球团烧结过程智能控制方法及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
链篦机-回转窑氧化球团烧结过程是一个涉及到传质、传热和复杂化学反应的工业过程。从控制角度来看,球团烧结过程具有非线性、分布参数、慢时变和大时滞等特性,属于典型的复杂被控对象。大量不确定信息、多样化海量数据使得传统控制方法难以对其进行有效控制,而智能控制为解决这类复杂被控对象的控制问题提供了有效途径。
     本文在查阅大量文献资料、广泛收集链篦机-回转窑氧化球团烧结生产过程历史数据、专家经验和操作规程和对现场工艺进行充分调研的基础上,综合运用球团烧结工艺、计算机控制技术、现代控制理论和人工智能技术等多学科知识,提出了基于球磨机制粉系统多变量解耦控制模型、回转窑温度控制模型和球团矿化学成分软测量模型的球团烧结过程智能控制策略。论文的主要工作如下:
     (1)针对煤基球团厂球磨机制粉系统的多变量强耦合特性,以球磨机的数学模型为依据,提出一种新型的多变量PID解耦控制策略。它由比例因子α模糊自整定单元、PID控制器和基于对角矩阵法的解耦补偿器组成,PID控制器参数由粒子群算法进行优化。仿真研究表明所建模型和所提控制方法的有效性。
     (2)基于粗糙集理论的知识约简方法和T-S模糊神经网络的非线性映射理论,建立了回转窑自动喷煤系统。基于一种新的聚类有效性准则函数的模糊C均值聚类算法对连续属性进行最优离散化;采用粗糙集理论对球团烧结生产过程中一些代表性工艺参数所构成的决策表进行知识约简分析;最后根据最小规则约简建立权值不完全连接的T-S模糊神经网络模型。
     (3)结合球团烧结过程工艺机理,采用T-S模糊神经网络建立了球团矿化学成分(FeO含量和碱度R)软测量模型。模型采用灰色关联分析方法进行辅助变量选取,以对软测量模型输入进行降维;粒子群优化算法和最小二乘法相结合的混合算法来调整T-S模型的前提参数和结论参数,该混合学习算法提高了网络参数辨识的收敛速度。然后基于球团矿化学成分软测量模型建立了球团烧结过程状态粗糙集专家控制系统,实现链篦机过程状态的优化控制。
     (4)将上述智能建模和优化控制方法在球团烧结过程进行了工业应用实验,结果表明使用智能建模和优化控制方法提高了产品的产量和成品球团矿的质量,对提高球团企业的整体经济效益具有推动作用,同时为复杂工业过程的优化控制提供了实用的方法。
Grate-rotary kiln oxide pellets sintering process is a dynamic process with matter transmission, heat exchange and complicated chemical reaction. From the control view, the sintering process is a kind of typical complex object due to its nonlinearity, distributed parameters, time-varying and model uncertainty. A great deal of uncertainty information and multiplex magnanimity datum make it difficult to perform the control task of total sintering process effectively by using conventional control methods. The intelligent control theory provides an efficient approach to realize the control of this kind of complex systems.
    Based on the review of the related research references, the detailed investigation on the mechanism and technique and the comprehensive collection of production history datum, expert experience and manipulation regulations of pellets sintering process, an intelligent control strategy is proposed by comprehensive utilization of pellets sintering theory, computer control technology, modern control theory and artificial intelligent technique. The strategy includes the multivariable PID decoupling control model of ball milling pulverizing systems, the temperature controller of the rotary kiln process and the soft sensing model of chemical composition of the finished sinter mineral. This dissertation has carried on the following research.
    (1) A ball mill coal pulverizing system of pelletizing plant is a complex nonlinear multivariable process with strongly coupling and time-delay. A new multivariable PID decoupling controller is proposed based on the mathematics model of pulverizing system, which consists of diagonal matrix method-based decomposition compensatory unit, PID controller and fuzzy self-tuning components unit with scaling factor α . Particle swarm optimization (PSO) algorithm is adopted to optimize parameters of the PID controller. Simulation results show the validity of the obtained model and the proposed control method.
    (2) Based on the idea of the knowledge reduction of the rough sets (RS) theory and the nonlinearity mapping of Takagi-Sugeno fuzzy neural network (FNN), a kind of RS-FNN control method is presented and applied to the rotary kiln sintering process. The fuzzy c-means (FCM) clustering method based on a new cluster validity index function is used to obtain the optimal discrete values of the continuous attributes. RS theory is adopted to obtain the reductive rules using industrial history datum and corresponding T-S fuzzy model has better topology configuration reflecting system characteristics.
引文
[1] 叶匡吾.提高烧结矿质量改善高炉原料条件.矿冶工程.1996,16(增刊2):25-26.
    [2] 杨自厚.人工智能技术及其在钢铁工业中的应用(上).冶金自动化.1994,18(5):43-47.
    [3] 马竹梧,邱建平,李江.钢铁工业自动化.北京:冶金工业出版社,2000.
    [4] 傅菊英,姜涛,朱德庆.烧结球团学.长沙:中南工业大学出版社,1996.
    [5] 王介生,张勇,丛峰武等.鞍钢200万t氧化球团链篦机-回转窑系统的设计烧结球团.烧结球团.2005,30(4):9-13.
    [6] 李桃.烧结过程智能实时操作指导系统的研究:(博士学位论文).长沙:中南大学,2000.
    [7] 范晓慧,申炳昕,陈许玲等.烧结生产自动控制新技术(上).烧结球团.2002,27(1),28-35.
    [8] 范晓慧,王海东.烧结过程数学模型与人工智能.长沙:中南大学出版社,2000.
    [9] Cumming M J, Rankin W J, Siemaon J R et al. Modelling and simulation of iron ore sintering. 4th International Symposium on Agglomeration, Toronto, Canada, 1985:763-766.
    [10] Waters A G, Lister J D.A mathematical model for the prediction of granule size distribu tion for multicomponent sinter feed. Trans. ISIJ.1989,29(4),274-283.
    [11] Patisson F. Study of moister transfer during the strand sintering process. Metal Trans. 1990,2(21B):37-47.
    [12] 邱志毅.烧结水分迁移数学模型及计算机仿真.烧结球团.1994,19(2):1-7.
    [13] 佐藤骏.Mineral forming and its composition model for iron ore sinter.铁钢.1987,73(8):956-962.
    [14] 刘克文,周取定.烧结过程数学模型的研究.烧结球团.1990,15(5):1-9.
    [15] Errigo V, Riccardi C. Waste gas analysis under grate as a new means of sinter process control. 4th International Symposium on Agglomeration, Toronto, Canada, 1985:153.
    [16] Tamur N, Konishi M. Mathematical approach for the optimization of the sintering process operation. IFAC Automation in Mining, Mineral and Metal Processing, Tokyo, Japan, 1986: 203-208.
    [17] 范晓慧,王海东,黄天正等.基于自适应预报的烧结矿化学成分控制专家系统.中南工业大学学报.1996,27(3):282-285.
    [18] 范晓慧,王海东,黄天正等.以碱度为中心的烧结矿化学成分控制专家系统.烧结球团.1997,22(4):1-3.
    [19] Kawaguchi T, Yoshinaga M. Development and application of an integrated simulation model for iron ore sintering. Ironmaking Proceedings. 1987,46:99-106.
    [20] Kanjila P P, Rose E. Application of adaptive prediction and control methods for improved operation of the sintering process. Ironmaking and Steelmaking. 1986,13(6):289-293.
    [21] Straka G.烧结机速过程控制模型.烧结球团.1994,19(4):36-38.
    [22] 邓鹿鸣.烧结终点微机控制系统的原理及数学模型.冶金自动化.1989,13(6):3-6.[23] 柴天佑,荣莉,马庆云.智能控制技术在我国轧钢炉窑控制中的应用.冶金自动化.2000,24(1):7-11.
    [24] 李松仁.选矿专家系统.金属矿山.1996,245(11):15-19.
    [25] 李少远,席裕庚,陈增强等.智能控制的新进展(Ⅰ).控制与决策.2000,11(5):1-5.
    [26] 刘向杰,周孝信.模糊控制研究的现状与新发展.信息与控制.1999,28(4):283-292.
    [27] 黄山松,杜继宏,冯元琨.人工神经网络及其在控制中的应用.计算机自动测量与控制.1999, 7(2):57-59.
    [28] 袁著祉,陈增强,李翔.联接主义智能控制综述.自动化学报.2002,28(增刊1):38-59.
    [29] Unzaki H, Miki K, New control system of sinter plants at CHIBA works. IFAC Automation in Mining, Mineral and Metal Processing, Tokyo, Japan, 1986:209-216.
    [30] 谢良贤.烧结过程自动控制技术的发展.冶金自动化.1994,18(6):7-11.
    [31] Watanabe M, Sasaki Y. Development of operation guide system and its application to CHIBA No. 4 sintering plant. 4th International Symposium on Agglomeration, Tornto, Canada, 1985: 147-152.
    [32] 须仲新.新日铁在宝钢介绍计算机的应用.烧结球团.1989,14(5):74.
    [33] Munetake I, Koukichi H, Mamoru I et al. Application of fuzzy control for iron ore sintering process. Transactions ISIJ. 1988,28(5):341-344.
    [34] Ebner J.奥钢联林茨钢铁公司用模糊逻辑控制改善烧结厂生产操作.武钢技术.1998,36(8):16-19.
    [35] Fukagawa F. Sinter operation control system with artificial Intelligence. 川崎制铁技报.1991,23(3):14-18.
    [36] Meng J E, Liao J, Lin J Y. Fuzzy neural networks based quality prediction system for sintering process. IEEE Transactions on Fuzzy Systems. 2000,8(3):314-324.
    [37] 姜宏洲,张学东,张宏勋.烧结生产专家指导系统研究.烧结球团.2000,25(1):8-10.
    [38] 范晓慧.烧结过程控制专家指导系统的研究:(博士学位论文).长沙:中南工业大学,1996.
    [39] 吴为民.烧结混合料水份检测及智能控制系统.烧结球团.1997,23(4):38-40.
    [40] 冯建生,王秀芝.一个基于神经网络的配矿专家系统.冶金自动化.1999,23(4):7-10.
    [41] 范晓慧,王海东,黄天正等.以透气性为中心的烧结过程状态控制专家系统.烧结球团.1998, 23(2):13-16.
    [42] 陈晓方,桂卫华,王雅琳等.基于智能集成策略的烧结块残硫软测量模型.控制理论与应用.2004,21(1)75-80.
    [43] Chen X F, Gui W H, Wang Y L et al. An integrated modeling method for prediction of sulfur content in agglomerate. Journal of Central South University of Technology. 2003,10(2): 145-150.
    [44] Zhang X G, Chen H, Zhang J.A sintering temperature detection and control method of alumina rotary kiln based on fuzzy data fusion. Eighth International Conference on Control, Automation, Robotics and Yision, Kunming, China, 2004:1416-1420.[45] Wang Y N, Shen T T.A hybrid intelligent control for industrial rotary kiln plant. International Conference on Industrial Electronics, Control and Instrumentation. Taipei, Taiwan, 1996:1418-1423.
    [46] 曲强,陈雪波.T-S模糊模型在焙烧建模过程中的应用.计算机仿真.2004,21(12):73-75.
    [47] 刘玉长,桂卫华,周孑民.基于软测量技术的模糊烧结终点控制研究.烧结球团.2002,27(2):29-32.
    [48] 杨英华,郭文军,王福利等.烧结机点火器燃烧的模糊控制及应用.钢铁.1998,33(2):3-5.
    [49] 张学东,姜宏洲,张宏勋.基于模糊逻辑理论的烧结机尾断面图像补偿.烧结球团.1999,24(2):9-12.
    [50] Chen X B, Yu Z J, Yang D W. Soft sensing of diathermancy for sintering process. 2003 IFAC Workshop on New Technologies for Automation of Metallurgical Industry, Shanghai, China, 2003:35-39.
    [51] 杜玉晓,吴敏,桂卫华等。铅锌烧结过程透气性的混沌遗传算法神经网络模型.第十三届中国过程控制年会,珠海,2002:205-209.
    [52] 刘鸿雁,初振坤,杨东伟.基于质量指标的球团焙烧先进过程控制.辽宁工程技术大学学报.2003,22(5):656-658.
    [53] Feng Q M, Li T, Fan X H et al. Adaptive prediction system of sintering through point based on self-organized artificial neural network. Transactions of Nonferrous Metals Society of China, 2000,10(6):804-807.
    [54] Wook H K, Yong H K, Sang J L et al. Event based modeling and control for the burnthrough point in sintering processes. IEEE Transactions on Control Systems Technology, 1999, 7(1): 31-41.
    [55] 王亦文,桂卫华,王雅琳.基于最优组合算法的烧结终点集成预测模型.中国有色金属学报.2002,12(1):191-195.
    [56] 彭力,娄国焕,周蓉.基于神经网络自适应极点配置法在烧结终点控制中的应用.清华大学学报.2000,40(2):246-249.
    [57] Yong H K, Wook H K. Anapplication of min-max generalized predictive control to sintering processes. Control Engineering Practice. 1998,6(8):999-1007.
    [58] 郭文军,王福利,李明忠等.基于神经网络的烧结矿化学成分超前预报.烧结球团.1997,22(5):7-10.
    [59] 刘怀.用BP网络模型对烧结矿质量预测.烧结球团.1999,24(5):4-7.
    [60] 张舒,高为民.人工神经网络在烧结矿指标预测中的应用.烧结球团.2001,26(4):6-10.
    [61] 申炳昕,范晓慧,孙文东.基于神经网络的烧结矿化学成分自适应预报系统的开发.烧结球团.2002,27(5):1-3.
    [62] 张军红,沈峰满,谢安国.G-BP算法在烧结矿FeO指标预测中的应用.东北大学学报(自然科学版).2002,23(11):1073-1075.
    [63] 张军红,谢安国,沈峰满.烧结矿质量预测中神经网络的结构优化.钢铁.2003,38(4):6-8.[64] 李树涛,王耀南,张昌凡.基于燃烧火焰图像特征的回转窑神经网络控制系统.自动化学报.2002,28(4):591-595.
    [65] Zhang G Y, Zhang J.A hybrid RS-SVM dynamic prediction approach to rotary kiln sintering process. International Conference on Machine Learning and Cybernetics, Shanghai, China, 2004: 478-482.
    [66] 刘齐寿,黄锦涛.球磨机中储式制粉系统自寻优控制.西安交通大学学报.2000,34(7):30-34.
    [67] 岳恒,周晓杰,王昕等.钢球磨中储式制粉系统智能解耦控制仿真系统.系统仿真学报.2002,14(10):1340-1343.
    [68] 陶文华,柴天佑,岳恒.钢球磨煤机的动态参数模型与仿真研究.系统仿真学报.2004,16(4):778-780.
    [69] 王东风.多变量智能控制在电厂制粉系统中的应用研究:(博士学位论文).北京:华北电力大学,2000.
    [70] 陶文华,岳恒,柴天佑.钢球磨中储式制粉系统的建模与控制.控制工程.2003,10(3):245-248.
    [71] 李刚,王广军.电站锅炉磨煤机模糊-PID 复合控制系统仿真.重庆大学学报,2004,27(1):107-111.
    [72] 李遵基,王丽君.模糊控制理论在球磨机制粉系统中的应用.华北电力大学学报.1997,24(1):1-5.
    [73] 王东风.制粉系统球磨机的神经网络预测控制.华北电力大学学报.2001,28(3):34-37.
    [74] 瞿曌.神经元解耦模糊控制器在球磨机控制系统中的应用.武汉大学学报,2004,37(1):125-127.
    [75] 王伟,张晶涛,柴天佑.PID参数先进整定方法综述.自动化学报.2000,26(3):347-355.
    [76] Astrom K J,Hagglund T. The future of PID control. Control Engineering Practice. 2001, 9(11):1163-1175.
    [77] Wang P, Kwok D P. Auto-tuning of classical PID controllers using an advanced genetic algorithm. Proc IEEE Int. Conf. on Power Electronics and Motion Control, San Diego, 1992: 1224-1229.
    [78] 王介生,王金城,王伟.基于粒子群算法的PID控制器参数自整定.控制与决策.2005,20(1):73-76.
    [79] Wang J S, Zhang Y, Wang W. Optimal design of PI/PD controller for non-minumum phase system. Transactions of the Institute of Measurement and Control. 2006,28(1):27-35.
    [80] Kennedy J, Eberhart R. Particle swarm optimization. Proc IEEE Int. Conf. on Neural Networks, Perth, 1995:1942-1948.
    [81] Eberhart R, Kennedy J.A new optimizer using particle swarm theory. Proc 6th Int. Symposium on Micro Machine and Human Science, Nagoya, 1995:39-43.
    [82] Millonas M M. Swarms phase transition and collective intelligence. MA:Addison Wesley, 1994.
    [83] Shi Y H, Eberhart R. Modified particle swarm optimizer. Proc IEEE Int Conf on Evolutionary??Computation, Anchorage, 1998:69-73.
    [84] 谢晓锋,张文俊,杨之廉.微粒群算法综述.控制与决策.2003,18(2):129-134.
    [85] Ziegler J G, Nichols N B. Optimum settings for automatic controllers. Trans. ASME. 1942, 64(11):759-768.
    [86] 王凌,李文峰,郑大钟.非最小相位系统控制器的优化设计.自动化学报.2003,29(1):135-141.
    [87] 王雁,王军,王瑞祥.采用对角矩阵解耦法提高变风量空调的性能.建筑电气.2004,23(6):3-7.
    [88] Pawlak Z. Rough sets. International Journal of Information and Computer Science. 1982, 11(5):341-356.
    [89] Pawlak Z. Rough set-theoretical aspects of reasoning about data. Dordrecht:kluwer academic publishers, 1991.
    [90] Shusaku T, Hiroshi T. Extraction of domain knowledge from databases based on rough set theory. IEEE Proceedings of Fifth International Conference on Fuzzy Systems, New Orleans, 1996:748-754.
    [91] 王珏,苗夺谦.关于Rouge Set理论与应用的综述.模式识别与人工智能.1996,9(4):337-344.
    [92] 韩祯祥,张琦,文福栓.粗糙集理论及其应用综述.控制理论与应用.1999,16(2):153-157.
    [93] 刘清.Rough集及Rough推理.北京:科学出版社,2001.
    [94] 杜玉晓.铅锌烧结过程智能集成优化控制技术及其应用研究:(博士学位论文).长沙:中南大学,2004.
    [95] Slowinski R. Rough classification of HSV patients. Intelligent Decision Support, Kluwer, Roman Slowinski, 1992:77-94.
    [96] Hu X H, Cercone N. Learning in relational database: a rough set approach. Inter. J. of Computational Intelligence. 1995,11(2):323-338.
    [97] 苗夺谦.粗糙集理论中连续属性的离散化方法.自动化学报.2001,27(3):296-302.
    [98] 于达仁,胡清华,鲍文.融合粗糙集和模糊聚类的连续数据知识发现.中国电机工程学报.2004,24(6):205-210.
    [99] Ramze R M, Leieveldt B P F, Reiber J H C.A new cluster validity index for the fuzzy c-means. Pattern Recognition Letters. 1998,19(3-4):237-246.
    [100] Halkidi M, Batistakis Y, Vazirgiannis M. On clustering validation techniques. JIIS. 2001, 17(2-3):107-145.
    [101] Pal N R, Bezdek J C. On cluster validity for the fuzzy c-means Model. IEEE Trans. Fuzzy Systems, 1995,3(3):370-379.
    [102] Dae W K, Kwang H, Lee et al. Oncluster validity index for estimation of optimal number of fuzzy clusters. Pattern Recognition. 2004,37(10):2009-2024.
    [103] Bezdek J C, Pal N R. Some new indexes of cluster validity. IEEE Transactions on system, Man and Cybernetics. 1998,28(3):301-315.
    [104] Bezdek J C. Cluster validity with fuzzy Sets. J. Cybernet. 1974,3(3):58-72.
    [105] Xie XL,Beni G.A validity measure for fuzzy clustering.IEEE Trans. On Pattern Analysis??and Machine Intelligence. 1991,13(8):841-847.
    [106] Fukuyama Y, Sugeno M.A new method of choosing the number of clusters for the fuzzy c-means method. Proc. 5th Fuzzy Syst. Symp., Japan, 1989:247-250.
    [107] Kwon S H. Cluster validity index for fuzzy clustering. Electron. Lett. 1998,34(22):2176-2177.
    [108] Dunn J C.A fuzzy relative of the ISODATA process and its use in detecting compact yell-separated clusters. Journal Cybern. 1973,3(3):32-57.
    [109] Bezdek J C. Pattern recognition with fuzzy objective function algorithm. New York: Plenum Press, 1982.
    [110] Yu J, Cheng Q S. The search scope of optimal cluster number in fuzzy clustering methods. Science in China(Series E),2002,32(4):274-280.
    [111] Chen M Y, Linkens D A. Rule-base self-generation and simplification for data-driven fuzzy models. Fuzzy Sets and Systems. 2004,142(2):243-265.
    [112] 唐少先,陈建二,张泰山等.烧结智能控制系统信息模型和集成方法的探讨.冶金自动化,2004,28(3):5-9.
    [113] Tharm M T. Soft sensors for process estimation and inferential control. Process Control. 1997,1(1):3-14.
    [114] 朱学峰.软测量技术及其应用.华南理工大学学报(自然科学版).2002,30(11):61-67.
    [115] 张湜,薄翠梅,林锦国等.丁二烯精馏塔的推断控制方案与软测量模型.自动化仪表,2002,(9):59-62.
    [116] 单鸿亮,王文海,孙优贤.间歇蒸煮过程软测量建模综述.中国造纸学报.2003,18(2):195-200.
    [117] Hamada K, Matoba Y. Systeme de controle de la composition chemique de 1′ agglomere. Revue de Metallurgie-CIT. 1987,(5):409-419.
    [118] 范晓慧,黄天正,尹蒂等.自适应预报在烧结中的应用.钢铁.1996,31(7):5-18.
    [119] 蒋大军,唐炜.利用灰色系统建模预测烧结生产技术指标及其影响因素分析.烧结球团.1998,23(5):27-31.
    [120] Deng J L. Control problems of gray systems. Systems and Control Letters. 1982,1(5): 288-294.
    [121] 杨斌田,永青朱,仲英.智能建模方法中的数据预处理.信息与控制.2002,31(4):381-384.
    [122] Takagi H, Sugeno M. Derivation of fuzzy control rules from human operator's control actions. Proc IFAC Symposium on Fuzzy Information, Knowledge Representation and Decision Analysis, Marseille, France, 1984:55-60.
    [123] Takagi H, Sugeno M. Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. 1985,16(1):116-132.
    [124] Sugeno M, Kang G T. Structure identification of fuzzy model. Fuzzy Sets and System, 1988, 28(1):15-33.
    [125] Tanaka K, Sano M.A robust stabilization problem of fuzzy control systems and its??application to backing up control of a truck-trailer. IEEE Tran. on fuzzy Systems. 1994, 2(2): 119-134.
    [126] Rim E T, Lee H J. New approach to relaxed quadratic stability condition of fuzzy control systems. IEEE Trans. Fuzzy Systems. 2000,8(5):523-534.
    [127] Mackey M C, Glass L. Oscillation and chaos in physiological control systems. Science. 1977,197(4300):287-289.
    [128] 杨会志,于春田.一种浮选过程控制的新策略-粗糙控制.矿业研究与开发.1999,19(5):20-23.
    [129] 杨会志,张雅洁.基于RS理论的过程企业生产工艺数据挖掘.计算机工程.2001,27(11): 37-38.
    [130] 张勇.粗糙集-神经网络智能系统在浮选过程中的应用研究:(博士学位论文).大连:大连理工大学,2005.
    [131] 沈德耀.开放式集散控制系统与现场总线技术.岳阳师范学院学报.2000,13(3):22-27.
    [132] 王孝红,于宏亮,徐心和.基于现场总线技术的水泥旋窑DCS控制系统.控制工程.2004,11(5):385-388.
    [133] 钱敏.Profibus-DP现场总线控制系统.上海有色金属.2002,23(4):171-174.
    [134] 徐晓瑾,朱明富.球团生产监控管理系统软件设计.控制工程.2004,11(2):132—134.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700