用户名: 密码: 验证码:
HIV-1整合酶活性检测方法建立和应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人类免疫缺陷病毒(HIV)引起的获得性免疫缺陷综合症(艾滋病)是人类历史上最严重、最致命的疾病之一。艾滋病目前仍然不能治愈。HIV编码的整合酶(IN)介导病毒DNA与宿主细胞基因组整合,是病毒复制所必需的关键酶之一。抑制IN的功能能够有效阻断病毒在宿主细胞内的复制。同时,由于正常人体细胞中没有IN的功能类似物,特异性作用于IN的抑制剂对人体的副作用可能很小。因此,IN被认为是抗HIV药物研发的理想靶点。
     IN在体内主要通过催化3′加工和链转移两步反应实现整合过程。以上两步反应能够在体外使用重组IN蛋白、寡核苷酸DNA底物以及二价金属辅助离子实现。此外,IN还能在体外催化链转移的逆反应——去整合,将链转移形成的DNA产物重新还原生成病毒DNA和靶DNA。建立高效的IN活性检测方法,并据此开展抑制剂的筛选,是当前IN抑制剂体外筛选的主要手段,也是以IN为靶点的抗病毒药物研发的热点之一。本研究表达纯化了重组IN蛋白,建立了IN活性检测的一系列高通量方法,并应用这些方法进行了IN的性质、抑制剂筛选等方面的研究。论文内容主要包括以下几个方面:
     (1)整合酶蛋白表达纯化及3′加工活性高通量检测方法的建立
     使用PCR获取了HXB2CG病毒株IN基因,通过序列分析,设计突变引物,使用重叠PCR方法将HXB2CG IN基因突变为HIV NL4-3 IN基因,并引入了F185K/C280S突变以提高蛋白溶解性。将目的基因连接到pET表达载体中,在大肠杆菌BL21中实现了高效且可溶性表达。通过亲和层析方法,从细胞破碎上清液中纯化到纯度高且具有3′加工和链转移功能活性的重组IN蛋白。
     根据分子信标的原理,设计了荧光基团和淬灭基团标记的模拟病毒DNA序列的3′加工DNA底物,提出了一种检测3′加工反应活性的新型荧光分析法。实验表明,该方法不但灵敏度、特异性高,操作简单,方便快捷,为全液相反应环境,而且能够实时定量监测IN 3′加工反应。该方法能够用于IN 3′加工反应性质研究和以3′加工为靶标的IN抑制剂高通量筛选。本研究建立的3′加工反应荧光检测方法有潜力应用到其他蛋白质与DNA相互作用的研究中,具有重要的学术和应用价值。
     (2)整合酶链转移活性高通量检测方法的建立和应用
     抑制链转移反应被认为是体内抑制IN功能活性的关键,当前IN抑制剂的体外筛选主要以链转移反应为靶标。本研究设计合成了分别用生物素和地高辛修饰的供体DNA和靶DNA,引入了链霉亲和素磁珠捕获反应DNA产物,提出了检测IN链转移反应活性或者检测3′加工与链转移反应整体活性的高通量酶联免疫吸附测定法(ELISA)。
     与之前的各种方法相比,我们提出的高通量ELISA具有明显的改进:(i)无需使用放射性底物,实现了高通量;(ii)反应时所有的试剂均自由悬浮在液体环境中,磁珠–DNA产物、磁珠–抗体接触更容易更充分,显著提高灵敏度,还能灵活应用到研究反应中各试剂的相互作用,有助于研究抑制剂的作用机理;(iii)无需包被、封闭微孔板,省时省力,检测前转移磁珠至新的微孔板能够几乎完全消除微孔板对试剂的非特异性吸附,有效降低了背景值,提高了特异性;(iv) ELISA和荧光免疫吸附测定(FLISA)两种检测策略并用,增加了方法的应用范围。
     成功应用高通量ELISA研究了金属离子对链转移反应的影响,得出了一些有意义的结果。使用已知IN抑制剂证明了高通量ELISA应用到IN抑制剂筛选中的有效性,且从天然产物提取物和合成化合物中成功筛选了数个具有初步活性的IN抑制剂。
     (3)整合酶去整合活性高通量检测方法的建立
     IN在体外能通过去整合反应实现对整合过程的逆转,且整合酶核心区(IN-CCD)具有独立催化去整合功能。建立去整合活性高通量检测方法对研究IN功能及筛选IN抑制剂都具有重要意义。本研究表达纯化了具有功能活性的野生型IN及IN-CCD蛋白,设计合成了生物素和地高辛双标记的去整合DNA底物,基于链霉亲和素磁珠捕获生物素标记DNA,建立了一种检测IN和IN-CCD体外去整合活性的高通量ELISA。
     研究了金属离子对去整合高通量ELISA的影响,结果表明与3′加工和链转移反应相似,IN去整合反应也更偏好于使用Mn2+而不是Mg2+为金属辅助离子。进一步使用NaCl滴定实验分析表明,IN去整合对Mn2+的选择偏好性与Mn2+比Mg2+更能稳定IN–DNA复合物有关。使用了已知IN抑制剂baicalein验证去整合高通量ELISA筛选IN抑制剂的有效性,证明了baicalein是明确的以IN-CCD为靶标的IN抑制剂。本研究建立的去整合高通量ELISA具有高通量、高灵敏度、高特异性、低背景、省时省力等优点,能够应用到去整合反应、抑制剂作用机理等研究中,且具有应用到以IN为靶标,特别是以IN-CCD为靶标的抑制剂高通量筛选的潜力。
     (4)整合酶核心区野生型和F185K可溶性突变型蛋白活性和溶解性研究
     野生型(WT) IN和IN-CCD溶解性较差,在大肠杆菌中表达时容易形成包涵体,给后期纯化及蛋白质功能研究带来不便,而F185K突变后IN和IN-CCD能实现可溶性表达且活性不受影响。通过构建、表达、纯化得到WT和F185K突变型IN-CCD,比较了其溶解性和活性差别。分析并比较了WT和F185K/C280S突变型IN蛋白溶解性和活性差别。结果表明,F185K和F185K/C280S突变后IN和IN-CCD的溶解性显著提高,能够实现可溶性表达;同时,突变后IN-CCD的去整合活性有一定程度的降低,IN的3′加工和链转移活性有一定程度降低。
     进一步通过同源模建,构建了WT和F185K突变型IN-CCD的蛋白结构,并在水溶液中进行了1800 ps的分子动力学(MD)模拟,得出了一些有意义的结果:(i) F185K突变后,体系的功能loop区柔性有一定程度的降低,整体运动性略有减小,催化核心DDE基序残基之间距离无显著变化,因此,突变后蛋白催化活性降低,但活性受影响程度不大;(ii) F185K突变对IN-CCD内部静电相互作用网络的改变驱动了蛋白构象的变化,特别是loop区构象变化明显,引起蛋白表面的部分疏水残基被包埋,亲水残基暴露,造成IN-CCD相对的极性溶剂可接近面积增大。同时,F185K突变后蛋白与水之间形成的氢键数量有明显的增加,这些变化使IN-CCD的溶解性显著提高。MD模拟与实验结果相吻合。该工作为理解蛋白质溶解性和蛋白质工程中蛋白质可溶性改造提供了一些有价值的信息和理论依据。
Acquired immunodeficiency syndrome (AIDS), caused by the human immunodeficiency virus (HIV), is one of the most serious and deadly diseases in human history. Right now, there is still no cure for AIDS. HIV-encoded integrase (IN) catalyzes the integration of the viral DNA into the host genome, and IN is one of the vital enzymes necessary for viral replication. The inhibition of IN activities can effectively block the viral replication cycle of HIV in host cells. Moreover, there is no recognized counterpart of IN in normal human cells, and inhibitors specifically targeting IN may thus have little side effect on human body. Therefore, IN is considered to be an ideal target for the research and development of anti-HIV drugs.
     IN catalyzes two successive reactions, termed 3′-processing and strand transfer, to facilitate the integration process in vivo. Both the above reactions can be modeled in vitro using purified recombinant IN protein, oligonucleotide DNA substrates, and divalent cationic cofactor. Besides, in vitro, IN can also carry out an apparent reversal of strand transfer which has been termed disintegration, in which the DNA product of strand transfer is resolved into viral and target DNA segments. To develop high efficient assays for IN activities and apply these assays to screen inhibitors is the main method for in vitro IN inhibitor screening, and it is also a focus in the research field of antiviral drug development targeting IN. In this thesis, different types of recombinant IN proteins are expressed and purified, and a series of high-throughput assays for IN activities have been developed. These assays have also been applied in the studies of the properties of IN and IN inhibitor screening. The main content of the thesis consists of the following major aspects:
     (1) Expression, purification of integrase protein and development of a high-throughput assay for the 3′-processing reaction of integrase
     The IN gene of HIV HXB2CG strain was acquired by PCR. After sequence analysis, primers for gene mutation were designed and site-directed mutagenesis of the HXB2CG IN gene was done by overlapping PCR to construct the IN gene of HIV NL4-3 strain. Site-directed mutagenesis was also employed to bring the F185K/C280S mutations to the constructed NL4-3 IN gene for the purpose of enhancing the protein solubility. The correctly constructed IN gene was ligated to a pET expression plasmid vector, and IN was highly expressed as a soluble protein in Escherichia coli strain BL21. After purification from the supernatant of cell suspension using affinity chromatography, the highly purified recombinant IN protein was active in 3′-processing and strand transfer reactions.
     Based on the principle of molecular beacons, we designed a fluorophore and a quencher labeled 3′-processing DNA substrate mimicking the viral DNA and developed a novel fluorescent assay for the detection of IN 3′-processing activity. The results obtained show that this assay is an overall liquid assay with high sensitivity, high specificity, easy and simple assay procedure, as well as real-time monitoring of the 3′-processing reaction of IN. The assay is also applicable in the 3′-processing reaction character study of IN and high-throughput screening of inhibitors targeting the 3′-processing reaction of IN. The fluorescent assay for IN 3′-processing reaction proposed in this thesis has the potential to be applied in the studies of interactions between other proteins and DNA. This work has important academic significance and application value.
     (2) Development and application of a high-throughput assay for the strand transfer reaction of integrase
     The inhibition of strand transfer reaction is reported to be the primary key to block the biological functions of IN in vivo. Nowadays, In vitro assays for IN inhibitor screening are generally based on the strand transfer reaction. In this work, biotin and digoxin modified donor DNA and target DNA were designed and composed, and streptavidin-coated magnetic beads were involved to capture the reaction product DNA strand, and a novel high-throughput enzyme-linked immunosorbent assay (ELISA) was developed to measure the IN-catalyzed strand transfer reaction activity or 3′-processing and strand transfer reaction activities altogether.
     Compared to previous assays, the high-throughput ELISA proposed in this thesis has notable improvements: (i) It is a high-throughput format assay with no need of radioactive substrate; (ii) All the reagents are freely suspended in solution, makes the magnetic beads–DNA product contact and subsequent magnetic beads–antibody contact much easier and more sufficient, the sensitivity of this assay is thus enhanced. In addition, the assay is flexible to investigate the interactions among all reagents and it is easy to study the mechanism of IN inhibitors; (iii) Neither the precoating nor the blocking of microplate is required, it is less laborious and time consuming. The easy transfer of magnetic beads into fresh microplate before detection helps to eliminate almost all the non-specific binding of reagents on the microplate, the background readings are effectively reduced and the higher specificity of this assay is thus achieved; (iv) Both the ELISA and the fluorescence-linked immunosorbent assay (FLISA) associated detection strategy are used, and the applicable range of this assay is expanded.
     The high-throughput ELISA was successfully applied to study the effects of divalent cations on the strand transfer reaction, and several meaningful results were obtained. The assay was also proved to be effective in inhibitor identification of IN by the employment of known IN inhibitors. Several samples from natural product extracts and composed compounds were screened out to be active IN inhibitors by using this high-throughput ELISA.
     (3) Development of a high-throughput assay for the disintegration reaction of integrase
     IN can carry out the disintegration reaction in vitro, a reversal of the integration process. The central catalytic domain of integrase (IN-CCD) is capable of catalyzing disintegration reaction alone. To develop high-throughput assays for disintegration reaction is of great significance for investigating the functions of IN and IN inhibitor screening. In this work, wild type IN and IN-CCD proteins with functional activities were expressed and purified. Biotin and digoxin-labeled disintegration DNA substrate was designed and composed. Based on the application of streptavidin-coated magnetic beads to capture the biotin-labeled DNA, we proposed a high-throughput ELISA for detecting the disintegration activity of IN and IN-CCD in vitro.
     We studied the effects of metal ions on the disintegration reaction using this high-throughput disintegration ELISA. The results showed that as in 3′-processing and strand transfer, IN displayed dramatic preference for Mn2+ over Mg2+ to be the cationic cofactor in disintegration. Further NaCl titration study indicates that the preference for Mn2+ over Mg2+ in disintegration reaction is ascribed to a higher effect of Mn2+ than Mg2+ in stabilizing the IN–DNA complex. Baicalein, a known IN inhibitor, was involved to test the efficiency of this high-throughput disintegration ELISA in IN inhibitor screening. The results proved that baicalein clearly inhibit IN activities by targeting IN-CCD protein. The high-throughput disintegration ELISA presented in this work has the advantages of high-throughput, high sensitivity, high specificity, low background, as well as less laborious and time consuming. The assay is capable to be applied to study the disintegration reaction character and pharmacology of IN inhibitors. In addition, the assay has the potential to be applied for the high-throughput identification of drug candidates targeting IN, especially targeting IN-CCD.
     (4) Study on the activity and solubility of the wild type and F185K soluble mutant type integrase central catalytic domain
     Due to their poor solubility, the wild type (WT) IN and IN-CCD proteins form insoluble inclusion bodies when expressed in Escherichia coli, which brings difficulty in subsequent purification and functional studies. The introduction of F185K mutation into IN gene enhances the solubility of IN, and both IN and IN-CCD can be expressed as soluble protein, whereas the activities of IN and IN-CCD are not affected. In this work, the WT and F185K mutant type IN-CCD proteins were expressed and purified, and their solubility and activity were compared. The solubility and activities of WT and F185K/C280S full IN proteins were also compared. The results show that after F185K and F185K/C280S mutations, the solubility of IN-CCD and full IN proteins were both dramatically increased, both proteins were expressed as soluble proteins. In the meantime, the disintegration activity of mutant type IN-CCD, and the 3′-processing and strand transfer activities of mutant type full IN were reduced to some extent.
     We further constructed the WT and F185K mutant type IN-CCD structures by homology modeling, and 1800 ps of molecular dynamics (MD) simulations for these two types of IN-CCD proteins in water were performed. Some meaningful results were obtained: (i) After the F185K mutation, the flexibility of the catalytic loop region and the total mobility of IN-CCD was reduced, whereas the distances between the residues of the catalytic site (DDE motif) had no notable change. Therefore, the activities of mutated proteins were decreased, but were not significantly affected. (ii) After the F185K mutation, changes of the electrostatic interaction network drove the conformational change of IN-CCD, especially changed the conformation of the loop regions, and resulted in the burying of some hydrophobic residues and exposure of some other hydrophilic residues on the protein surface. The relative hydrophilic solvent accessible surface area of IN-CCD was increased. Moreover, the F185K mutation notably increased the hydrogen bonds between the IN-CCD protein and water molecules. These above changes contribute to the solubility increase of IN-CCD. It is found that the results obtained from MD simulations are in good agreement with the experiment data. This work supplies useful information and provides valuable insight for understanding the protein solubility and will be helpful in protein engineering for increasing the solubility of proteins.
引文
1 M. S. Gottlieb, R. Schroff, H. M. Schanker, J. D. Weisman, P. T. Fan, R. A. Wolf, and A. Saxon. Pneumocystis carinii pneumonia and mucosal candidiasis in previously healthy homosexual men: evidence of a new acquired cellular immunodeficiency. The New England Journal of Medicine. 1981, 305(24): 1425-1431
    2 H. Mitsuya, M. Megson, C. Trainor, M.S. Reitz Jr., and S. Broder. Transformation and cytopathogenic effect in an immune human T-cell clone infected by HTLV-I. Science. 1984, 223(4642): 1293-1296
    3 J. A. Levy, A. D. Hoffman, S. M. Kramer, J. A. Landis, J. M. Shimabukuro, and L. S. Oshiro. Isolation of lymphocytopathic retroviruses from San Francisco patients with AIDS. Science. 1984, 225(4664): 840-842
    4 M. Popovic, M. G. Sarngadharan, E. Read, and R. C. Gallo. Detection, isolation, and continuous production of cytopathic retrovirus (HTLV-III) from patients with AIDS and pre-AIDS. Science. 1984, 224(4648): 497-500
    5李敬云. HIV的病原学研究进展.科技导报. 2005, 23(7): 9-16
    6 J. C. Plantier, M. Leoz, J. E. Dickerson, F. De Oliveira, F. Cordonnier, V. Lemee, F. Damond, D. L. Robertson, and F. Simon. A new human immunodeficiency virus derived from gorillas. Nature Medicine. 2009, 15(8): 871-872
    7宋歌. HIV致病机理的分子生物学研究进展.生物学教学. 2008, 33(2): 2-4
    8 D. Klatzmann, F. Barre-Sinoussi, M. T. Nugeyre, C. Dauguet, E. Vilmer, C. Griscelli, F. Brun-Vezinet, C. Rouzioux, J. C. Gluckmann, J. C. Chermann, and L. Montagnier. Selective tropism of lymphadenopathy associated virus (LAV) for helper-inducer T lymphocytes. Science. 1984, 225(6): 59-63
    9 The global AIDS epidemic. UNAIDS / World Health Organization. 2009.12. http://data.unaids.org/pub/FactSheet/2009/20091124_FS_global_en.pdf
    10《中国艾滋病防治联合评估报告(2007)》.中华人民共和国国务院防治艾滋病工作委员会办公室、中华人民共和国卫生部、联合国艾滋病中国专题组联合撰写.北京, 2007
    11 T. J. Hope and D. Trono. Structure, expression, and regulation of the HIV genome. HIV Insite Knowledge Base. http://www.hivinsite.com
    12 M. A. Muesing, D. H. Smith, C. D. Cabradilla, C. V. Benton, L. A. Lasky, and D. J. Capon. Nucleic acid structure and expression of the human AIDS/lymphadenopathy retrovirus. Nature. 1985, 313(6002): 450-458
    13 H. G. Gottlinger, J. G. Sodroski, and W. A. Haseltine. Role of capsid precursor processing and myristoylation in morphogenesis and infectivity of human immunodeficiency virus type 1. Proceedings of the National Academy of Sciences of the United States of America. 1989, 86(15): 5781-5785
    14 S. Ruben, A. Perkins, R. Purcell, K. Joung, R. Sla, R. Burghoff, W. A. Haseltine, and C. A. Rosen. Structural and functional characterization of human immunodeficiency virus tat protein. Journal of Virology. 1989, 63(1): 1-8
    15 S. Feng and E. C. Holland. HIV-1 tat trans-activation requires the loop sequence within tat. Nature. 1988, 334(6178): 165-167
    16 S. Roy, U. Delling, C. H. Chen, C. A. Rosen, and N. Sonenberg. A bulge structure in HIV-1 TAR RNA is required for Tat binding and Tat-mediated trans-activation. Genes & Development 1990, 4(8): 1365-1373
    17 M. L. Zapp and M. R. Green. Sequence-specific RNA binding by the HIV-1 Rev protein. Nature. 1989, 342(6250): 714-716
    18 S. Y. Kim, R. Byrn, J. Groopman, and D. Baltimore. Temporal aspects of DNA and RNA synthesis during human immunodeficiency virus infection: evidence for differential gene expression. Journal of Virology. 1989, 63(9): 3708-3713
    19 N. K. Heinzinger, M. I. Bukinsky, S. A. Haggerty, A. M. Ragland, V. Kewalramani, M. A. Lee, H. E. Gendelman, L. Ratner, M. Stevenson, and M. Emerman. The Vpr protein of human immunodeficiency virus type 1 influences nuclear localization of viral nucleic acids in nondividing host cells. Proceedings of the National Academy of Sciences of the United States of America. 1994, 91(15): 7311-7315
    20 M. E. Rogel, L. Wu, and M. Emerman. The human immunodeficiency virus type 1 vpr gene prevents cell proliferation during chronic infection. Journal of Virology. 1995, 69(2): 882-888
    21 U. Schubert, S. Bour, A. V. Ferrer-Montiel, M. Montal, F. Maladarelli, and K. Strebel. The two biological activities of human immunodeficiency virus type 1 Vpu protein involve two separable structural domains. Journal of Virology. 1996, 70(2): 809-819
    22 J. Wang, J. M. Shackelford, C. R. Casella, D. K. Shivers, E. L. Rapaport, B. Liu, X. F. Yu, and T. H. Finkel. The Vif accessory protein alters the cell cycle of human immunodeficiency virus type 1 infected cells. Virology. 2007, 359(2): 243-252
    23李昌.新型抗HIV-1蛋白西诺韦恩、格瑞弗森及其重组导向抑制剂构建、表达与活性研究.吉林大学博士论文. 2008
    24康来仪,潘孝彰.艾滋病防治学.复旦大学出版社.上海, 2008
    25曾毅,陈启民,耿运琪.艾滋病毒及其有关病毒(第一版).南开大学出版社.天津, 1999
    26 J. Daecke, O. T. Fackler, M. T. Dittmar, and H.G Kr?usslich. Involvement of clathrin-mediated endocytosis in HIV-1 entry. Journal of Virology. 2005, 79(3): 1581-1594
    27 P. Monini, C. Sgadari, E. Toschi, G. Barillari, and B. Ensoli. Antitumour effects of antiretroviral therapy. Nature Reviews Cancer. 2004, 4: 861-875
    28 M. A. Wainberg and K. T. Jeang. 25 years of HIV-1 research-progress and perspectives. BMC Medicine. 2008, 6: 31
    29 J. W. Sleasman and M. M. Goodenow. 13. HIV-1 infection. Journal of Allergy and Clinical Immunology. 2003, 111(2, suppl2): 582-592
    30 C. V. Fletcher. Enfuvirtide, a new drug for HIV infection. The Lancet. 2003, 361(9369): 1577-1578
    31 P. F. Lin, W. Blair, T. Wang, Q. Guo, N. Zhou, Y. F. Gong, H. G. Wang, R. Rose, G. Yamanaka, B. Robinson, C. B. Li, R. Fridell, C. Deminie, G. Demers, Z. Yang, L. Zadjura, N. Meanwell, and R. Colonno. A small molecule HIV-1 inhibitor thattargets the HIV-1 envelope and inhibits CD4 receptor binding. Proceedings of the National Academy of Sciences of the United States of America. 2003, 100(16): 11013-11018
    32 J. M. Jacobson, R. J. Israel, I. Lowy, N. A. Ostrow, L. S. Vassilatos, M. Barish, D. N. Tran, B. M. Sullivan, T. J. Ketas, T. J. O′Neill, K. A. Nagashima, W. Huang, C. J. Petropoulos, J. P. Moore, P. J. Maddon, and W. C. Olson. Treatment of advanced human immunodeficiency virus type 1 disease with the viral entry inhibitor PRO 542. Antimicrobial Agents and Chemtherapy. 2004, 48(2): 423-429
    33 D. A. Price, S. Gayton, M. D. Selby, J. Ahman, S. Haycock-Lewandowski, B. L. Stammen, and A. Warren. Initial synthesis of UK-427,857 (Maraviroc). Tetrahedron Letters. 2005, 46(30): 5005-5007
    34 C. W. Hendrix, A. C. Collier, M. M. Lederman, D. Schols, R. B. Pollard, S. Brown, J. B. Jackson, R. W. Coombs, M. J. Glesby, C. W. Flexner, G. J. Bridger, K. Badel, R. T. MacFarland, G. W. Henson, G. Calandra, and AMD3100 HIV Study Group. Safety, pharmacokinetics, and antiviral activity of AMD3100, a selective CXCR4 receptor inhibitor, in HIV-1 infection. Journal of Acquired Immune Deficiency Syndromes. 1999, 37(2): 1253-1262
    35詹天荣,娄红祥.核苷类抗HIV药物的研究与开发.药学进展. 2005, 29(7): 289-295
    36 D. G. Prajapati, R. Ramajayam, M. R. Yadav, and R. Giridhar. The search for potent, small molecule NNRTIs: a review. Bioorganic & Medicinal Chemistry. 2009, 17(16): 5744-5762
    37刘建建,刘新泳. HIV-1蛋白酶抑制剂分子设计策略研究进展.中国新药杂志. 2006, 15(4): 247-254
    38 Anon. AIDS cocktail approved. Chemistry in Britain. 1996, 32(2): 18
    39 F. J. Piacenti. An update and review of antiretroviral therapy. Pharmacotherapy. 2006, 26(8): 1111-1133
    40胡珠荫,王花玲. HIV疫苗的研究进展.杭州师范学院学报. 2008, 28(6): 420-422, 431
    41 T. Demberg and M. Robert-Guroff. Mucosal immunity and protection against HIV/SIV infection: strategies and challenges for vaccine design. International Reviews of Immunology. 2009, 28(1-2): 20-48
    42 D. H. Barouch. Challenges in the development of an HIV-1 vaccine. Nature. 2008, 455(7213): 613-619
    43 M. I. Johnston and A. S. Fauci. An HIV vaccine-challenges and prospects. New England Journal of Medicine. 2008, 359(9): 888-890
    44王霞,马洪涛,温瑞兴.抗HIV药物及其靶点的研究进展.中国中药杂志. 2009, 34(11): 1454-1459
    45刘瑞,彭勃.中药治疗艾滋病的国内外研究进展.世界中医药. 2009, 4(3): 175-178
    46 J. Balzarini, K. Van Laethem, S. Hatse, K. Vermeire, E. De Clercq, W. Peumans, E. Van Damme, A. M. Vandamme, A. Bohlmstedt, and D. Schols. Profile of resistance of human immunodeficiency virus to mannose-specific plant lectins. Journal of Virology. 2004, 78(19): 10617-10627
    47 S. M. L. Tamma, V. S. Kalyanaraman, S. Pahwa, P. Dominguez, and R. R. Modesto. The lectin jacalin induces phosphorylation of ERK and JNK in CD4+ T cells. Journal of Leukocyte Biology. 2003, 73(5): 682-688
    48 S. W. Liu, S. B. Jiang, Z. H. Wu, L. Lv, J. J. Zhang, Z. G. Zhu, and S. G. Wu. Identification of inhibitors of the HIV-1 gp41 six-helix bundle formation from extracts of Chinese medicinal herbs Prunella vulgaris and Rhizoma cibotte. Life Science. 2002, 71(15): 1779-1791
    49 P. W. Hsieh, F. R. Chang, K. H. Lee, T. L. Hwang, S. M. Change, and Y. C. Wu. A new anti-HIV alkaloid, drymaritin, and a new C-glycoside flavonoid, diandraflavone, from Drymaria diandra. Journal of Natural Products. 2004, 67(7): 1175-1177
    50 L. Ratner, W. Haseltine, R. Patarca, K. J. Livak, B. Starcich, S. F. Josephs, E. R. Doran, J. A. Rafalski, E. A. Whitehorn, K. Baumeister, L. Ivanoff, S. R. Petteway Jr., M. L. Pearson, J. A. Lautenberger, T. S. Papas, J. Ghrayeb, N. T. Chang, R. C. Gallo, and F. Wong-Staal. Complete nucleotide sequence of theAIDS virus, HTLV-III. Nature. 1985, 313(6000): 277-284
    51 A. Engelman, K Mizuuchi, R Craigie. HIV-1 DNA integration: mechanism of viral DNA cleavage and DNA strand transfer. Cell. 1991, 67(6): 1211-1221
    52 H. C. Ahn, S. Y. Lee, J. W. Kim, W. S. Son, C. G. Shin, and B. J. Lee. Binding aspects of baicalein to HIV-1 integrase. Molecules and Cells. 2001, 12(1): 127-130
    53 W. Pluymers, E. De Clercq, and Z. Debyser. HIV-1 integration as a target for antiretroviral therapy: a review. Current Drug Targets-Infectious Disorders. 2001, 1(2): 133-149
    54 D. J. McColl and X. Chen. Strand transfer inhibitors of HIV-1 integrase: bringing IN a new era of antiretroviral therapy. Antiviral Research. 2010, 85(1): 101-118
    55 R. Craigie. HIV integrase, a brief overview from chemistry to therapeutics. The Journal of Biological Chemistry. 2001, 276(26): 23213-23216
    56 C. J. Burke, G.. Sanyal, M. W. Bruner, J. A. Ryan, R. L. LaFemina, H. L. Robbins, A. S. Zeft, C. R. Middaugh, and M. G. Cordingley. Structural implications of a spectroscopic characterization of a putative zinc finger peptide from HIV-1 integrase. The Journal of Biological Chemistry. 1992, 267(14): 9639-9644
    57 S. Lee-Huang, P. L. Huang, P. L. Huang, A. S. Bourinbaiar, H. C. Chen, and H.F. Kung. Inhibition of the integrase of human immunodeficiency virus (HIV) type 1 by anti-HIV plant proteins MAP30 and GAP31. Proceedings of the National Academy of Sciences of the United States of America. 1995, 92(19): 8818-8822
    58 K. Zhu, C. Dobard, and S. A. Chow. Requirement for integrase during reverse transcription of human immunodeficiency virus type 1 and effect of cysteine mutations of integrase on its interactions with reverse transcriptase. Journal of Virology. 2004, 78(10): 5045-5055
    59 E. Zeinalipour-Loizidou, C. Nicolaou, A. Nicolaides, and L. G. Kostrikis. HIV-1 integrase: from biology to chemotherapeutics. Current HIV Research. 2007, 5(4): 365-388
    60 D. D. Richman. HIV chemotherapy. Nature, 2001, 410(6831): 995-1001
    61 A. Cereseto, L. Manganaro, M. I. Gutierrez, M. Terreni, A. Fittipaldi, M. Lusic, A. Marcello, and M. Giacca. Acetylation of HIV-1 integrase by p300 regulates viral integration. The EMBO Journal. 2005, 24(17): 3070-3081
    62 H. Leh, P. Brodin, J. Bischerour, E. Deprez, P. Tauc, J. C. Brochon, E. LeCam, D. Coulaud, C. Auclair, and J. F. Mouscadet. Determinants of Mg2+-dependent activities of recombinant human immunodeficiency virus type 1 integrase. Biochemistry. 2000, 39(31): 9285-9294
    63 M. P. Sherman and W. C. Greene. Slipping through the door: HIV entry into the nucleus. Mirobes and Infection. 2002, 4(1): 67-73
    64 A. Faure, C. Calmels, C. Desjobert, M. Castroviejo. A. Caumont-Sarcos, L. Tarrago-Litvak, S. Litvak, and V. Parissi. HIV-1 integrase crosslinked oligomers are activie in vitro. Nucleic Acids Research. 2005, 33(3): 977-986
    65 E. Tramontano, L. Onidi, F. Esposito, R. Badas, and P. L. Colla. The use of a new in vitro reaction substrate reproducing both U3 and U5 regions of the HIV-1 3' -end increases the correlation between the in vitro and in vivo effects of the HIV-1 integrase inhibitors. Biochemical Pharmacology. 2004, 67(9): 1751-1761
    66 M. Vanegas, M. Llano, S. Delgado, D. Thompson, M. Peretz, and E. Poeschla. Identification of the LEDGF/p75 HIV-1 integrase interaction domain and NLS reveals NLS-independent chromatin tethering. Journal of Cell Science. 2005, 118(8): 1733-1743
    67 E. Yung, M. Sorin, E. J. Wang, S. Perumal, D. Ott, and G. V. Kalpana. Specificity of interaction of INI1/hSNF5 with retroviral integrases and its functional significance. Journal of Virology. 2004, 78(5): 2222-2231
    68 E. A. Hehl, P. Joshi, G. V. Kalpana, and V. R. Prasad. Interaction between human immunodeficiency virus type 1 reverse transcriptase and integrase proteins. Journal of Virology. 2004, 78(10): 5056-5067
    69 E. Asante-Appiah and A. M. Skalka. HIV-1 integrase: structural organization, conformational changes, and catalysis. Advances in Virus Research. 1999, 52: 351-369
    70 P. O. Brown. Integration. In: J. C. Coffin, S. H. Hughes, H. E. Varmus, editors.Retroviruses. New York: Cold Spring Harbor Lab Press; 1999. p 16-203
    71 J. Cocohoba and B. J. Dong. Raltegravir: the first HIV integrase inhibitor. Clinical Therapeutics. 2008, 30(10): 1747-1765
    72 D. J. Hazuda, A. L. Wolfe, J. C. Hastings, H. L. Robbins, P. L. Graham, R. L. LaFemina, and E. A. Emini. Viral long terminal repeat substrate binding characteristics of HIV-1 integrase. The Journal of Biological Chemistry. 1994, 269(6): 3999-4004
    73 G. C. G. Pais, X. C. Zhang, C. Marchand, N. Neamati, K. Cowansage, E. S. Svarovskala, V. K. Pathak, Y. Tang, M. Nicklaus, Y. Pommier, and T. R. Burke. Structure activity of 3-aryl-1, 3-diketo-containing compounds as HIV-1 integrase inhibitors. Journal of Medicinal Chemistry. 2002, 45(15): 3184-3194
    74 T. Yoshinaga, A. Sato, T. Fujishita, and T. Fujiwara. S-1360: in vitro activity of a new HIV-1 integrase inhibitor in clinical development. Current Opinion in Investigational Drugs. 2003, 4(2): 206-209
    75 L. Palmisano. Role of integrase inhibitors in the treatment of HIV disease. Expert Review of Anti-Infective Therapy. 2007, 5(1): 67-75
    76 J. A. Church. Potent antiretroviral effect of MK-0518, a novel HIV-1 integrase inhibitor, in patients with triple-class resistant virus. Pediatrics. 2007, 120(3): S159
    77 M. Markowitz, B. Y. Nguyen, E. Gotuzzo, F. Mendo, W. Ratanasuwan, C. Kovacs, G. Prada, J. O. Morales-Ramirez, C. S. Crumpacker, R. D. Isaacs, L. R. Gilde, H. Wan, M. D. Miller, L. A. Wenning, and H. Teppler. Rapid and durable antiretroviral effect of the HIV-1 integrase inhibitor raltegravir as part of combination therapy in treatment-na?ve patients with HIV-1 infection: results of a 48-week controlled study. Journal of Acquired Immune Deficiency Syndromes. 2007, 46(2): 125-133
    78 M. Markowitz, J. O. Morales-Ramirez, B. Y. Nguyen, C. M. Kovacs, R. T. Steigbigel, D. A. Cooper, R. Liporace, R. Schwartz, R. Isaacs, L. R. Gilde, L. Wenning, J. Zhao, and H. Teppler. Antiretroviral activity, pharmacokinetics, and tolerability of MK-0518, a novel inhibitor of HIV-1 integrase, dosed asmonotherapy for 10 days in treatment-naive HIV-1-infected individuals. Journal of Acquired Immune Deficiency Syndromes. 2006, 43(5): 509-515
    79 R. O′Neal. MK-0518 and GS-9137: two promising integrase inhibitors in the pipeline. Bulletin of Experimental Treatment for AIDS: A Publication of the San Francisco AIDS Foundation. 2006, 18(4): 13-16
    80 V. R. de Soultrait, A. Caumont, V. Parissi, N. Morellet, M. Ventura, C. Lenoir, S. Litvak, M. Fournier, and B. Roques. A novel short peptide is a specific inhibitor of the human immunodeficiency virus type 1 integrase. Journal of Molecular Biology, 2002, 318(1): 45-58
    81 I. O. Gleenberg, O. Avidan, Y. Goldgur, A. Herschhorn, and A. Hizi. Peptides derived from the reverse transcriptase of human immunodeficiency virus type 1 as novel inhibitors of the viral integrase. The Journal of Biological Chemistry. 2005, 280(23): 21987-21996
    82邹媛,詹金彪.人类免疫缺陷病毒(HIV-1)整合酶抑制剂筛选及其活性测定.生物化学与生物物理进展. 2007, 34(9): 955-970
    83 R. R. Drake, N. Neamati, H. X. Hong, A. A. Pilon, P. Sunthankar, S. D. Hume, G. W. Milne, and Y. Pommier. Identification of a nucleotide binding site in the HIV-1 integrase. Proceedings of the National Academy of Sciences of the United States of America. 1998, 95(8): 4170-4175
    84李芳琼,丁倩,詹金彪. HIV-1整合酶及其抑制剂的研究进展.中国生物工程杂志. 2008, 28(1): 80-86
    85 G. Chi, N. Neamati, and V. Nair. Inhibition of the strand transfer step of HIV-1 integrase by non-natural dinucleotides. Bioorganic and Medicinal Chemistry Letters, 2004, 14(19): 4815-4817
    86吴可柱,李爱秀. 1型免疫缺陷病毒整合酶及其抑制剂研究进展.沈阳药科大学学报. 2009, 26(2): 157-164
    87 E. Deprez, S. Barbe, M. Kolaski, H. Leh, F. Zouhiri, C. Auclair, J. C. Brochon, M. Le Bret, and J. F. Mouscadet. Mechanism of HIV-1 integrase inhibition by styrylquinoline derivatives in vitro. Molecular. Pharmacology. 2004, 65(1): 85-98
    88 F. Zouhiri, J. F. Mouscadet, K. Mekouar, D. Desmaelle, D. Savoure, H. Leh, F. Subra, B. M. Le, C. Auclair, and J. d'Angelo. Structure-activity relationships and binding mode of styrylquinolines as potent inhibitors of HIV-1 integrase and replication of HIV-1 in cell culture. Journal of Medicinal Chemistry. 2000, 43(8): 1533-1540
    89马晓慧.分子对接方法及HIV整合酶抑制剂的设计研究.北京工业大学博士学位论文. 2005
    90 A. Mousnier, H. Leh, J. F. Mouscadet, and C. Dargemont. Nuclear import of HIV-1 integrase is inhibited in vitro by styrylquinoline derivatives. Molecular Pharmacology. 2004, 66(4): 783-788
    91 X. H. Ma, X. Y. Zhang, J. J. Tan, W. Z. Chen, and C. X. Wang. Exploring binding mode for styrylquinoline HIV-1 integrase inhibitors using comparative molecular field analysis and docking studies. Acta Pharmacologica Sinica. 2004, 25(7): 950-958
    92 V. Nair. HIV integrase as a target for antiviral chemotherapy. Review in Medical Virology. 2002, 12(3): 179-193
    93龙亚秋,姜晓华.结构多样的HIV-1整合酶抑制剂:过去、现在和未来.有机化学. 2004, 24(11): 1380-1388
    94李春凤,简洁.抗艾滋病药物研究进展.中国药师. 2006, 9(7): 661-663
    95李庆宪,侯安继.重要治疗艾滋病的研究进展.时珍国医国药. 2003, 14(7): 421-423
    96吴久鸿,李圈雄.抗癌及抗艾滋病天然药物在美国的研发现状.中草药. 2002, 33(11): 1045-1048
    97田仁荣,刘迺发,郑永唐.天然来源的人类免疫缺陷病毒1整合酶抑制剂.中国药学杂志. 2006, 41(17): 1281-1285
    98 Q. Wang, Y. T. Wang, S. P. Pu, and Y. T. Zheng. Zinc coupling potentiates anti-HIV-1 activity of baicalein. Biochemical and Biophysical Research Communications. 2004, 324(2): 605-610
    99 V. K. Tandon and R. B. Chhor. Current status of anti-HIV agents. Current Medicinal Chemistry-Anti-infective agents. 2005, 4(1): 3-28
    100 S. Tewtrakul, H. Miyashiro, N. Nakamura, M. Hattori, T. Kawahata, T. Otake, T. Yoshinaga, T. Fujiwara, T. Supavita, S. Yuenyongsawad, P. Rattanasuwon, and S. Dej-Adisai. HIV-1 integrase inhibitory substances from Coleus parvifolius. Phytotherapy Research. 2003, 17(3): 232-239
    101 K. B. Herath, H. Jayasuriya, G. F. Bills, J. D. Polishook, A. W. Dombrowski, Z. Q. Guan, P. J. Felock, D. J. Hazuda, and S. B. Singh. Isolation, structure, absolute stereochemistry, and HIV-1 integrase inhibitory activity of integrasone, a novel fungal polyketide. Journal of Natural Products. 2004, 67(5): 872-874
    102 I. P. Singh, S. B. Bharate, and K. K. Bhutani. Anti-HIV natural products. Current Science. 2005, 89(2): 269-290
    103 K. Asres, A. Seyoum, C. Veeresham, F. Bucar, and S. Gibbons. Naturally derived anti-HIV agents. Phytotherapy Research. 2005, 19(7): 557-581
    104 Y. Pommier, A. A. Johnson, and C. Marchand. Integrase inhibitors to treat HIV/AIDS. Nature Reviews Drug Discovery. 2005, 4(3): 236-248
    105 M. V. Reddy, M. R. Rao, D. Rhodes, M. S. Hansen, K. Rubins, F. D. Bushman, Y. Venkateswarlu, and D. J. Faulkner. Lamellarin alpha 20-sulfate, an inhibitor of integrase active against HIV-1 virus in cell culture. Journal of Medicinal Chemistry. 1999, 42(11): 1901-1907
    106 C. F. Zhang, N. Nakamura, S. Tewtrakul, M. Hattori, Q. S. Sun, Z. T. Wang, and T. Fujiwara. Sesquiterpenes and alkaloids from lindera chunii and their inhibitory activities against HIV-1 integrase. Chemical and Pharmaceutical Bulletin. 2002, 50(9): 1195-1200
    107 S. B. Singh, H. Jayasuriya, R. Dewey, J. D. Polishook, A. W. Dombrowski, D. L. Zink, Z. Q. Guan, J. Collado, G. Platas, F. Pelaez, P. Felock, and D. J. Hazuda. Isolation, structure, and HIV-1 integrase inhibitory activity of structurally diverse fungal metabolites. Journal of Industrial Microbiology & Biotechnology. 2003, 30(12): 721-731
    108 T. B. Ng, T. L. Lam, T. K. Au, X. Y. Ye, and C. C. Wan. Inhibition of human immunodeficiency virus type 1 reverse transcriptase, protease and integrase by bovine milk proteins. Life Science. 2001, 69(19): 2217-2223
    109 R. Dayam and N. Neamati. Small-molecule HIV-1 integrase inhibitors: the 2001-2001 update. Current Pharmaceutical Design. 2003, 9(22): 1789-1802
    110 F. D. Bushman and R. Craigie. Activities of human immunodeficiency virus (HIV) integration protein in vitro: specific cleavage and integration of HIV DNA. Proceedings of the National Academy of Sciences of the United States of America. 1991, 88(4): 1339-1343
    111 S. A. Chow, K. A. Vincent, V. Ellison, and P. O. Brown. Reversal of integration and DNA splicing mediated by integrase of human immunodeficiency virus. Science. 1992, 255(5045): 723-726
    112 S. A. Chow and P. O. Brown. Substrate features important for recognition and catalysis by human immunodeficiency virus type 1 integrase identified by using novel DNA substrates. Journal of Virology. 1994, 68(6): 3896-3907
    113 K. S. Jones, J. Coleman, G. W. Merkel, T. M. Laue, and A. M. Skalka. Retroviral integrase functions as a multimer and can turn over catalytically. The Journal of Biological Chemistry. 1992, 267: 16037-16040
    114 S. A. Chow. In vitro assays for activities of retroviral integrase. Methods: A Companion to Methods in Enzymology. 1997, 12(4): 306-317
    115王磊,陈朝银,赵声兰,夏静. HIV整合酶抑制剂体外筛选方法研究进展.药物生物技术. 2007, 14(1): 68-70
    116 M. Katzman, R. A. Katz, A. M. Skalka, and J. Leis. The avian retroviral integration protein cleaves the terminal sequences of linear viral DNA at the in vivo sites of integration. Journal of Virology. 1989, 63(12): 5319-5327
    117 C. Marchand, N. Neamati, Y. Pommier. In vitro human immunodeficiency virus type 1 integrase assays. Methods in Enzymology. 2001, 340: 624-633
    118刘伟,李泽琳.整合酶抑制剂常用检测方法原理及其在研究中的应用.医药论坛杂志. 2006, 27(24): 127-129
    119 S. P. Lee, H. G. Kim, M. L. Censullo, and M. K. Han. Characterization of Mg2+-dependent 3′-processing activity for human immunodeficiency virus type 1 integrase in vitro: real-time kinetic studies using fluorescence resonance energy transfer. Biochemistry. 1995, 34(32): 10205-10214
    120 G. Merkel, M. D. Andrake, J. Ramcharan, and A. M. Skalka. Oligonucleotide-based assays for integrase activity. Methods. 2009, 47: 243-248
    121 D. J. Hazuda, J. C. Hastings, A. L. Wolfe, and E. A. Emini. A novel assay for the DNA strand-transfer reaction of HIV-1 integrase. Nucleic Acids Research. 1994, 22(6): 1121-1122
    122郭志敏. HIV-1整合酶和蛋白酶ELISA检测方法的建立及与逆转录酶检测方法联合应用研究多靶点HIV抑制剂.协和医科大学博士学位论文. 2002
    123 Y. Hwang, D. Rhodes, and F. Bushman. Rapid microtiter assays for poxvirus topoisomerase, mammalian type 1B topoisomerase and HIV-1 integrase: application to inhibitor isolation. Nucleic Acids Research. 2004, 28(24): 4884-4892
    124 S. John, T. M. Fletcher, and C. B. Jonsson. Development and application of a high-throughput screening assay for HIV-1 integrase enzyme activities. Journal of Biomolecular Screening. 2005, 10(6): 606-614
    125 K. Gao, S. Wang, and F. Bushman. Metal binding by the D,DX35E motif of human immunodeficiency virus type 1 integrase: selective rescue of Cys substitutions by Mn2+ in vitro. Journal of Virology. 2004, 78(13): 6715-6722
    126 Y. Wang, H. Klock, H. Yin, K. Wolff, K. Bieza, K. Niswonger, J. Matzen, D. Gunderson, J. Hale, S. Lesley, K. Kuhen, J. Caldwell, and A. Brinker. Homogeneous high-throughput screening assays for HIV-1 integrase 3’-Processing and strand transfer activities. Journal of Biomolecular Screening. 2005, 10(5): 456-462
    127张志毅,周涛,龚伟丽,张德添.荧光共振能量转移技术在生命科学中的应用及研究进展.电子显微学报. 2007, 26(6): 620-624
    128 C. A. David, T. Middleton, D. Montgomery, H. B. Lim, W. Kati, A. Molla, X. H. Xuei, U. Warrior, J. L. Kofron, and D. J. Burns. Microarray compounds screening (?ARCS) to identify inhibitors of HIV integrase. Journal of Biomolecular Screening. 2002, 7(3): 259-266
    129 T. L. Diamond and F. D. Bushman. Role of metal ions in catalysis by HIV integrase analyzed using a quantitative PCR disintegration assay. Nucleic AcidsResearch. 2006, 34(21): 6116-6125
    130 P. A. Sherman and J. A. Fyfe. Human immunodeficiency virus integration protein expressed in Escherichia coli possesses selective DNA cleaving activity. Proceedings of the National Academy of Sciences of the United States of America. 1990, 87(13): 5119-5123
    131 T. M. Jenkins, A. B. Hickman, F. Dyde, R. Ghirlando, D. R. Davies, and R. Craigie. Catalytic domain of human immunodeficiency virus type 1 integrase: identification of a soluble mutant by systematic replacement of hydrophobic residues. Proceedings of the National Academy of Sciences of the United States of America. 1995, 92(13): 6057-6061
    132 T. M. Jenkins, A. Engelman, R. Ghirlando, and R. Craigie. A soluble active mutant of HIV-1 integrase: involvement of both the core and carboxyl-terminal domains in multimerization. The Journal of Biological Chemistry. 1996, 271(13): 7712-7718
    133 S. Tyagi and F. R. Kramer. Molecular beacons: probes that fluoresce upon hybridization. Nature Biotechnology. 1996, 14(3): 303-308
    134 K. Wang, Z. Tang, C. J. Yang, Y. Kim, X. Fang, W. Li, Y. Wu, C. D. Medley, Z. Cao, J. Li, P. Colon, H. Lin, and W. Tan. Molecular engineering of DNA: molecular beacons. Angewandte Chemie International Edition in English. 2009, 48(5): 856-870
    135 Y. Li, X. Zhou, and D. Ye. Molecular beacons: an optimal multifunctional biological probe. Biochemical and Biophysical Research Communications. 2008, 373(4): 457-461
    136 A. A. Goulko, F. Li, and X. Chris Le. Bioanalytical applications of aptamer and molecular-beacon probes in fluorescence-affinity assays. Trends in Analytical Chemistry. 2009, 28(7): 878-892
    137 C. Ma, Z. Tang, K. Wang, W. Tan, J. Li, W. Li, Z. Li, X. Yang, H. Li, and L. Liu. Real-time monitoring of DNA polymerase activity using molecular beacon. Analytical Biochemistry. 2006, 353(1): 141-143
    138 C. Ma, Z. Tang, K. Wang, W. Tan, X. Yang, W. Li, Z. Li, and X. Lv. Real-timemonitoring of restriction endonuclease activity using molecular beacon. Analytical Biochemistry. 2007, 363(2): 294-296
    139霍希琴,颜鸿飞,李军,周兴旺,李伟,羊小海.分子信标检测限制性内切酶活性的新型荧光分析方法.生命科学研究. 2009, 13(1): 6-10
    140孟祥贤,羊小海,王柯敏,郭秋平,李军,唐志文.分子信标用于核酸连续复制过程的体外实时监测.高等学校化学学报. 2009, 30(8): 1538-1542
    141 R. Higuchi, B. Krummel, and R. K. Saiki. A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. Nucleic Acids Research. 1988, 16(15): 7351-7367
    142 J.萨姆布鲁克, D. W.拉塞尔,黄培堂(译).分子克隆实验指南,第三版(科学出版社,北京, 2005)
    143 M. A. Ma, G. Blackshields, G. Illkirch, N. P. Brown, R. Chenna, P. A. McGettigan, H. McWilliam, F. Valentin, I. M. Wallace, A. Wilm, and R. Lopez. Clustal W and Clustal X version 2.0. Bioinformatics. 2007, 23(21): 2947-2948
    144 A. Adachi, H. E. Gendelman, S. Koenig, T. Folks, R. Willey, A. Rabson, and M. A. Martin. Production of acquired immunodeficiency syndrome-associated retrovirus and nonhuman cell transfected with an infectious molecular clone. Journal of Virology. 1986, 59(2): 284-291
    145 M. Smolov, M. Gottikh, V. Tashlitskii, S. Korolev, I. Demdyuk, J. C. Brochon, J. F. Mouscadet, and E. Deprez. Kinetic study of the HIV-1 DNA 3′-end processing: single-turnover property of integrase. The FEBS Journal. 2006, 273(6): 1137-1151
    146 M. E. Hawkins, W. Pfleiderer, A. Mazumder, Y. G. Pommier, and F. M. Balis. Incorporation of a fluorescent guanosine analog into oligonucleotides and its application to a real time assay for the HIV-1 integrase 3′-processing reaction. Nucleic Acids Research. 1995, 23(15): 2872-2880
    147 Z. Debyser, P. Cherepanov, W. Pluymers, and E. De Clercq. Assays for the evaluation of HIV-1 integrase inhibitors. Methods in Molecular Biology. 2001, 160: 139-155
    148 D. J. Hazuda, P. J. Felock, M. Witmer, A. Wolfe, K. Stillmock, J. A. Grobler, A.Espeseth, L. Gabryelski, W. Schleif, C. Blau, and M. D. Miller. Inhibitors of strand transfer that prevent integration and inhibit HIV-1 replication in cells. Science. 2000, 287(5453): 646-650
    149 C. M. Farnet, B. Wang, J. R. Lipford, and F. D. Bushman. Differential inhibition of HIV-1 preintegration complexes and purified integrase protein by small molecules. Proceedings of the National Academy of Sciences of the United States of America. 1996, 93(18): 9742-9747
    150 J. Inglese, R. L. Johnson, A. Simeonov, M. Xia, W. Zheng, C. P. Austin, and D. S. Auld. High-throughput screening assays for the identification of chemical probes. Nature Chemical Biology. 2007, 3(8): 466-479
    151 P. Hindmarsh and J. Leis. Retroviral DNA integration. Microbiology and Molecular Biology Reviews. 1999, 63(4): 836-843
    152 M. D. Andrake and A. M. Skalka. Retroviral integrase, putting the pieces together. The Journal of Biological Chemistry. 1996, 271(33): 19633-19636
    153 A. Engelman and R. Craigie. Efficient magnesium-dependent human immunodeficiency virus type 1 integrase activity. Journal of Virology. 1995, 69(9): 5908-5911
    154 M. D. Miller, Y. C. Bor, and F. D. Bushman. Target DNA capture by HIV-1 integration complexes. Current Biology. 1995, 5(9): 1047-1056
    155 C. Vink, R. A. Lutzke, and R. H. Plasterk. Formation of a stable complex between the human immunodeficiency virus integrase protein and viral DNA. Nucleic Acids Research. 1994, 22(20): 4103-4110
    156 J. Agapkina, M. Smolov, S. Barbe, E. Zubin, T. Zatsepin, E. Deprez, M. Le Bret, J. F. Mouscadet, and M. Gottikh. Probing of HIV-1 integrase/DNA interactions using novel analogs of viral DNA. The Journal of Biological Chemistry. 2006, 281(17): 11530-11540
    157 J. Yi, E. Asante-Appiah, and A. M. Skalka. Divalent cations stimulate preferential recognition of a viral DNA end by HIV-1 integrase. Biochemistry. 1999, 38(26): 8458-8468
    158 D. Esposito and R. Craigie. Sequence specificity of viral end DNA binding byHIV-1 integrase reveals critical regions for protein-DNA interaction. The EMBO Journal. 998, 17(19): 5832-5843
    159 J. A. Grobler, K. Stillmock, B. Hu, M. Witmer, P. Felock, A. S. Espeseth, A. Wolfe, M. Eqbertson, M. Bourqeois, J. Melamed, J. S. Wai, S. Young, J. Vacca, and D. J. Hazuda. Diketo acid inhibitor mechanism and HIV-1 integrase: implications for metal binding in the active site of phosphotransferase enzymes. Proceedings of the National Academy of Sciences of the United States of America. 2002, 99 (10): 6661-6666
    160 M. J. Balunas and A. D. Kinghorn. Drug discovery from medicinal plants. Life Sciences. 2005, 78(5): 434-441
    161 A. Stierle, G. Strobel, and D. Stierle. Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science. 1993, 260(5105): 214-216
    162 J. H. Zhang, T. D. Chung, and K. R. Oldenburg. A simple statistical parameter for use in evaluation and validation of high throughput assays. Journal of Biomolecular Screening. 1999, 4(2): 67-73
    163 T. K. Chiu and D. R. Davies. Structure and function of HIV-1 integrase. Current Topics in Medicinal Chemistry. 2004, 4(9): 965-977
    164 T. K. Chiu and D. R. Davies. Structure and function of HIV-1 integrase: an update. Frontiers in Medicinal Chemistry. 2006, 3(1): 3-22
    165 F. D. Bushman, A. Engelman, I. Palmer, P. Wingfield, and R. Craigie. Domains of the integrase protein of human immunodeficiency virus type 1 responsible for polynucleotidyl transfer and zinc binding. Proceedings of the National Academy of Sciences of the United States of America. 1993, 90(8):3428-3432
    166 A. Engelman and R. Craigie. Identification of conserved amino acid residues critical for human immunodeficiency virus type 1 integrase function in vitro. Journal of Virology. 1992, 66(11): 6361-6369
    167 A. D. Leavitt, L. Shiue, and H. E. Varmus. Site-directed mutagenesis of HIV-1 integrase demonstrates differential effects on integrase functions in vitro. The Journal of Biological Chemistry. 1993, 268(3): 2113-2119
    168 D. C. van Gent, A. A. M. Oude Groeneger, and R. H. A. Plasterk. Mutational analysis of the integrase protein of human immunodeficiency virus type 2. Proceedings of the National Academy of Sciences of the United States of America. 1992, 89(20): 9598-9602
    169 C. Vink, A. A. M. Oude Groeneger, and R. H. A. Plasterk. Identification of the catalytic and DNA-binding region of the human immunodeficiency virus type 1 integrase protein. Nucleic Acids Research. 1993, 21(6): 1419-1425
    170 C. Marchand, A. A. Johnson, R. G. Karki, G. C. G. Pais, X. Zhang, K. Cowansage, T. A. Patel, M. C. Nicklaus, T. R. Burke Jr., and Y. Pommier. Metal-dependent inhibition of HIV-1 integrase byβ-diketo acids and resistance of the soluble double-mutant (F185K/C280S). Molecular Pharmacology. 2003, 64(3): 600-609
    171 A. B. Hickman, I. Palmer, A. Engelman, R. Craigie, and P. Wingfield. Biological and enzymatic properties of the catalytic domain of HIV-1 integrase. The Journal of Biological Chemistry. 1994, 269(18): 29279-29287
    172 D. Japrung, S. Chusacultanachai, J. Yuvaniyama, P. Wilairat, and Y. Yuthavong. A simple dual selection for functionally active mutants of plasmodium falciparum dihydrofolate reductase with improved solubility. Protein Engineering Design and Selection. 2005, 18(10): 457-464
    173 M. Malissard and E. G. Berger. Improving solubility of catalytic domain of humanβ-1,4-galactosyltransferase 1 through rationally designed amino acid replacements. European Journal of Biochemistry/FEBS. 2001, 268(15): 4352-4358
    174 R. Wetzel, L. J. Perry, and C. Veilleux. Mutations in human interferon gamma affecting inclusion body formation identified by a general immunochemical screen. Nature Biotechnology, 1991, 9(8): 731-737
    175 H. E. McElroy, G. W. Sisson, W. E. Schoettlin, R. M. Aust, and J. E. Villafranca. Studies on engineering crystallizability by mutation of surface residues of human thymidylate synthase. Journal of Crystal Growth. 1992, 122(1-4): 265-272
    176 G. E. Dale, C. Broger, H. Langen, A. D′Arcy, and D. Stuber. Improving protein solubility through rationally designed amino acid replacements: solubilization ofthe trimethoprim-resistant type S1 dihydrofolate reductase. Protein Engineering Design and Selection. 1994, 7(7): 933-939
    177 D. Das and M. M. Georgiadis. A directed approach to improving the solubility of moloney murine leukemia virus reverse transcriptase. Protein Science. 2001, 10(10): 1936-1941
    178 P. Simialowski, A. J. Maetin-Galiano, A. Mikolajka, T. Girschick, T. A. Holak, and D. Frishman. Protein solubility: sequence based prediction and experimental verification. Bioinformatics, 2007, 23(19): 2536-2542
    179 H. Tjong and H. X. Zhou. Prediction of protein solubility from calculation of transfer free energy. Biophysical Journal. 2008, 95(6): 2601-2609
    180 S. Idicula-Thomas, A. J. Kulkarni, B. D. Kulkarni, V. K. Jayaraman, and P. V. Balaji. A support vector machine-based method for predicting the propensity of a protein to be soluble or to form inclusion body on overexpression in Escherichia coli. Bioinformatics, 2006, 22(3): 278-284
    181 Y. Goldgur, R. Craigie, G. H. Cohen, T. Fujiwara, T. Yoshinaga, T. Fujishita, H. Sugimoto, T. Endo, H. Muri, and D. R. Davies. Structure of the HIV-1 integrase catalytic domain complexed with an inhibitor: a platform for antiviral drug design. Proceedings of the National Academy of Sciences of the United States of America. 1999, 96(23): 13040-13043
    182 M. Karplus and G. A. Petsko. Molecular dynamics simulations in biology. Nature. 1990, 347: 631-639
    183 W. F. Van Gunsteren, P. K. Weiner, and A. Wilkinson. Computer simulation of biomolecular system: theoretical and experimental application. Vol 2, Leidon ESCOM: The Netherlands, 1993
    184 D. Petrey, Z. Xiang, C. L. Tang, L. Xie, M. Gimpelev, T. Mitros, C. S. Soto, S. Goldsmith-Fischman, A. Kernytsky, A. Schlessinger, I. Y. Koh, E. Alexov, and B. Honig. Using multiple structure alignments, fast model building, and energetic analysis in fold recognition and homology modeling. Proteins: Structure, Function, and Genetics. 2003, 53(suppl 6): 430-435
    185 Y. Goldgur, F. Dyda, A. B. Hickman, T. M. Jenkins, R. Craigie, and D. R. Davies.Three new structures of the core domain of HIV-1 integrase: an active site that binds magnesium. Proceedings of the National Academy of Sciences of the United States of America. 1998, 95(16): 9150-9154
    186 V. S. David, L. Erik, and H. Berk. Gromacs User Manual, Version 3.0, Nijenborgh 4, 9747 AG Groningen, The Netherlands, 2001
    187 J. P. Ryckaert, G. Ciccotti, and H. J. C. Berendsen. Numerical integration of the Cartesian equations of dynamics of n-alkanes. Journal of Computational Physics. 1977, 23(3): 327-341
    188 S. J. Hubbard and J. M. Thornton. NACCESS Computer Program, Version 2.1.1, Dept. of Biochemistry and Molecular Biology. UK: University College London, 1993
    189 A. Brigo, K. W. Lee, G. I. Mustata, and J. M. Briggs. Comparison of multiple molecular dynamics trajectories calculated for the drug-resistant HIV-1 integrase T66I/M154I catalytic domain. Biophysical Journal. 2005, 88(5): 3072-3082
    190 A. Brigo, K. W. Lee, F. Fogolari, G. I. Mustata, and J. M. Briggs. Comparative molecular dynamics simulations of HIV-1 integrase and the T66I/M154I mutant: binding modes and drug resistance to a diketo acid inhibitor. Proteins: Structure, Function, and Bioinformatics. 2005, 59(4): 723-741
    191 M. L. Barreca, K. W. Lee, A. Chimirri, and J. M. Briggs. Molecular dynamics studies of the wild-type and double mutant HIV-1 integrase complexed with the 5CITEP inhibitor: mechanism for inhibition and drug resistance. Biophysical Journal. 2003, 84(3): 1450-1463
    192 J. Greenwald, V. Le, S. L. Butler, F. D. Bushman, and S. Choe. The mobility of an HIV-1 integrase active site loop is correlated with catalytic activity. Biochemistry. 1999, 38(28): 8892-8898
    193 A. D′Arcy, M. Stihle, D. Kostrewa, and G. Dale. Crystal engineering: a case study using the 24 kDa fragment of the DNA gyrase B subunit from Escherichia coli. Acta Crystallographica Section D. 1999, 55(pt 9): 1623-1625
    194 Y. Duan, L. Wang, and P. A. Kollman. The early stage of folding of villin headpiece subdomain observed in a 200-nanosecond fully solvated moleculardynamics simulation. Proceedings of the National Academy of Sciences of the United States of America. 1998, 95(17): 9897-9902
    195 S. Kumar, H. J. Wolfson, and R. Nussinov. Protein flexibility and electrostatic interactions. IBM Journal of Research and Development. 2001, 45(3): 499-512
    196 N. Manoj, V. R. Srinivas, A. Surolia, M. Vijayan, and K. Suguna. Carbohydrate specificity and salt-bridge mediated conformational change in acidic winged bean agglutinin. Journal of Molecular Biology. 2000, 302(5): 1129-1137

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700