut fiber and matrix in unidirectional metal matrix composites calculated by means of a modified shear lag analysis [J]. Journal of Materials Science, 1996, 31(14): 3861-3869.
    [65] J. A. Nairn, D. A. Mendels. On the use of planar shear-lag methods for stress-transfer analysis of multilayered composites [J]. Mechanics of Materials, 2001, 33(6): 335-362.
    [66] H. Z. Li, Y. X. Jia, G. Mamtimin, W. Jiang, L. J. An. Stress transfer and damage evolution simulations of fiber-reinforced polymer-matrix composites [J]. Materials Science and Engineering: A, 2006,425(1-2): 178-184.
    [67] H. Z. Li, Y. X. Jia, G Mamtimin, X. Wang, W. Jiang, L. J. An. Numerical simulation of mesoscopic mechanical behaviors of gradual multi-fiber-reinforced polymer matrix composites [J]. Macromolecular Materials and Engineering, 2006,291(5): 510-516.
    [68] H. Z. Li, Y. X. Jia, G. Mamtimin, W. Jiang, L. J. An. Computer simulation of damage evolution of fiber-reinforced polypropylene-matrix composites with matrix defects [J]. Journal of Applied Polymer Science, 2007,103(1): 64-71.
    [69] H. Z. Li, Y. X. Jia, S. F. Luan, Q. Xiang, C. C. Han, G. Mamtimin, Y. C. Han, L. J. An. Influence of inter-fiber spacing and interfacial adhesion on failure of multi-fiber model composites: experiment and numerical analysis [J]. Polymer Composites, 2008,29(9): 964-971.
    
    [70] G. L. Jiang, K. Peters. A shear-lag model for three-dimensional, unidirectional multilayered structured [J]. International Journal of Solids and Structures, 2008, 45(14-15):4049-4067.
    [71]M.Y.M.Chiang,X.F.Wang,C.R.Schultheisz,J.M.He.Prediction and three-dimensional Monte-Carlo simulation for tensile properties of unidirectional hybrid composites[J].Composites Science and Technology,2005,65(11-12):1719-1727.
    [72]T.Okabe,N.Takeda.Elastoplastic shear-lag analysis of single-fiber composites and strength predication of unidirectional multi-fiber composites[J].Composites Part A,2002,33(10):1327-1335.
    [73]T.Okabe,H.Sekine,K.Ishii,M.Nishikawa,N.Takeda.Numerical method for failure simulation of unidirectional fiber-reinforced composites with spring element model[J].Composites Science and Technology,2005,65(6):921-933.
    [74]A.Abedian,M.Mondali,M.Pahlavanpour.Basic modifications in 3D micromechanical modeling of short fiber composites with bonded and debonded fiber end[J].Computational Materials Science,2007,40(3):421-433.
    [75]C.Galiotis.Interfacial studies on model composites by laser Raman-spectroscopy[J].Composites Science and Technology,1991,42(1-3):125-150.
    [76]H.Jahankhani,C.Galiotis.Interfacial shear stress distribution in model composites.Part Ⅰ:a Kevlar 49 fiber in an epoxy matrix[J].Journal of Composite Materials,1991,25(5):609-631.
    [77]R.J.Young.Raman spectroscopy and mechanical properties[M].In "Characterisation of Solid Polymers"(edited by S.J.Spells),Chapman & Hall,London,1994.
    [78]L.Grabner.Spectroscopic technique for the measurement of residual stress in sintered Al_2O_3[J].Journal of Applied Physics,1978,49(2):580-583.
    [79]柯斯克,罗伯逊(英).光弹性应力分析[M].上海:上海科技出版社,1979.
    [80]W.R.Tyson,G.J.Davies.A photoelastic study of the shear stresses associated with the transfer of stress during fiber reinforcement[J].British Journal of Applied Physics,1965,16(2):199-205.
    [81]I.M.Allison,L.C.Hollaway.Stresses in fiber-reinforced materials[J].British Journal of Applied Physics,1967,18(7):979-989.
    [82]S.F.Luan,H.Z.Li,Y.X.Jia,L.J.An,Y.C.Han,Q.Xiang,J.Zhao,J.X.Li,C.C.Han.Analysis of micro-failure behaviors in hybrid fiber model composites [J].Polymer,2006,47(17):6218-6225.
    [83]W.D.Bascom,R.M.Jensen.Stress transfer in single fiber/resin tensile tests[J].The Journal of Adhesion,1986,19(3-4):219-239.
    [84] K. H. G. Ashbee, E. Ashbee. Photoelastic study of epoxy resin/graphite fiber load transfer [J]. Journal of Composite Materials, 1988, 22(7): 602-615.
    [85] R. Gulino, P. Schwartz, S. L. Phoenix. Experiments on shear deformation, debonding and local load transfer in a model graphite/glass/epoxy microcomposite [J]. Journal of Materials Science, 1991, 26(24): 6655-6672.
    [86] B. Fiedler, K. Schulte. Photo-elastic analysis of fiber-reinforced model composite materials [J]. Composites Science and Technology, 1997, 57(8): 859-867.
    [87] N. Melanitis, C. Galiotis, P. L. Tetlow, C. K. L. Davies. Interfacial shear stress distribution in model composites-part 2: fragmentation studies on carbon fiber/epoxy systems [J]. Journal of Composite Materials, 1992, 26(4): 574-610.
    [88] N. Melanitis, C. Galiotis, P. L. Tetlow, C. K. L. Davies. Monitoring the micromechanics of reinforcement in carbon fiber/epoxy resin systems [J]. Journal of Materials Science, 1993,28(6): 1648-1654.
    [89] N. Melanitis, C. Galiotis, P. L. Tetlow, C. K. L. Davies. Interfacial shear stress distribution in model composites: the effect of fiber modulus [J]. Composites, 1993,24(6): 459-466.
    [90] K. M. Atallah, C. Galiotis. Fiber strain mapping in aramid/epoxy microcomposites [J]. Composites, 1993,24(8): 635-642.
    [91] Y. L. Huang, R. J. Young. Analysis of the fragmentation test for carbon-fiber/ epoxy model composites by means of Raman spectroscopy [J]. Composites Science and Technology, 1994, 52(4): 505-517.
    [92] D. T. Grubb, Z. F. Li. Single-fiber polymer composites. Part II: residual stresses and their effects in high-modulus polyethylene fiber composites [J]. Journal of Materials Science, 1994, 29(1): 203-212.
    [93] M. C. Andrews, D. J. Bannister, R. J. Young. Review: the interfacial properties of aramid/epoxy model composites [J]. Journal of Materials Science, 1996, 31(15): 3839-3913.
    [94] P. I. Gonzalez-Chi, R. J. Young. Deformation micromechanics of a thermoplastic-thermoset fiber-matrix interface using the single fiber composite test [J]. Journal of Composite Materials, 2007,41(9): 1087-1099.
    [95] A. Paipetis, C. Galiotis, Y. C. Liu, J. A. Nairn. Stress transfer from the matrix to the fiber in a fragmentation test: Raman experiments and analytical modeling [J]. Journal of Composite Materials, 1999, 33(4): 377-399.
    [96] P. Colomban. Analysis of strain and stress in ceramic, polymer and metal matrix composites by Raman spectroscopy [J]. Advanced Engineering Materials, 2002,4(8): 535-542.
    [97] R. B. Yallee, M. C. Andrews, R. J. Young. Fragmentation in alumina fiber reinforced epoxy model composites monitored using fluorescence spectroscopy [J]. Journal of Materials Science, 1996, 31(13): 3349-3359.
    [98] E. M. Asloun, M. Nardin, J. Schultz. Stress transfer in single-fiber composites: effect of adhesion, elastic modulus of fiber and matrix, and polymer chain mobility [J]. Journal of Materials Science, 1989, 24(5): 1835-1844.
    [99] L. T. Drzal. The effect of polymeric matrix mechanical properties on the fiber-matrix interfacial shear strength [J]. Materials Science and Engineering: A, 1990, 126(1-2): 289-293.
    [100] A. N. Netravali, P. Schwartz, S. L. Phoenix. Study of interfaces of high-performance glass fibers and DGEBA-based epoxy resins using single-fiber-composite test [J]. Polymer Composites, 1989,10(6): 385-388.
    [101] V. Rao, L. T. Drzal. The dependence of interfacial shear strength on matrix and interphase properties. Polymer Composites, 1991, 12(1): 48-56.
    [102] D. Tripathi, T. Turton, F. Chen, F. R. Jones. A new method to normalize the effect of matrix properties on the value of interfacial shear strength obtained from the fragmentation test [J]. Journal of Materials Science, 1997, 32(18): 4759-4765.
    [103] L. T. Drzal, M. J. Rich, P. F. Lloyd. Adhesion of graphite fibers to epoxy matrices: I. the role of fiber surface treatment [J]. The Journal of Adhesion, 1983, 16(1): 1-30.
    [104] L. T. Drzal, M. J. Rich, M. F. Koenig, P. F. Lloyd. Adhesion of graphite fibers to epoxy matrices: II. the effect of fiber finish [J]. The Journal of Adhesion, 1983, 16(2): 133-152.
    [105] T. H. Cheng, J. Zhang, S. Yumitori, F. R. Jones, C. W. Anderson. Sizing resin structure and interphase formation in carbon fiber composites [J]. Composites, 1994, 25(7): 661-670.
    [106] A. P. Kettle, A. J. Beck, L. O'Toole, F. R. Jones, R. D. Short. Plasma polymerization for molecular engineering of carbon-fiber surfaces for optimized composites [J]. Composites Science and Technology, 1997, 57(8): 1023-1032.
    [107] N. Lopattananon, A. P. Kettle, D. Tripathi, A. J. Beck, E. Duval, R. M. France, R. D. Short, F. R. Jones. Interface molecular engineering of carbon-fiber composites [J]. Composites Part A, 1999, 30(1): 49-57.
    [108] J. Berg, F. R. Jones. The role of sizing resins, coupling agents and their blends on the formation of the interphase in glass fiber composites [J]. Composites Part A, 1998,29(9-10): 1261-1272.
    [109]X.F.Zhou,H.D.Wagner,S.R.Nutt.Interfacial properties of polymer composites measured by push-out and fragmentation tests[J].Composites Part A,2001,32(11):1543-1551.
    [110]E.Feresenbet,D.Raghavan,G.A.Holmes.The influence of silane coupling agent composition on the surface characterization of fiber and on fiber-matrix interfacial shear strength[J].The Journal of Adhesion,2003,79(7):643-665.
    [111]C.L.Schutte,W.McDonough,M.Shioya,M.McAuliffe,M.Greenwood.The use of a single-fiber fragmentation test to study environmental durability of interfaces/interphases between DGEBA/mPDA epoxy and glass fiber:the effect of moisture[J].Composites,1994,25(7):617-624.
    [112]A.N.Netravali,R.B.Henstenburg,S.L.Phoenix,P.Schwartz.Interfacial shear strength studies using the single-filament-composite test.Ⅰ:experiments on graphite fibers in epoxy[J].Polymer Composites,1989,10(4):226-241.
    [113]R.Gulino,S.L.Phoenix.Weibull strength statistics for graphite fibers measured from the break progression in a model graphite/glass/epoxy microcomposite[J].Journal of Materials Science,1991,26(11):3107-3118.
    [114]B.Yavin,H.E.Gallis,J.Scherf,A.Eitan,H.D.Wagner.Continuous monitoring of the fragmentation phenomenon in single fiber composite materials[J].Polymer Composites,1991,12(6):436-446.
    [115]邓传斌,钱振明,段文江.纤维树脂界面剪切强度及纤维强度分布参数的实验测定[J].实验力学,1997,12(2):204-208.
    [116]J.Andersons,V.Tamuzs.Fiber and interface strength distribution studies with single-fiber composite test[J].Composites Science and Technology,1993,48(1-4):57-63.
    [117]M.Shioya,A.Takaku.Estimation of fiber and interfacial shear strength by using a single-fiber composite[J].Composites Science and Technology,1995,55(1):33-39.
    [118]K.Goda,J.M.Park,A.N.Netravali.A new theory to obtain Weibull fiber strength parameters from a single-fiber composite test[J].Journal of Materials Science,1995,30(10):2722-2728.
    [119]C.Y.Hui,S.L.Phoenix,D.Shia.The single-filament-composite test:a new statistical theory for estimating the interfacial shear strength and Weibull parameters for fiber strength[J].Composites Science and Technology,1998,57(12):1707-1725.
    [120]R.B.Clough,W.G.McDonough.The measurement of fiber strength parameters in fragmentation tests using acoustic emission[J].Composites Science and Technology,1996,56(10):1119-1127.
    [121] S. N. Patankar. Weibull distribution as applied to ceramic fibers [J]. Journal of Materials Science Letters, 1991, 10(20): 1176-1181.
    [122] Z. Wang, Y. Xia. Experimental evaluation of the strength distribution of fibers under high strain rates by bimodal Weibull distribution [J]. Composites Science and Technology, 1997, 57(12): 1599-1607.
    [123] P. W. J. van den Heuvel, T. Peijs, R. J. Young. Failure phenomena in two-dimensional multi-fiber micro-composites: 2. a Raman spectroscopic study of the influence of inter-fiber spacing on stress concentrations [J]. Composites Science and Technology, 1997, 57(8): 899-911.
    [124] V. Chohan, C. Galiotis. Effects of interface, volume fraction and geometry on stress redistribution in polymer composites under tension. Composites Science and Technology, 1997, 57(8): 1089-1101.
    [125] H. Mahiou, A. Beakou, R. J. Young. Investigation into stress transfer characteristics in alumina-fiber/epoxy model composites through the use of fluorescence spectroscopy [J]. Journal of Materials Science, 1999, 34(24): 6069-6080.
    [126] L. S. Schadler, M. S. Amer, B. Iskandarani. Experimental measurement of fiber/fiber interaction using Micro-Raman Spectroscopy [J]. Mechanics of Materials, 1996,23(3): 205-216.
    [127] P. W. J. van den Heuvel, Y. J. W. van der Bruggen, T. Peijs. Failure phenomena in multi-fiber model composites: Part 1: an experimental investigation into the influence of fiber spacing and fiber-matrix adhesion [J]. Composites Part A, 1996, 27(9): 855-859.
    [128] J. M. Park, J. W. Kim, K. Goda. A new method of evaluating the interfacial properties of composites by means of the gradual multi-fiber fragmentation test [J]. Composites Science and Technology, 2000, 60(3): 439-450.
    [129] P. W. J. van den Heuvel, T. Peijs, R. J. Young. Failure phenomena in two-dimensional multi-fiber micro-composites: 3. a Raman spectroscopy study of the influence of interfacial debonding on stress concentrations [J]. Composites Science and Technology, 1998, 58(6): 933-944.
    [130] Z. F. Li, D. T. Grubb, S. L. Phoenix. Fiber interactions in the multi-fiber composite fragmentation test [J]. Composites Science and Technology, 1995, 54(3): 251-266.
    [131] P. W. J. van den Heuvel, T. Peijs, R. J. Young. Failure phenomena in two-dimensional multi-fiber microcomposites. Part 4: a Raman spectroscopic study on the influence of the matrix yield stress on stress concentrations [J]. Composites Part A, 2000, 31(2): 165-171.
    [132]G.A.Holmes,W.G.McDonough,J.P.Dunkers,C.C.Han.Interaction between matrix cracks in E-glass/epoxy two-dimensional multi-fiber-array model composites[J].Journal of Polymer Science Part B,2003,41(22):2976-2981.
    [133]P.W.J.van den Heuvel,T.Peijs,R.J.Young.Analysis of stress concentrations in multi-fiber microcomposites by means of Raman spectroscopy[J].Journal of Materials Science Letters,1996,15(21):1908-1911.
    [134]H.D.Wagner,M.S.Amer,L.S.Schadler.Fiber interactions in two-dimensional composites by micro-Raman spectroscopy[J].Journal of Materials Science,1996,31(5):1165-1173.
    [135]K.D.Jones,A.T.DiBenedetto.Fiber fracture in hybrid composite systems[J].Composites Science and Technology,1994,51(1):53-62.
    [136]X.F.Zhou,H.D.Wanger.Fragmentation of two-fiber hybrid microcomposites:stress concentration factors and interfacial adhesion[J].Composites Science and Technology,2000,60(3):367-377.
    [137]D.T.Grubb,Z.F.Li,S.L.Phoenix.Measurement of stress concentration in a fiber adjacent to a fiber break in a model composite[J].Composites Science and Technology,1995,54(3):237-249.
    [138]D.B.Bogy.On the plane elastostatic problem of a loaded crack terminating at a material interface.Journal of Applied Mechanics,1971,38(4):911-918.
    [139]S.H.Chen,T.C.Wang,K.W.Sharon.A crack perpendicular to the bimaterial interface in finite solid[J].International Journal of Solids and Structures,2003,40(11):2731-2755.
    [140]A.Cirello,B.Zuccarello.On the effects of a crack propagating toward the interface of a bimaterial system[J].Engineering Fracture Mechanics,2006,73(9):1264-1277.
    [141]G.A.Holmes,R.C.Peterson,D.L.Hunston,W.G.McDonough.E-glass/DGEBA/m-PDA single fiber composites:interface debonding during fiber fracture[J].Polymer Composites,2007,28(5):561-574.
    [142]Z.F.Li,D.T.Grubb,S.L.Phoenix.An experimental technique for preparation of multi-fiber model composites[J].Journal of Materials Science Letters,1994,13(23):1720-1724.
    [143]蒋维城.固体力学有限元分析[M].北京:北京理工大学出版社,1989.
    [144]徐次达,华伯浩.固体力学有限元理论、方法及程序[M].北京:水利电力出版社,1983.
    [145]白金泽.LS-DYNA3D理论基础与实例分析[M].北京:科学出版社,2005.
    [146]X.F.Zhou,J.A.Naim,H.D.Wagner.Fiber-matrix adhesion from the single-fiber composite test:nucleation of interfacial debonding[J].Composites Part A,1999,30(12):1387-1400.
    [147]A.Pegoretti,M.L.Accorsi,A.T.Dibenedetto.Fracture toughness of the fiber-matrix interface in glass-epoxy composites[J].Journal of Materials and Science,1996,31(23):6145-6153.
    [148]R.C.Batraand,B.M.Love.Crack propagation due to brittle and ductile failures in microporous thermoelastoviscoplastic functionally graded materials [J].Engineering Fracture Mechanics,2005,72(12):1954-1979.
    [149]盛和太,喻海良,范训益.ANSYS有限元原理与工程应用实例大全[M].北京:清华大学出版社,2006.
    [150]N.Chandra,H.Li,C.Shet,H.Ghonem.Some issues in the application of cohesive zone models for metal-ceramic interfaces[J].International Journal of Solids and Structures,2002,39(10):2827-2855.
    [151]A.Turon,J.Costa,P.Maimi,D.Trias,J.A.Mayugo.A progressive damage model for unidirectional fiber-reinforced composites based on fiber fragmentation.Part Ⅰ:formulation[J].Composites Science and Technology,2005,65(13):2039-2048.
    [152]L.L.Sun,Y.X.Jia,F.D.Ma,J.Zhao,C.C.Han.Influence of interfacial properties on crack propagation in fiber-reinforced polymer matrix composites [J].Macromolecular Materials and Engineering,2008,293(3):194-205.
    [153]J.A.Nairn,Y.C.Liu.Stress transfer into a fragmented,anisotropic fiber through an imperfect interface[J].International Journal of Solids and Structures,1997,34(10):1255-1281.
    [154]F.M.Zhao,S.A.Hayes,E.A.Patterson,F.R.Jones.Phase-stepping photoelasticity for the measurement of interfacial shear stress in single fiber composites[J].Composites Pan A,2006,37(2):216-221.
    [155]王宏岗,郑安呐,戴干策.玻璃纤维增强聚丙烯基复合材料界面结合的研究Ⅰ.界面剪切强度[J].复合材料学报,1999,16(3):46-50.
    [156]孙丽莉,贾玉玺,孙胜,马凤德.界面强度对纤维复合材料破坏及力学性能的影响[J].山东大学学报(工学版),2009,39(2):101-103.
    [157]Q.Zhao,H.D.Wagner.Two-dimensional strain mapping in model fiber-polymer composites using nanotube Raman sensing[J].Composites Part A,2003,34(12):1219-1225.
    [158]S.J.Park,S.G.Lee.Studies on surface free energy of an anhydride-epoxy cured system:effect of side alkenyl chain length of hardener on tensile and impact properties[J].Journal of Colloid and Interface Science,2000,228(1):90-94.
    [159]V.Dutschk,E.Pisanova,S.Zhandarov,B.Lauke."Fundamental" and "practical" adhesion in polymer-fiber systems[J].Mechanics of Composite Materials,1998,34(4):309-320.
    [160]E.Pisanova,E.M(a|¨)ider.Acid-base interactions and covalent bonding at a fiber-matrix interface:contribution to the work of adhesion and measured adhesion strength[J].Journal of Adhesion Science and Technology,2000,14(3):415-436.
    [161]G.J.Nam,H.Kim,J.W.Lee.Interfacial shear strength and wettability between glass fiber and PC/SAN/SMA blends[J].Polymer Composites,2003,24(3):487-497.
    [162]E.M(a|¨)der,S.Melcher,J.W.Liu,S.L.Gao,A.D.Bianchi,S.Zherlitsyn,J.Wosnitza.Adhesion of PBO fiber in epoxy composites[J].Journal of Materials Science,2007,42(19):8047-8052.
    [163]J.P.Favre,M.C.Merienne.Characterization of fiber/resin bonding in composites using a pull-out test[J].International Journal of Adhesion and Adhesives,1981,1(6):311-316.
    [164]G.Desarmot,J.P.Favre.Advance in pull-out testing and data analysis[J].Composites Science and Technology,1991,42(1-3):151-187.
    [165]B.Miller,P.Muri,L.Rebenfeld.A microbond method for determination of the shear strength of a fiber/resin interface[J].Composites Science and Technology,1987,28(1):17-32.
    [166]V.Rao,P.Herrera-Franco,A.D.Ozzello,L.T.Drzal.A direct comparison of the fragmentation test and the microbond pull-out test for determining the interfacial shear strength[J].The Journal of Adhesion,1991,34(1):65-77.
    [167]M.Kharrat,A.Chateauminois,L.Carpentier,P.Kapsa.On the interfacial behaviour of a glass/epoxy composite during a micro-indentation test:assessment of interfacial shear strength using reduced indentation curves[J].Composites Part A,1997,28(1):39-46.
    [168]杨俊英.树脂传递模塑工艺过程的数值模拟[D].山东大学博士学位论文,2007.
    [169]J.H.Clint.Adhesion and components of solid surface energies[J].Current Opinion in Colloid and Interface Science,2001,6(1):28-33.
    [170]A.Bismarck,D.Richter,C.Wuertz,J.Springer.Basic and acidic surface oxides on carbon fiber and their influence on the expected adhesion to polyamide[J].Colloids and Surfaces A,1999,159(2-3):341-350.
    [171]H.D.Wagner,H.E.Gallis,E.Wiesel.Study of the interface in Kevlar-49epoxy composites by means of microbond and fragmentation tests:effects of materials and testing variables[J].Journal of Materials Science,1993,28(8):2238-2244.
    [172]M.Nardin,J.Schultz.Relationship between fiber-matrix adhesion and the interfacial shear strength in polymer-based composites[J].Composite Interfaces,1993,1:172-192.
    [173]L.J.Broutman.Glass-resin joint strengths and their effect on failure mechanisms in reinforced plastics[J].Polymer Engineering and Science,1966,6(3):263-272.
    [174]J.F.Mandell,J.H.Chen,F.J.McGarry.A microdebonding test for in situ assessment of fiber/matrix bond strength in composite materials[J].International Journal of Adhesion and Adhesives,1980,1(1):40-44.
    [175]A.Kelly,W.R.Tyson.Tensile properties of fiber-reinforced metals:copper/tungsten and copper/molybdenum[J].Journal of the Mechanics and Physics of Solids,1965,13(6):329-350.
    [176]A.Khalili,K.Kromp.Statistical properties of Weibull estimators[J].Journal of Material Science,1991,26(24):6741-6752.
    [177]张福田.分子界面化学基础[M].上海:上海科学技术文献出版社,2006.
    [178]S.H.Wu.Polymer interface and adhesion[M].New York and Basel:Marcel Dekker Inc.,1982.
    [179]D.K.Owens,R.C.Wendt.Estimation of the surface free energy of polymers [J].Journal of Applied Polymer Science,1969,13(8):1741-1747.
    [180]G.W.Gokel(美).有机化学手册[M].北京:化学工业出版社,2006.
    [181]何曼君,陈维孝,董西侠.高分子物理[M].上海:复旦大学出版社,2000.
    [182]G.R.Palmese,R.L.McCullough.Effect of epoxy-amine stoichiometry on cured resin material properties[J].Journal of Applied Polymer Science,1992,46(10):1863-1873.
    [183]V.Bellenger,W.Dhaoui,J.Verdu,J.Boye,C.Lacabanne.Internal antiplasticization in diglycidyl ether of bisphenol A diamino diphenyl methane non-stoichiometric epoxy networks[J].Polymer Engineering and Science,1990,30(6):321-325.
    [184]A.J.Lesser.Effect of resin crosslink density on the impact damage resistance of laminated composites[J].Polymer Composites,1997,18(1):16-27.
    [185]E.P.Plueddeman.Silane coupling agents,2nd ed[M].New York:Plenneum Press,1991.
    [186]D.M.Laura,H.Keskkula,J.W.Barlow,D.R.Paul.Effect of glass fiber surface chemistry on the mechanical properties of glass fiber reinforced, rubber-toughened nylon 6 [J]. Polymer, 2002,43(17): 4673-4687.
    [187] J. G. Iglesias, J. Gonzalez-Benito, A. J. Aznar, J. Bravo, J. Baselga. Effect of glass fiber surface treatments on mechanical strength of epoxy based composite materials [J]. Journal of Colloid and Interface Science, 2002, 250(1): 251-260.
    [188] D. Olmos, A. J. Aznar, J. Baselga, J. Gonzalez-Benito. Kinetic study of epoxy curing in the glass fiber/epoxy interface using dansyl fluorescence [J]. Journal of Colloid and Interface Science, 2003, 267(1): 117-126.
    [189] S. Debnath, S. L. Wunder, J. I. McCool, G. R. Baran. Silane treatment effects on glass/resin interfacial shear strengths [J]. Dental Materials, 2003, 19(5): 441-448.
    [190] S. J. Park, J. S. Jin. Effect of silane coupling agent on interphase and performance of glass fibers/unsaturated polyester composites [J]. Journal of Colloid and Interface Science, 2001, 242(1): 174-179.
    [191] A. Norstrom, H. Watson, B. Engstrom, J. Rosenholm. Treatment of E-glass fibers with acid, base and silanes [J]. Colloids and Surfaces A, 2001, 194(1-3): 143-157.
    [192] E. Mader. Study of fiber surface treatments for control of interphase properties in composites [J]. Composites Science and Technology, 1997, 57(8): 1077-1088.
    [193] G. W. Lee, N. J. Lee, J. Jang, K. J. Lee, J. D. Nam. Effects of surface modification on the resin-transfer moulding (RTM) of glass-fiber/unsaturated -polyester composites [J]. Composites Science and Technology, 2002, 62(1):9-16.
    [194] V. Tomao, A. M. Siouffi, R. Denoyel. Influence of time and temperature of hydrothermal treatment on glass fibers surface [J]. Journal of Chromatography A, 1998, 829(1-2): 367-376.
    [195] F. M. Zhao, T. Okabe, N. Takeda. The estimation of statistical fiber strength by fragmentation tests of single-fiber composites [J]. Composites Science and Technology, 2000, 60(10): 1965-1974.
    [196] S. Keusch, R. Haessler. Influence of surface treatment of glass fibers on the dynamic mechanical properties of epoxy resin composites [J]. Composites Part A, 1999, 30(8): 997-1002.
    
    [197] S. P. Fernberg, L. A. Berglund. Effects of glass fiber size composition (film-former type) on transverse cracking in cross-ply laminates [J]. Composites Part A, 2000, 31(10): 1083-1090.
    [198] J. Gonzalez-Benito, J. Baselga, A. J. Aznar. Microstructural and wettability study of surface pretreated glass fibers[J].Journal of Materials Processing Technology,1999,92-93:129-134.
    [199]郑安呐,张云灿,潘恩黎.玻璃纤维表面烯烃接枝聚合的研究[J].玻璃钢/复合材料,1992,(3):1-5.
    [200]薛志云,胡福增,郑安呐,吴叙勤.玻璃纤维表面的聚甲基丙烯酸甲酯接枝[J].玻璃钢/复合材料,1995,(4):18-25.
    [201]周晓东,陈德东,林群芳,戴干策.橡胶分子链在玻璃纤维表面的接枝[J].高分子材料科学与工程,2001,17(1):137-140.
    [202]周晓东,林群芳,郭文军,戴干策.界面柔性层对玻璃纤维毡增强聚丙烯复合材料力学性能的影响[J].高分子材料科学与工程,2001,17(2):138-141.
    [203]K.Benzarti,L.Cangemi,F.D.Maso.Transverse properties of unidirectional glass/epoxy composites:influence of fiber surface treatments[J].Composites Part A,2001,32(2):197-206.
    [204]V.Cech,R.Prikryl,R.Balkova,A.Grycova,J.Vanek.Plasma surface treatment and modification of glass fibers.Composites Part A,2002,33(10):1367-1372.
    [205]G.Ozkoc,G.Bayram,E.Bayramli.Effects of polyamide 6 incorporation to the short glass fiber reinforced ABS composites:an interfacial approach[J].Polymer,2004,45(26):8957-8966.
    [206]D.C(o|¨)keliler,S.Erkut,J.Zemek,H.Biederman,M.Mutlu.Modification of glass fibers to improve reinforcement:a plasma polymerization technique[J].Dental Materials,2007,23(3):335-342.
    [207]M.Etcheverry,M.L.Ferreira,N.J.Capiati,A.Pegoretti,S.E.Barbosa.Strengthening of polypropylene-glass fiber interface by direct metallocenic polymerization of propylene onto the fibers.Composites Part A,2008,39(12):1915-1923.
    [208]王德生,任重远.玻璃纤维表面等离子体处理的研究[J].西安交通大学学报,1989,23(5):27-33.
    [209]程先华,薛玉君,谢超英.稀土元素表面处理对玻璃纤维填充金属-塑料多层复合材料冲击磨损性能的影响[J].中国稀土学报,2001,19(4):373-375.
    [210]范广裕,乌云其其格.稀土表面处理剂对玻璃纤维表面的改性作用[J].工程塑料应用,1995,23(3):19-21.
    [211]肖友军.玻璃纤维表面化学镀Cu及其催化脱氢性能研究[J].表面技术,2000,29(2):11-14.
    [212]张海涛,陈莉云,王亚龙,王旭辉,张利兴,缪云坤,金宝潺.玻璃纤维化 学镀铜工艺条件的优化研究[J].材料保护,2002,35(10):50-52.
    [213]H.G.Yu,S.C.Lee,C.H.Ao,J.G.Yu.Low-temperature fabrication and photocatalytic activity of clustered TiO_2 particles formed on glass fibers[J].Journal of Crystal Growth,2005,280(3-4):612-619.
    [214]Z.R.Yue,J.Economy,C.L.Mangun.Preparation of fibrous porous materials by chemical activation 2.H_3PO_4 activation of polymer coated fibers[J].Carbon,2003,41(9):1809-1817.
    [215]汪威.温度响应型PHIPAM聚合物刷的制备、图案化及表面摩擦性能研究[D].中国科学院化学研究所博士学位论文,2007.
    [216]S.A.Kulkarni,B.A.Kakade,I.S.Mulla,V.K.Pillai.Suppression of electron-transfer characteristics of ferrocene by OTS monolayer on a silicon/electrolyte interface[J].Journal of Colloid and Interface Science,2006,299(2):777-784.
    [217]L.Hong,H.Sugimura,T.Furukawa,T.Furukawa,O.Takai.Photoreactivity of alkylsilane self-assembled monolayers on silicon surfaces and its application to preparing micropattemed ternary monolayers[J].Langmuir,2003,19(6):1966-1969.
    [218]M.Nardin,J.Schultz.Relationship between work of adhesion and equilibrium interatomic distance at the interface[J].Langrnuir,1996,12(17):4238-4242.
    [219]M.Nardin,J.Schultz.Relationship between fiber-matrix adhesion and the interfacial shear strength in polymer-based composites[J].Composite Interfaces,1993,1(1):172-192.
    [220]J.M.Lifshitz.Impact strength of angle ply fiber reinforced materials[J].Journal of Composite Materials,1976,10(1):92-101.
    [221]L.S.Sutherland,C.G.Soares.Impact characterization of low fiber-volume glass reinforced polyester circular laminated plates[J].International Journal of Impact Engineering,2005,31(1):1-23.
    [222]H.M.Hsiao,I.M.Daniel.Strain rate behavior of composite materials.Composites Part B,1998,29(5):521-533.
    [223]S.Pardo,D.Baptiste,F.Decobert,J.Fitoussi,R.Joannic.Tensile dynamic behavior of a quasi-unidirectional E-glass/polyester composite[J].Composites Science and Technology,2002,62(4):579-584.
    [224]G.C.Jacob,J.M.Starbuck,J.F.Fellers,S.Simunovic,R.G.Boeman.The effect of loading rate on the fracture toughness of fiber reinforced polymer composites[J].Journal of Applied Polymer Science,2005,96(3):899-904.
    [225]M.M.Shokrieh,M.J.Omidi.Tension behavior of unidirectional glass/epoxy composites under different strain rates[J].Composite Structures,2009,88(4): 595-601.
    [226] S. Barre, T. Chotard, M. L. Benzeggagh. Comparative study of strain rate effects on mechanical properties of glass fiber-reinforced thermoset matrix composites [J]. Composites Part A, 1996,27(12): 1169-1181.
    [227] N. Taniguchi, T. Nishiwaki, N. Hirayama, H. Nishida, H. Kawada. Dynamic tensile properties of carbon fiber composite based on thermoplastic epoxy resin loaded in matrix-dominant directions [J]. Composites Science and Technology, 2009, 69(2): 207-213.
    [228] K. Y. Rhee, H. J. Kim, S. J. Park. Effect of strain rate on the compressive properties of graphite/epoxy composite in a submarine environment [J]. Composites Part B, 2006, 37(1): 21-25.
    [229] J. Fitoussi, F. Meraghni, Z. Jendli, G Hug, D. Baptiste. Experimental methodology for high strain-rate tensile behavior analysis of polymer matrix composites [J]. Composites Science and Technology, 2005, 65(14): 2174-2188.
    [230] O. I. Okoli. The effects of strain rate and failure modes on the failure energy of fiber reinforced composites [J]. Composite Structures, 2001, 54(2-3): 299-303.
    [231] F. Fereshteh-Saniee, G. H. Majzoobi, M. Bahrami. An experimental study on the behavior of glass-epoxy composite at low strain rates [J]. Journal of Materials Processing Technology, 2005,162-163: 39-45.
    [232] S. A. Tekalur, K. Shivakumar, A. Shukla. Mechanical behavior and damage evolution in E-glass vinyl ester and carbon composites subjected to static and blast loads [J]. Composites Part B, 2008, 39(1): 57-65.
    [233] Z. Jendli, F. Meraghni, J. Fitoussi, D. Baptiste. Micromechanical analysis of strain rate effect on damage evolution in sheet molding compound composites [J]. Composites Part A, 2004, 35(7-8): 779-785.
    [234] Z. Jendli, J. Fitoussi, F. Meraghni, D. Baptiste. Anisotropic strain rate effects on the fiber-matrix interface decohesion in sheet moulding compound composites [J]. Composites Science and Technology, 2005, 65(3-4): 387-393.
    [235] F. Meraghni, F. Desrumaux, M. L. Benzeggagh. Implementation of a constitutive micromechanical model for damage analysis in glass mat reinforced composite structures [J]. Composites Science and Technology, 2002, 62(16): 2087-2097.
    [236] C. T. Sun, J. L. Chen. A simple flow rule for characterizing nonlinear behavior of fiber composites [J]. Journal of Composite Materials, 1989, 23(10): 1009-1020.
    [237] S. V. Thiruppukuzhi, C. T. Sun. Models for the strain-rate-dependent behavior of polymer composites [J]. Composites Science and Technology, 2001, 61(1): 1-12.
    [238] A. Kallimanis, E. Kontou. Tensile strain-rate response of polymeric fiber composites [J]. Polymer Composites, 2005,26(5): 572-579.
    
    [239] M. S. Sohn, X. Z. Hu. Impact and high strain rate delamination characteristics of carbon fiber epoxy composites [J]. Theoretical and Applied Fracture Mechanics, 1996, 25(1): 17-29.
    
    [240] A. Agbossou, I. Cohen, D. Muller. Effects of interphase and impact strain rates on tensile off-axis behaviour of unidirectional glass fiber composite: experimental results [J]. Engineering Fracture Mechanics, 1995, 52(5): 923-935.
    
    [241] O. Akil, U. Yildirim, M. Guden, I. W. Hall. Effect of strain rate on the compression behaviour of a woven fabric S2-glass fiber reinforced vinyl ester composite [J]. Polymer Testing, 2003, 22(8): 883-887.
    
    [242] Y. B. Xue, Y. C. Du, S. Elder, K. P. Wang, J. L. Zhang. Temperature and loading rate effects on tensile properties of kenaf bast fiber bundles and composites [J]. Composites Part B, 2009,40(3): 189-196.
    
    [243] G. H. Majzoobi, F. Fereshteh-Saniee, M. Bahrami. A tensile impact apparatus for characterization of fibrous composites at high strain rates [J]. Journal of Materials Processing Technology, 2005, 162-163: 76-82.
    
    [244] Y. X. Zhou, W. Yang, Y. M. Xia, P. K. Mallick. An experimental study on the tensile behavior of a unidirectional carbon fiber reinforced aluminum composite at different strain rates [J]. Materials Science and Engineering: A, 2003,362(1-2): 112-117.
    
    [245] R. Fracasso, M. Rink, A. Pavan, R. Frassine. The effects of strain-rate and temperature on the interlaminar fracture toughness of interleaved PEEK/CF [J]. Composites Science and Technology, 2001, 61(1): 57-63.
    
    [246] G A. Holmes, R. C. Peterson, D. L. Hunston, W. G. Mcdonough. E-glass/DGEBA/m-PDA single fiber composites: the effect of strain rate on interfacial shear strength measurements [J]. Polymer Composites, 2000, 21(3): 450-465.
    
    [247] M. J. Greenfield, A. Pedicini, L. S. Penn. Development of a single fiber fragmentation test for high strain rates [J]. International Journal of Adhesion and Adhesives, 2000,20(5): 403-407.
    
    [248] X. J. Gong, J. A. Arthur, L. S. Penn. Strain rate effect in the single-fiber-fragmentation test [J]. Polymer Composites, 2001,22(3): 349-360.
    [249] M. Tanoglu, S. H. McKnight, G. R. Palmese, J. W. GillespieJr. A new technique to characterize the fiber/matrix interphase properties under high strain rates [J]. Composites Part A, 2000,31(10): 1127-1138.
    [250] M. Tanoglu, S. H. McKnight, G. R. Palmese, J. W. Gillespie Jr. The effects of glass-fiber sizings on the strength and energy absorption of the fiber/matrix interphase under high loading rates [J]. Composites Science and Technology, 2001,61(2): 205-220.
    [251] R. D. Mirani, J. Pratt, P. Iyer, S. V. Madihally. The stress relaxation characteristics of composite matrices etched to produce nanoscale surface features [J]. Biomaterials, 2009, 30(5): 703-710.
    [252] E. Krempl. Relaxation behavior and modeling [J]. International Journal of Plasticity, 2001,17(10): 1419-1436.
    [253] C. Joubert, A. Michel, L. Choplin, P. Cassagnau. Influence of the crosslink network structure on stress-relaxation behavior: viscoelastic modeling of the compression set experiment [J]. Journal of Polymer Science Part B, 2003, 41(15): 1779-1790.
    [254] B. W. Kim, J. A. Nairn. Observations of fiber fracture and interfacial debonding phenomena using the fragmentation test in single fiber composites [J]. Journal of Composite Materials, 2002, 36(15): 1825-1858.
    [255] T. Seelig. Computational modeling of deformation mechanisms and failure in thermoplastic multilayer composites [J]. Composites Science and Technology, 2008, 68(5): 1198-1208.
    [256] J. Mullin, J. M. Berry, A. Gatti. Some fundamental fracture mechanisms applicable to advanced filament reinforced composites [J]. Journal of Composite Materials, 1968, 2(1): 82-103.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700