戊型肝炎病毒感染对肠道黏膜免疫的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了进一步揭示戊型肝炎病毒(HEV)与肠道黏膜免疫屏障的相互作用,本研究应用新西兰大白兔及长爪沙鼠作为HEV的感染的动物模型,目标锁定HEV相关抗原在肠道组织中的定位及其对肠道黏膜免疫的影响,采用组织病理学、组织细胞化学、免疫组织化学、PCR等方法,全面系统地观察兔及沙鼠感染HEV后,肠道结构,肠道黏膜免疫相关细胞的数量及黏膜免疫相关因子表达,揭示了HEV侵入过程中肠道免疫细胞间及局部黏膜免疫功能之间的关系,进而阐明黏膜免疫相关细胞和分子在HEV感染中的功能作用。试验结果如下:
     1、兔源HEV感染家兔试验兔源HEV腹腔感染兔后,呈现不同的感染类型,感染后血清、粪便均可检测到]HEV RNA,血清中可检测到HEV ORF2抗原,同时肝脏也表现出与人HEV感染相似的病理变化;HEV感染兔全身组织器官HEV RNA及ORF2抗原检测结果显示,兔源HEV RNA及ORF2抗原可在感染兔不同组织器官(肝脏、脾脏、肺脏、淋巴结、十二指肠、空肠、回肠、圆小囊、蚓突)中分布,并且当粪便内存在HEV RNA时,肠道及肠相关淋巴组织可呈HEV抗原阳性;免疫组织化学观察结果表明:HEV ORF2抗原阳信信号主要分布于肠道黏膜上皮细胞、肠腺上皮细胞胞浆及圆小囊及蚓突的圆顶上皮M细胞胞浆中,而HEV ORF3抗原阳信信号主要成片分布于肠道黏膜上皮细胞、肠腺上皮细胞胞浆中,呈颗粒状分布于肠道管腔面,圆顶上皮细胞胞浆顶端及淋巴滤泡内的滤泡成纤维网状细胞中。
     2、猪源HEV感染沙鼠试验猪源HEV感染沙鼠后,沙鼠粪便及肠道组织在不同时间点均能检测出HEV RNA,且肠道呈HEV ORF2抗原阳性,阳性信号主要分布于肠道上皮细胞、肠腺上皮细胞胞浆中;沙鼠肠道形态与结构的观察与分析表明:HEV感染后沙鼠肠道杯状细胞数量未出明显变化。攻毒后7天及14天,攻毒组沙鼠十二指肠绒毛长度和回肠隐窝深度值显著下降(p<0.05)。而攻毒后第21及28天,沙鼠肠道绒毛长度及隐窝深度值均有回升。层粘蛋白免疫组织化学显示HEV感染后沙鼠肠道黏膜基底膜的层粘蛋白表达量没有显著变化。
     HEV感染后沙鼠肠道黏膜免疫相关指标的观察结果表明:肠道派尔氏结及上皮内淋巴细胞数量均有不显著的升高,肠道总的肥大细胞数量在感染后21天及28天显著升高(p<0.05)。HEV感染后不同时间点,沙鼠肠道中IgA的表达量与对照组相比均显著升高(p<0.05)。肠道固有层树突状细胞数量在攻毒后21天及28天有所增加,尤其在攻毒后21天树突状细胞数量呈显著增加(p<0.05)。
     3、活体兔肠袢结扎感染试验HEV感染活体兔结扎的回肠及圆小囊后10min即可见回肠及圆小囊黏膜上皮中有HEV ORF2抗原表达,而且感染HEV后30min HEV ORF2抗原阳性信号比感染后10min显著增强。阳性信号主要分布于肠道黏膜上皮细胞、腺上皮细胞、圆小囊圆顶上皮细胞及少量的圆小囊淋巴滤泡中的单核细胞胞浆内。HEV感染活体兔结扎的圆小囊后24h,兔圆小囊的淋巴细胞刺激指数明显升高。活体兔结扎的回肠及圆小囊经抗sIgA抗体处理后再用HEV感染,圆小囊中的HEV ORP2抗原变化不明显,而回肠黏膜上皮细胞胞浆及其表面的HEVORF2阳性信号明显增多,表明肠道黏膜组织不仅仅是HEV侵入机体的门户,而且也是HEV繁殖的重要场场所。同时表明sIgA在肠道黏膜抗HEV感染免疫中担任了得要的角色,当其表达受到抑制时,HEV就易于感染上皮细胞,并很快在细胞内增殖。
     上述研究结果表明,HEV可以直接作用于肠道黏膜上皮,引起黏膜上皮细胞感染。感染HEV后,HEV RNA及其抗原在各段肠道及肠相关淋巴组织中广泛分布。HEV感染对肠道的结构有一定的损伤作用,同时能激发肠道黏膜免疫功能,使肠道内肥大细胞、树突状细胞的数量和sIgA的表达量增多。IgA在肠道黏膜抗HEV感染免疫中担任了重要的角色。
In order to reveal the interaction between Hepatitis E virus (HEV) and intestine, we used New Zealand white rabbits and gerbils to study the effect of HEV on intestinal mucosal immune and the location of HEV antigen in the gut. Histopathology, histocytochemistry, immunohistochemistry and PCR methods were used to analyze the effect of HEV on intestine structure, and quantify the intestinal mucosal immune cells and relevant factors. The results revealed the relationship between intestinal immune cells and local mucosal immune function during the process of HEV invasion.
     1After the infection of rabbits with HEV through intraperitoneal injection, the rabbits showed different infection types. HEV RNA can be detected in the serum and fecea, and HEV ORF2antigen can be detected in serum. While the liver also showed similar pathological changes with human HEV. HEV RNA and ORF2antigen in rabbits were distributed in the different tissues and organs in rabbits after infection. At the same time, HEV antigen was positive in the gut and gut-associated lymphoid tissue when HEV RNA was existed in feces. HEV ORF2antigen was mainly existed in the cytoplasm of intestine epithelial cells and M cells of sacculus and appendix. While HEV ORF3antigen was largely distributed in cytoplasm intestine epithelial cells, but granularly distributed in luminal surface of the follicular associated epithelial cells and within few monocytes in lymphoid tissues.
     2After infected swine HEV, the feces and intestine tissues can be detected HEV RNA positive in all gerbils at different time after inoculation. HEV ORF2antigen was positive in the intestine, and the positive signals were mainly distributed in the cytoplasm of epithelial cells and glandular epithelium. The observation of gerbils intestinal morphology showed that the structure was normal, the numbers of goblet cells was not increased significantly after HEV infection. But the length of intestinal villi, the depth of crypt was decreased at7days and14days post inoculation, while rebounded at21days and28days post inoculation. Immunohistochemistry for laminin showed that the basic membrane structure was not changed.
     The data of mucosal immune showed that the number of Payer's patch and intraepithelial cells was increased but not significantly. The total number of mast cells was increased significantly at21days and28days post inoculation. The IgA expression was elevated significantly at each time post inoculation, and the numbers of dendritic cells in intestinal lamina propria increased at21and28days after infection, especially at21days.
     3After inoculating ligated intestine in vivo in rabbits, HEV ORF2antigen in ileum and sacculus was positive, furthermore, the positive signal of HEV ORF2antigen was stronger at30min than10min after inoculation. The positive signals were mainly distributed in the intestine epithelial cells, sacculus dome epithelium and few monocytes at lymphoid tissue. The lymphocyte stimulation index in sacculus was increased significantly in rabbits at24h after inoculation. When pretreated with IgA antibody, the HEV ORF2antigen in sacculus was not varied obviously, but the expression of HEV antigens in ileum mucosal epithelial surface was increased a lot.
     The results above showed that HEV could interact directly with intestine. The HEV RNA and HEV antigens were distributed in each segment of intestine and gut-associated lymphoid tissue. At the same time, the infection of HEV could affect the intestine structure and mucosal immune function, especially increase the expression of IgA and the amount of mast cells and dendritic cells.
引文
[1]. Reyes, G.R., M.A. Purdy, J.P. Kim, et al., Isolation of a cDNA from the virus responsible for enterically transmitted non-A, non-B hepatitis. Science,1990.247(4948):p.1335-1339.
    [2]. Tam, A.W., M.M. Smith, M.E. Guerra, et al., Hepatitis E virus (HEV):molecular cloning and sequencing of the full-length viral genome. Virology,1991.185(1):p.120-131.
    [3]. Purdy, M.A., A.W. Tam, C.-C Huang, et al. Hepatitis E virus:a non-enveloped member of the 'alpha-like' RNA virus supergroup? Seminars in Virology.1993.4(5).
    [4]. Graff, J., U. Torian, H. Nguyen, et al., A bicistronic subgenomic mRNA encodes both the ORF2 and ORF3 proteins of hepatitis E virus. Journal of virology,2006.80(12):p.5919-5926.
    [5]. Ichiyama, K., K. Yamada, T. Tanaka, et al., Determination of the 5'-terminal sequence of subgenomic RNA of hepatitis E virus strains in cultured cells. Archives of virology,2009.154(12): p.1945-1951.
    [6]. Li, T.-C., Y. Yamakawa, K. Suzuki, et al., Expression and self-assembly of empty virus-like particles of hepatitis E virus. Journal of virology,1997.71(10):p.7207-7213.
    [7]. Li, T.-C., N. Takeda, T. Miyamura, et al., Essential elements of the capsid protein for self-assembly into empty virus-like particles of hepatitis E virus. Journal of virology,2005.79(20):p. 12999-13006.
    [8]. Xing, L., K. Kato, T. Li, et al., Recombinant Hepatitis E Capsid Protein Self-Assembles into a Dua1-Domain T= 1 Particle Presenting Native Virus Epitopes. Virology,1999.265(1):p.35-45.
    [9]. Yamashita, T., Y. Mori, N. Miyazaki, et al., Biological and immunological characteristics of hepatitis E virus-like particles based on the crystal structure. Proceedings of the National Academy of Sciences,2009.106(31):p.12986-12991.
    [10]. Guu, T.S., Z. Liu, Q. Ye, et al., Structure of the hepatitis E virus-like particle suggests mechanisms for virus assembly and receptor binding. Proceedings of the National Academy of Sciences,2009. 106(31):p.12992-12997.
    [11]. Surjit, M., S. Jameel, and S.K. Lal, The ORF2 protein of hepatitis E virus binds the 5'region of viral RNA. Journal of virology,2004.78(1):p.320-328.
    [12]. Jameel, S., M. Zafrullah, M.H. Ozdener, et al., Expression in animal cells and characterization of the hepatitis E virus structural proteins. Journal of virology,1996.70(1):p.207-216.
    [13]. Surjit, M., S. Jameel, and S.K. Lal, Cytoplasmic localization of the ORF2 protein of hepatitis E virus is dependent on its ability to undergo retrotranslocation from the endoplasmic reticulum. Journal of virology,2007.81(7):p.3339-3345.
    [14]. Meng, J., X. Dai, J.C. Chang, et al., Identification and characterization of the neutralization epitope (s) of the hepatitis E virus. Virology,2001.288(2):p.203-211.
    [15]. Zhou, Y.-H., R.H. Purcell, and S.U. Emerson, An ELISA for putative neutralizing antibodies to hepatitis E virus detects antibodies to genotypes 1,2.3. and 4. Vaccine.2004.22(20):p.2578-2585.
    [16]. Schofield. D.J., R.H. Purcell, H.T. Nguyen, et al., Monoclonal antibodies that neutralize HEV recognize an antigenie site at the carboxyterminus of an ORF2 protein vaccine. Vaccine.2003.22(2): p.257-267.
    [17]. Zhu, F.-C., J. Zhang, X.-F. Zhang, et al., Efficacy and safety of a recombinant hepatitis E vaccine in healthy adults:a large-scale, randomised, double-blind placebo-controlled, phase 3 trial. The Lancet, 2010.376(9744):p.895-902.
    [18]. Li, T.-C, Y. Suzaki, Y. Ami, et al., Protection of cynomolgus monkeys against FEV infection by oral administration of recombinant hepatitis E virus-like particles. Vaccine,2004.22(3):p.370-377.
    [19]. Ahmad, I., R.P. Holla, and S. Jameel, Molecular virology of hepatitis E virus. Virus Research,2011. 161(1):p.47-58.
    [20], Zafrullah, M., M.H. Ozdener, S.K. Panda, et al., The ORF3 protein of hepatitis E virus is a phosphoprotein that associates with the cytoskeleton. Journal of virology,1997.71(12):p. 9045-9053.
    [21]. Kar-Roy, A., H. Korkaya, R. Oberoi, et al., The hepatitis E virus open reading frame 3 protein activates ERK through binding and inhibition of the MAPK phosphatase. Journal of Biological Chemistry,2004.279(27):p.28345-28357.
    [22]. Kannan, H., S. Fan, D. Patel, et al., The hepatitis E virus open reading frame 3 product interacts with microtubules and interferes with their dynamics. Journal of virology,2009.83(13):p.6375-6382.
    [23]. Ratra, R., A. Kar-Roy, and S.K. Lal, The ORF3 protein of hepatitis E virus interacts with hemopexin by means of its 26 amino acid N-terminal hydrophobic domain Ⅱ. Biochemistry,2008.47(7):p. 1957-1969.
    [24]. Pawson, T., Protein modules and signalling networks.1995.373(6515):p.573-80.
    [25]. Korkaya, H., S. Jameel, D. Gupta, et al., The ORF3 protein of hepatitis E virus binds to Src homology 3 domains and activates MAPK. Journal of Biological Chemistry,2001.276(45):p. 42389-42400.
    [26]. Nagashima, S., M. Takahashi, T. Tanaka, et al., A PSAP motif in the ORF3 protein of hepatitis E virus is necessary for virion release from infected cells. Journal of General Virology,2011.92(2):p. 269-278.
    [27]. Moin, S.M., M. Panteva, and S. Jameel, The hepatitis E virus OrB protein protects cells from mitochondrial depolarization and death. Journal of Biological Chemistry,2007.282(29):p. 21124-21133.
    [28]. Chandra, V, A. Kar-Roy, S. Kumari, et al., The hepatitis E virus ORF3 protein modulates epidermal growth factor receptor trafficking, STAT3 translocation, and the acute-phase response. Journal of virology,2008.82(14):p.7100-7110.
    [29]. Chandra, V, M. Kalia, K. Hajela, et al., The ORF3 protein of hepatitis E virus delays degradation of activated growth factor receptors by interacting with CIN85 and blocking formation of the Cbl-CIN85 complex. Journal of virology,2010.84(8):p.3857-3867.
    [30]. Rakesh Aggarwal, M., DM, MSc The Global Prevalence of Hepatitis E Virus Infection and Susceptibility:A Systematic Review.2010; Available from:www.who.int/vaccines-documents/.
    [31]. Meng, X.-J., P.G. Halbur, M.S. Shapiro, et al., Genetic and experimental evidence for cross-species infection by swine hepatitis E virus. Journal of virology,1998.72(12):p.9714-9721.
    [32]. Sonoda, H., M. Abe, T. Sugimoto, et al., Prevalence of hepatitis E virus (HEV) Infection in wild boars and deer and genetic identification of a genotype 3 HEV from a boar in Japan. Journal of Clinical Microbiology,2004.42(11):p.5371-5374.
    [33]. Schlauder, G.G. and I.K. Mushahwar, Genetic heterogeneity of hepatitis E virus. Journal of medical virology,2001.65(2):p.282-292.
    [34]. Zhao, C., Z. Ma, T.J. Harrison, et al., A novel genotype of hepatitis E virus prevalent among farmed rabbits in China. Journal of medical virology,2009.81(8):p.1371-1379.
    [35]. Haqshenas, G., H. Shivaprasad, P. Woolcock, et al., Genetic identification and characterization of a novel virus related to human hepatitis E virus from chickens with hepatitis-splenomegaly syndrome in the United States. Journal of General Virology,2001.82(10):p.2449-2462.
    [36]. Johne, R., A. Plenge-Bonig, M. Hess, et al., Detection of a novel hepatitis E-like virus in faeces of wild rats using a nested broad-spectrum RT-PCR Journal of General Virology,2010.91(3):p. 750-758.
    [37]. Nakamura, M., K. Takahashi, K. Taira, et al., Hepatitis E virus infection in wild mongooses of Okinawa, Japan:demonstration of anti-HEV antibodies and a full-genome nucleotide sequence. Hepatology Research,2006.34(3):p.137-140.
    [38]. Reuter, G., D. Fodor, P. Forgach, et al., Characterization and zoonotic potential of endemic hepatitis E virus (HEV) strains in humans and animals in Hungary. Journal of Clinical Virology,2009.44(4): p.277-281.
    [39]. Tomiyama, D., E. Inoue, Y. Osawa, et al., Serological evidence of infection with hepatitis E virus among wild Yezo-deer, Cervus nippon yesoensis, in Hokkaido, Japan. Journal of viral hepatitis, 2009.16(7):p.524-528.
    [40]. Zhang, W., Q. Shen, J. Mou, et al., Hepatitis E virus infection among domestic animals in eastern China. Zoonoses and public health,2008.55(6):p.291-298.
    [41]. Meng, X., Hepatitis E virus:animal reservoirs and zoonotic risk. Veterinary Microbiology,2010. 140(3):p.256-265.
    [42]. Meng, X.-J., R.H. Purcell, P.G, Halbur, et al., A novel virus in swine is closely related to the human hepatitis E virus. Proceedings of the National Academy of Sciences,1997.94(18):p.9860-9865.
    [43]. Fernandez-Barredo, S., C. Galiana, A. Garcia, et al., Detection of hepatitis E virus shedding in feces of pigs at different stages of production using reverse transcription-polymerase chain reaction. Journal of Veterinary Diagnostic Investigation,2006.18(5):p.462-465.
    [44]. Leblanc, D., P. Ward, M.-J. Gagne, et al., Presence of hepatitis E virus in a naturally infected swine herd from nursery to slaughter. International journal of food microbiology,2007.117(2):p.160-166.
    [45]. Munne. M.S., S. Vladimirsky, L. Otegui, et al.. Identification of the first strain of swine hepatitis E virus in South America and prevalence of anti-HEV antibodies in swine in Argentina. Journal of medical virology,2006.78(12):p.1579-1583.
    [46]. Takahashi, M., T. Nishizawa, T. Tanaka, et al., Correlation between positivity for immunoglobulin A antibodies and viraemia of swine hepatitis E virus observed among farm pigs in Japan. Journal of General Virology,2005.86(6):p.1807-1813.
    [47]. Garkavenko, O., A. Obriadina, J. Meng, et al., Detection and characterisation of swine hepatitis E virus in New Zealand. Journal of medical virology,2001.65(3):p.525-529.
    [48]. Cooper, K., F. Huang, L. Batista, et al., Identification of genotype 3 hepatitis E virus (HEV) in serum and fecal samples from pigs in Thailand and Mexico, where genotype 1 and 2 HEV strains are prevalent in the respective human populations. Journal of Clinical Microbiology,2005.43(4):p. 1684-1688.
    [49]. Seminati, C, E. Mateu, B. Peralta, et al., Distribution of hepatitis E virus infection and its prevalence in pigs on commercial farms in Spain. The Veterinary Journal,2008.175(1):p.130-132.
    [50]. Blacksell, S.D., K.S.A. Myint, S. Khounsy, et al., Prevalence of hepatitis E virus antibodies in pigs: implications for human infections in village-based subsistence pig farming in the Lao PDR Transactions of the Royal Society of Tropical Medicine and Hygiene,2007.101(3):p.305-307.
    [51]. Casas, M., J. Pujols, R. Rosell, et al., Retrospective serological study on hepatitis E infection in pigs from 1985 to 1997 in Spain. Veterinary Microbiology,2009.135(3):p.248-252.
    [52]. Okazaki, M., I. Hirata, T. Matsumoto, et al., Advantages of TOF-SIMS analysis of hydroxyapatite and fluorapatite in comparison with XRD, HR-TEM and FT-IR Dent Mater J,2005.24(4):p. 508-14.
    [53]. Guimaraes, F.R., T.M. Saddi, C.L. Vitral, et al., Hepatitis E virus antibodies in swine herds of Mato Grosso State. Central Brazil. Brazilian Journal of Microbiology,2005.36(3):p.223-226.
    [54]. Li, W., R. She, H. Wei, et al., Prevalence of hepatitis E virus in swine under different breeding environment and abattoir in Beijing, China. Veterinary Microbiology,2009.133(1):p.75-83.
    [55]. de Deus, N., M. Casas, B. Peralta, et al., Hepatitis E virus infection dynamics and organic distribution in naturally infected pigs in a farrow-to-finish farm. Veterinary Microbiology,2008. 132(1):p.19-28.
    [56]. Nakai, I., K. Kato, A. Miyazaki, et al., Different fecal shedding patterns of two common strains of hepatitis E virus at three Japanese swine farms. The American journal of tropical medicine and hygiene,2006.75(6):p.1171-1177.
    [57]. Mao J, Z.Y., She R, et al, One case of swine hepatitis E virus and porcine reproductive and respiratory syndrome virus Co-infection in weaned pigs. Virology Journal,2013.10(1):p.341-346.
    [58]. Cossaboom, C.M., L. Cordoba, B.A. Dryman, et al., Hepatitis E virus in rabbits, Virginia, USA. Emerging infectious diseases,2011.17(11):p.2047-2409.
    [59]. Izopet, J., M. Dubois, S. Bertagnoli, et al., Hepatitis E virus strains in rabbits and evidence of a closely related strain in humans, France. Emerging infectious diseases,2012.18(8):p.1274-1281.
    [60]. Wang, S., X. Cheng, X. Dai, et al., Rabbit and human hepatitis E virus strains belong to a single serotype. Virus Research,2013.176(1):p.101-106.
    [61]. Jirintai, S., D. Manglai, M. Takahashi, et al., Molecular analysis of hepatitis E virus from farm rabbits in Inner Mongolia, China and its successful propagation in A549 and PLC/PRF/5 cells. Virus Research,2012.170(1):p.126-137.
    [62]. Geng, Y, C. Zhao, A. Song, et al., The serological prevalence and genetic diversity of hepatitis E virus in farmed rabbits in China. Infection, Genetics and Evolution,2011.11(2):p.476-482.
    [63]. Geng, J., L. Wang, X. Wang, et al., Study on prevalence and genotype of hepatitis E virus isolated from Rex Rabbits in Beijing, China. Journal of viral hepatitis,2011.18(9):p.661-667.
    [64]. Pavio, N., X.-J. Meng, and C. Renou, Zoonotic hepatitis E:animal reservoirs and emerging risks. Veterinary research,2010.41(6):p.46-65.
    [65]. Kabrane-Lazizi, Y, J.B. Fine, J. Elm, et al., Evidence for widespread infection of wild rats with hepatitis E virus in the United States. The American journal of tropical medicine and hygiene,1999. 61(2):p.331-335.
    [66]. Favorov, M.O., M.Y. Kosoy, S.A. Tsarev, et al., Prevalence of antibody to hepatitis E virus among rodents in the United States. Journal of Infectious Diseases,2000.181(2):p.449-455.
    [67]. 韩得平,佘锐萍,and王英华等,鲫鱼肝脏和肠道中HEV抗原免疫组化检测及组织病理学观察.扬州大学学报,2008.29(S1):p.162-165.
    [68]. 夏抗抗,佘锐萍,李文贵等,屠宰鸡肝脏中HEV检测及组织病理学观察.扬州大学学报,2008.29(S1):p.188-191.
    [69]. 尹君,佘锐萍,李睿文等,免疫组织化学法检测北京地区牛肝脏中戊型肝炎病毒抗原.动物医学进展,2010.3(S):p.55-58.
    [70]. 李睿文,周寅,佘锐萍等,犬肝脏中戊型肝炎病毒抗原的检测及组织病理学观察.动物医学进展,2010.31(S):p.58-62.
    [71]. Arankalle, V, M. Joshi, A. Kulkarni, et al., Prevalence of anti - hepatitis E virus antibodies in different Indian animal species. Journal of viral hepatitis,2001.8(3):p.223-227.
    [72]. Teo, C., Much meat, much malady, changing perceptions of the epidemiology of hepatitis E. Clinical Microbiology and Infection,2010.16(1):p.24-32.
    [73]. Khuroo, M.S., Study of an epidemic of non-A, non-B hepatitis:possibility of another human hepatitis virus distinct from post-transfusion non-A, non-B type. The American journal of medicine, 1980.68(6):p.818-824.
    [74]. Corwin, A.L., H.B. Khiem, E.T. Clayson, et al., A waterborne outbreak of hepatitis E virus transmission in southwestern Vietnam. The American journal of tropical medicine and hygiene, 1996.54(6):p.559-562.
    [75]. Teshale, E.H., C.M. Howard, S.P. Grytdal, et al., Hepatitis E epidemic, Uganda. Emerging infectious diseases,2010.16(1):p.126-9.
    [76]. Aye, T.T., T. Uchida. X.-Z. Ma, et al.. Complete nucleotide sequence of a hepatitis E virus isolated from the Xinjiang epidemic (1986-1988) of China. Nucleic acids research,1992.20(13):p.3512.
    [77]. FitzSimons, D., G. Hendrickx, A. Vorsters, et al., Hepatitis A and E:update on prevention and epidemiology. Vaccine,2010.28(3):p.583-588.
    [78]. Rutjes, S.A., W.J. Lodder, F. Lodder-Verschoor, et al., Sources of hepatitis E virus genotype 3 in The Netherlands. Emerging infectious diseases,2009.15(3):p.381-7.
    [79]. Purdy, M.A. and Y.E. Khudyakov, The molecular epidemiology of hepatitis E virus infection. Virus Research,2011.161(1):p.31-39.
    [80]. Guthmann, J.-P., H. Klovstad, D. Boccia, et al., A large outbreak of hepatitis E among a displaced population in Darfur, Sudan,2004:the role of water treatment methods. Clinical infectious diseases, 2006.42(12):p.1685-1691.
    [81]. Vivek, R., L. Nihal, J. Illiayaraja, et al., Investigation of an epidemic of Hepatitis E in Nellore in south India. Tropical Medicine & International Health,2010.15(11):p.1333-1339.
    [82]. Lewis, H., O. Wichmann, and E. Duizer, Transmission routes and risk factors for autochthonous hepatitis E virus infection in Europe:a systematic review. Epidemiology and infection,2010. 138(02):p.145-166.
    [83]. Yazaki, Y., H. Mizuo, M. Takahashi, et al., Sporadic acute or fulminant hepatitis E in Hokkaido, Japan, may be food-borne, as suggested by the presence of hepatitis E virus in pig liver as food. Journal of General Virology,2003.84(9):p.2351-2357.
    [84]. Matsuda, H., K. Okada, K. Takahashi, et al., Severe hepatitis E virus infection after ingestion of uncooked liver from a wild boar. Journal of Infectious Diseases.2003.188(6):p.944-944.
    [85]. Masuda, J.-I., K. Yano, Y. Tamada, et al., Acute hepatitis E of a man who consumed wild boar meat prior to the onset of illness in Nagasaki, Japan. Hepatology Research,2005.31(3):p.178-183.
    [86]. Tamada, Y, K. Yano, H. Yatsuhashi, et al., Consumption of wild boar linked to cases of hepatitis E. Journal of hepatology,2004.40(5):p.869-870.
    [87]. Bouwknegt, M., F. Lodder-Vcrschoor, W.H. Van Der Poel, et al., Hepatitis E virus RNA in commercial porcine livers in The Netherlands. Journal of Food Protection(?),2007.70(12):p. 2889-2895.
    [88]. Jung, K., B. Kang, D. Song, et al., Prevalence and genotyping of hepatitis E virus in swine population in Korea between 1995 and 2004:a retrospective study. The Veterinary Journal,2007. 173(3):p.683-687.
    [89]. Kulkarni, M. and V. Arankalle, The detection and characterization of hepatitis E virus in pig livers from retail markets of India. Journal of medical virology,2008.80(8):p.1387-1390.
    [90]. Feagins, A., T. Opriessnig, D. Guenette, et al., Detection and characterization of infectious Hepatitis E virus from commercial pig livers sold in local grocery stores in the USA. Journal of General Virology,2007.88(3):p.912-917.
    [91]. 王英华,韦海涛,佘锐萍等.,屠宰猪肝脏中HEV的检测及组织病理学观察.农业生物技术学报,2008.16(3):p.373-379.
    [92]. 李文贵,佘锐萍,韦海涛等,屠宰猪肝和血清中乙型肝炎病毒及戊型肝炎病毒的检测.中国兽医科学,2007.37(11):p.1-5.
    [93]. Feagins, A., T. Opriessnig, D. Guenette, et al., Inactivation of infectious hepatitis E virus present in commercial pig livers sold in local grocery stores in the United States. International journal of food microbiology,2008.123(1):p.32-37.
    [94]. Boxall, E., A. Herborn, G. Kochethu, et al., Transfusion-transmitted hepatitis E in a 'nonhyperendemic'country. Transfusion medicine,2006.16(2):p.79-83.
    [95]. Colson, P., C. Coze, P. Gallian, et al., Transfusion-associated hepatitis E, France. Emerg Infect Dis, 2007.13(4):p.648-9.
    [96]. Mitsui, T., Y. Tsukamoto, C. Yamazaki, et al., Prevalence of hepatitis E virus infection among hemodialysis patients in Japan:evidence for infection with a genotype 3 HEV by blood transfusion. Journal of medical virology,2004.74(4):p.563-572.
    [97]. Matsubayashi, K., Y. Nagaoka, H. Sakata, et al., Transfusion-transmitted hepatitis E caused by apparently indigenous hepatitis E virus strain in Hokkaido, Japan. Transfusion,2004.44(6):p. 934-940.
    [98]. Matsubayashi, K., J.H. Kang, H. Sakata, et al., A case of transfusion - transmitted hepatitis E caused by blood from a donor infected with hepatitis E virus via zoonotic food - borne route. Transfusion, 2008.48(7):p.1368-1375.
    [99]. Meng, X., B. Wiseman, F. Elvinger, et al., Prevalence of antibodies to hepatitis E virus in veterinarians working with swine and in normal blood donors in the United States and other countries. Journal of Clinical Microbiology,2002.40(1):p.117-122.
    [100]. Meng, X.J., S. Dea, R.E. Engle, et al., Prevalence of antibodies to the hepatitis E virus in pigs from countries where hepatitis E is common or is rare in the human population. Journal of medical virology,1999.59(3):p.297-302.
    [101]. Olsen, B., D. Axelsson-Olsson, A. Thelin, et al., Unexpected high prevalence of IgG-antibodies to hepatitis E virus in Swedish pig farmers and controls. Scandinavian journal of infectious diseases, 2006.38(1):p.55-58.
    [102]. Renou, C., J.-F. Cadranel, M. Bourliere, et al., Possible zoonotic transmission of hepatitis E from pet pig to its owner. Emerging infectious diseases,2007.13(7):p.1094-6..
    [103]. Aggarwal, R, D. Kini, S. Sofat, et al., Duration of viraemia and faecal viral excretion in acute hepatitis E. The Lancet,2000.356(9235):p.1081-1082.
    [104]. Smith, J.L., A review of hepatitis E virus. Journal of Food Protection(?),2001.64(4):p.572-586.
    [105]. Hussaini, S., S. Skidmore, P. Richardson, et al., Severe hepatitis E infection during pregnancy. Journal of viral hepatitis,1997.4(1):p.51-54.
    [106]. Khuroo, M.S., S. Kamali, and S. Jameel, Vertical transmission of hepatitis E virus. The Lancet,1995. 345(8956):p.1025-1026.
    [127]. Navaneethan. U., M. Al Mohajer. and M.T. Shata. Hepatitis E and pregnancy:understanding the pathogenesis. Liver International,2008.28(9):p.1190-1199.
    [108]. Bhatia, V, A. Singhal, S.K. Panda, et al., A 20 - year single - center experience with acute liver failure during pregnancy:Is the prognosis really worse? Hepatology,2008.48(5):p.1577-1585.
    [109]. Renou, C., A. Pariente, E. Nicand, et al., Pathogenesis of hepatitis E in pregnancy. Liver International,2008.28(10):p.1465-1465.
    [110]. Kamar, N., J. Selves, J.-M. Mansuy, et al., Hepatitis E virus and chronic hepatitis in organ-transplant recipients. New England Journal of Medicine,2008.358(8):p.811-817.
    [111]. Le Coutre, P., H. Meisel, J. Hofmann, et al., Reactivation of hepatitis E infection in a patient with acute lymphoblastic leukaemia after allogeneic stem cell transplantation. Gut,2009.58(5):p. 699-702.
    [112]. Madejon, A., E. Vispo, M. Bottecchia, et al., Lack of hepatitis E virus infection in HIV patients with advanced immunodeficiency or idiopathic liver enzyme elevations. Journal of viral hepatitis,2009. 16(12):p.895-896.
    [113]. Purcell RH, E.S., Hepatitis E virus. In:Knipe D, Howley P, Griffin D, Lamb R, Martin M, Roizman B et al.,eds. Fields Virology,4th edn,2001:p.3051-3061.
    [114]. Krawczynski, K., X.-J. Meng, and J. Rybczynska, Pathogenetic elements of hepatitis E and animal models of HEV infection. Virus Research,2011.161(1):p.78-83.
    [115]. Purcell, R.H., H. Nguyen, M. Shapiro, et al., Pre-clinical immunogenicity and efficacy trial of a recombinant hepatitis E vaccine. Vaccine,2003.21(19):p.2607-2615.
    [116]. Emerson, S., M. Zhang, X.-J. Meng, et al., Recombinant hepatitis E virus genomes infectious for primates:importance of capping and discovery of a cis-reactive element. Proceedings of the National Academy of Sciences,2001.98(26):p.15270-15275.
    [117]. Graff, J., H. Nguyen, C. Yu, et al., The open reading frame 3 gene of hepatitis E virus contains a cis-reactive element and encodes a protein required for infection of macaques. Journal of virology, 2005.79(11):p.6680-6689.
    [118]. Tsarev, S.A., T.S. Tsareva, S.U. Emerson, et al., Infectivity titration of a prototype strain of hepatitis E virus in cynomolgus monkeys. Journal of medical virology,1994.43(2):p.135-142.
    [119]. Halbur, P., C. Kasorndorkbua, C. Gilbert, et al., Comparative pathogenesis of infection of pigs with hepatitis E viruses recovered from a pig and a human. Journal of Clinical Microbiology,2001.39(3): p.918-923.
    [120]. Feagins, A., T. Opriessnig, Y. Huang, et al., Cross-species infection of specific - pathogen - free pigs by a genotype 4 strain of human hepatitis E virus. Journal of medical virology,2008.80(8):p. 1379-1386.
    [121]. Huang, F., W. Zhang, G. Gong, et al., Experimental infection of Balb/c nude mice with Hepatitis E virus. BMC infectious diseases,2009.9(1):p.93-100.
    [122]. Xiao, P., R. Li, R. She, et al., Prevalence of hepatitis E virus in swine fed on kitchen residue. PLoS one,2012.7(3):p. e33480.
    [123]. Li, W., Q. Sun, R. She, et al., Experimental infection of Mongolian gerbils by a genotype 4 strain of swine hepatitis E virus. Journal of medical virology,2009.81(9):p.1591-1596.
    [124]. Li, T.-C., Y. Suzaki, Y. Ami, et al., Mice are not susceptible to hepatitis E virus infection. The Journal of veterinary medical science/the Japanese Society of Veterinary Science,2008.70(12):p. 1359-1362.
    [125]. Ma, H., L. Zheng, Y. Liu, et al., Experimental infection of rabbits with rabbit and genotypes 1 and 4 hepatitis E viruses. PLoS one,2010.5(2):p. e9160.
    [126]. Williams, T.P.E., C. Kasomdorkbua, P. Halbur, et al., Evidence of extrahepatic sites of replication of the hepatitis E virus in a swine model. Journal of Clinical Microbiology,2001.39(9):p.3040-3046.
    [127]. Bouwknegt, M., S.A. Rutjes, C.B. Reusken, et al., The course of hepatitis E virus infection in pigs after contact-infection and intravenous inoculation. BMC veterinary research,2009.5(1):p.7.
    [128]. 沈霞芬,家畜组织与胚胎学.中国农业出版社,2000.11.
    [129]. 刘秋东,张中文,刘凤华等,复方白头翁胶囊对腹泻犬小肠绒毛长度和隐窝深度的影响.北京农学院学报,2011.26(3):p.38-40.
    [130]. 王春荣,刘学飞,and程永等,肠功能恢复汤对感染性多器官功能障碍综合征大鼠肠黏膜损伤的保护作用[2008:p.13-15.
    [131]. 王子旭,余锐萍,陈越等,日粮锌硒水平对肉鸡小肠黏膜结构的影响.中国兽医科技,2003.33(7):p.18-21.
    [132]. 钟金凤何华西许美解等.辣椒素对湘黄鸡肠道绒毛长度及微生态的研究.科技动态,2010:p.37-39.
    [133]. 胡红莲,高民,肠道屏障功能及其评价指标的研究进展.中国畜牧杂志,2012.17(48):p.78-82.
    [134]. Kucharzik, T., N. Lugering, K. Rautenberg, et al., Role of M cells in intestinal barrier function. Annals of the New York Academy of Sciences,2000.915(1):p.171-183.
    [135]. Goke, M., M. Kanai, K. Lynch-Devaney, et al., Rapid mitogen-activated protein kinase activation by transforming growth factor a in wounded rat intestinal epithelial cells. Gastroenterology,1998. 114(4):p.697-705.
    [136]. Playford, R., Peptides and gastrointestinal mucosal integrity. Gut,1995.37(5):p.595-597.
    [137]. Khounlotham, M., W. Kim, E. Peatman, et al., Compromised intestinal epithelial barrier induces adaptive immune compensation that protects from colitis. Immunity,2012.37(3):p.563-573.
    [138]. Nusrat, A., C. Parkos, P. Verkade, et al., Tight junctions are membrane microdomains. Journal of Cell Science,2000.113(10):p.1771-1781.
    [139]. Mizuno, M., N. Okayama, K. Kasugai, et al., Acid stimulates E-cadherin surface expression on gastric epithelial cells to stabilize barrier functions via influx of calcium. European journal of gastroenterology & hepatology,2001.13(2):p.127-136.
    [140]. 吴国豪,肠道屏障功能.肠外与肠内营养,2004.11:p.1-3.
    [141]. Fagarasan. S. and T. Honjo, Intestinal IgA synthesis:regulation of front-line body defences. Nature Reviews Immunology.2003.3(1):p.63-72.
    [142]. Suzuki, K. and S. Fagarasan, Diverse regulatory pathways for IgA synthesis in the gut. Mucosal immunology,2009.2(6):p.468-471.
    [143]. Pabst, O., New concepts in the generation and functions of IgA. Nature Reviews Immunology,2012. 12(12):p.821-832.
    [144]. 曾园山,组织学与胚胎学.上海科学技术文献出版社,2010.
    [145]. Kagnoff, M.F., Mucosal immunology:new frontiers. Immunology today,1996.17(2):p.57-59.
    [146].成令忠,钟翠平,蔡文琴等,现代组织学..上海科学技术文献出版社,2003.
    [147]. Muramatsu, M., K. Kinoshita, S. Fagarasan, et al., Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell,2000. 102(5):p.553-563.
    [148]. Honjo, T., K. Kinoshita, and M. Muramatsu, Molecular mechanism of class switch recombination: linkage with somatic hypermutation. Annual review of immunology,2002.20(1):p.165-196.
    [140]. Cerutti, A., K. Chen, and A. Chorny, Immunoglobulin responses at the mucosal interface. Annual review of immunology,2011.29:p.273-93.
    [150]. Gould, H.J. and B.J. Sutton, IgE in allergy and asthma today. Nature Reviews Immunology,2008. 8(3):p.205-217.
    [151]. Brandtzaeg, P., E.S. Baekkevold, and H.C. Morton, From B to A the mucosal way. Nature immunology,2001.2(12):p.1093-1094.
    [152]. Macpherson, A., K. McCoy, F. Johansen, et al., The immune geography of IgA induction and function. Mucosal immunology,2008.1(1):p.11-22.
    [153]. Hapfelmeier, S., M.A. Lawson, E. Slack, et al., Reversible microbial colonization of germ-free mice reveals the dynamics of IgA immune responses. Science,2010.328(5986):p.1705-1709.
    [154]. Franco, M.A. and H.B. Greenberg, Immunity to rotavirus in T cell deficient mice. Virology,1997. 238(2):p.169-179.
    [155]. Wijburg, O.L., T.K. Uren, K. Simpfendorfer, et al., Innate secretory antibodies protect against natural Salmonella typhimurium infection. The Journal of experimental medicine,2006.203(1):p. 21-26.
    [156]. Pasquier, B., P. Launay, Y. Kanamaru, et al., Identification of FcαRI as an inhibitory receptor that controls inflammation:dual role of FcRγ ITAM. Immunity,2005.22(1):p.31-42.
    [157]. 李志军,肠道屏障功能损害与SIRS/MODS的发生及其防治.中国危重病急救医学,2000.12(2095-4352):p.766-768.
    [158]. 邱海波,多器官功能综合症现代治疗.人民军医出版社,2001.
    [159]. NEGRAO-CORREA, D., Importance of immunoglobulin E (IgE) in the protective mechanism against gastrointestinal nematode infection:looking at the intestinal mucosae. Revista do Instituto de Medicina Tropical de Sao Paulo,2001.43(5):p.291-299.
    [160]. Hudault, S., J. Guignot, and A. Servin, Escherichia coli strains colonising the gastrointestinal tract protect germfree mice againstSalmonella typhimuriuminfection. Gut,2001.49(1):p.47-55.
    [161]. Brandtzaeg, P., Induction of secretory immunity and memory at mucosal surfaces. Vaccine,2007. 25(30):p.5467-5484.
    [162]. Williams, J.E., Portal to the interior:viral pathogenesis and natural compounds that restore mucosal immunity and modulate inflammation. Alternative medicine review,2003.8(4).
    [163]. Nathanson, N., Viral pathogenesis and immunity.2007:Academic Press.
    [164]. Neutra, M.R., V. Role of M cells in transepithelial transport of antigens and pathogens to the mucosal immune system. American Journal of Physiology-Gastrointestinal and Liver Physiology, 1998.274(5):p. G785-G791.
    [165]. Veazey, R.S., M. DeMaria, L.V Chalifoux, et al., Gastrointestinal tract as a major site of CD4+T cell depletion and viral replication in SIV infection. Science,1998.280(5362):p.427-431.
    [166], Blank, C.A., D.A. Anderson, M. Beard, et al., Infection of polarized cultures of human intestinal epithelial cells with hepatitis A virus:vectorial release of progeny virions through apical cellular membranes. Journal of virology,2000.74(14):p.6476-6484.
    [167]. Dotzauer, A., M. Brenner, U. Gebhardt, et al., IgA-coated particles of Hepatitis A virus are translocalized antivectorially from the apical to the basolateral site of polarized epithelial cells via the polymeric immunoglobulin receptor. Journal of General Virology,2005.86(10):p.2747-2751.
    [168]. Nagler-Anderson, C., Man the barrier! strategic defences in the intestinal mucosa. Nature Reviews Immunology,2001.1(1):p.59-67.
    [169]. Liu, P., Q.-N. Bu, L. Wang, et al., Transmission of hepatitis E virus from rabbits to cynomolgus macaques. Emerging infectious diseases,2013.19(4):p.559-65.
    [170]. Lee, Y., Y. Ha, K. Ahn, et al., Localisation of swine hepatitis E virus in experimentally infected pigs. The Veterinary Journal,2009.179(3):p.417-421.
    [171].佘锐萍,李文贵,韩德平等,HEV抗原在猪肠道组织中的免疫组化定位.科技导报,2008.25.
    [172]. Emerson, S.U., H.T. Nguyen, U. Torian, et al., Release of genotype 1 hepatitis E virus from cultured hepatoma and polarized intestinal cells depends on open reading frame 3 protein and requires an intact PXXP motif Journal of virology,2010.84(18):p.9059-9069.
    [173]. Li, T.-C., N. Takeda, and T. Miyamura, Oral administration of hepatitis E virus-like particles induces a systemic and mucosal immune response in mice. Vaccine,2001.19(25):p.3476-3484.
    [174]. Abolhassani, S. and P. Gasser, Preparation of TEM samples of metal-oxide interface by the focused ion beam technique. J Microsc,2006.223(Pt 1):p.73-82.
    [175].佘锐萍,刘海虹,家兔肠相关淋巴组织圆小囊超微结构观察.电子显微学报,2002.21(4):p.359-363.
    [176]. 佘锐萍,高齐瑜,王彩虹等,肠相关性淋巴样组织研究概况.动物医学进展,2002.2(4):p.29-33.
    [177]. Jingjing, M., Z. Yue, S. Ruiping, et al., Detection and Localization of Rabbit Hepatitis E Virus and Antigen in Systemic Tissues from Experimentally Intraperitoneally Infected Rabbits. PLoS one, 2014.9(3):p.e88607.
    [178]. 赵素元,邹红,周伟一等,反转录聚合酶链反应检测喀什戊型肝炎病毒核酸.临床肝胆病杂志,1993.9:p25-.26.
    [179]. 赵素元,廖立夫,戊型肝炎野生动物模型研究——子午沙鼠.中国媒介生物学及控制杂志,2001.12(4):p.285-288.
    [180]. 赵素元,廖立夫,子午沙鼠感染戊肝病毒传代的实验研究.中国媒介生物学及控制杂志,2001.12(3):p.215-217.
    [181]. 丁贤明,钱宝珍,实验动物长爪沙鼠的研究进展.浙江省医学科学院学报,2008.65(2):p.34-38.
    [182]. 肖鹏.猪源HEV感染致长爪沙鼠肝脏损伤机制研究:[博士学位论文]北京:动物医学院,中国农业大学,2013.
    [183]].肖鹏,佘锐萍,毛晶晶等,HEV ORF3蛋白致长爪沙鼠肝损伤的机制初探.2012年中国畜牧兽医学会兽医病理学分会暨中国病理生理学会动物病理生理专业委员会学术研讨会论文集,2012.
    [184]. Hasan, M. and A. Ferguson, Measurements of intestinal villi non-specific and ulcer-associated duodenitis-correlation between area of microdissected villus and villus epithelial cell count. Journal of clinical pathology,1981.34(10):p.1181-1186.
    [185]. Teller, I.C. and J.-F. Beaulieu, Interactions between laminin and epithelial cells in intestinal health and disease. Expert reviews in molecular medicine,2001.3(24):p.1-18.
    [186].周华,王培训,刘良等,环磷酰胺对小鼠Peyer's结和肠道粘膜相关淋巴细胞的影响.中国免疫学杂志,2000.17.
    [187]. Ramsay, D.B., S. Stephen, M. Borum, et al., Mast cells in gastrointestinal disease. Gastroenterology & hepatology,2010.6(12):p.772-7.
    [188]. Iwasaki, A., Mucosal dendritic cells. Annu. Rev. Immunol.,2007.25:p.381-418.
    [189]. Bienenstock, J., M. McDermott, D. Befus, et al., A common mucosal immunologic system involving the bronchus, breast and bowel, in Secretory Immunity and Infection.1978, Springer, p.53-59.
    [190]. Medzhitov, R. and C. Janeway. Innate immune induction of the adaptive immune response, in Cold Spring Harbor symposia on quantitative biology.1999:Cold Spring Harbor Laboratory Press.
    [191]. Trombetta, E.S. and I. Mellman, Cell biology of antigen processing in vitro and in vivo. Annu. Rev. Immunol.,2005.23:p.975-1028.
    [192]. Banchereau, J. and R.M. Steinman, Dendritic cells and the control of immunity. Nature,1998. 392(6673):p.245-252.
    [193].王子旭,陈耀星,佘锐萍等,日粮锌、硒水平对肉鸡肠道IgA+浆细胞分布的影响.2006.37((12)):p.1349-1352.
    [194]]. 杨玉荣,佘锐萍,张口俊等,大豆生物活性肽对肉鸡肠道黏膜上皮内淋巴细胞和IgA+生成细胞的影响.中国预防兽医学报,2006.28(4):p.412-415.
    [195]. Fagarasan, S., S. Kawamoto, O. Kanagawa, et al., Adaptive immune regulation in the gut:T cell-dependent and T cell-independent IgA synthesis. Annual review of immunology,2009.28:p. 243-273.
    [196], Neutra, M.R., T.L. Phillips, E.L. Mayer, et al., Transport of membrane-bound macromolecules by M cells in follicle-associated epithelium of rabbit Peyer's patch Cell Tissue Res 1987.247:p.537-546.
    [197]. Li, T., K. Chijiwa, N. Sera, et al., Hepatitis E virus transmission from wild boar meat. Emerging infectious diseases,2005.11(12):p.1958-60.
    [198]. Aggarwal, R., R. Shukla, S. Jameel, et al., T - cell epitope mapping of ORF2 and ORF3 proteins of human hepatitis E virus. Journal of viral hepatitis,2007.14(4):p.283-292.
    [199]. Agrawal, V., A. Goel, A. Rawat, et al., Histological and immunohistochemical features in fatal acute fulminant hepatitis E. Indian Journal of Pathology and Microbiology,2012.55(1):p.22.
    [200]. Prabhu, S., P. Gupta, H. Durgapal, et al., Study of cellular immune response against Hepatitis E Virus (HEV). Journal of viral hepatitis,2011.18(8):p.587-594.
    [201]. 侯春梅,李新颖,叶伟亮等,MTT法和CCK-8法检测悬浮细胞增殖的比较.军事医学科学院院刊,2009.33(4):p.400-403.
    [202]. Tominaga, H., M. Ishiyama, F. Ohseto, et al., A water-soluble tetrazolium salt useful for colorimetric cell viability assay. Anal. Commun.,1999.36(2):p.47-50.
    [203]. 罗治彬,肠道粘膜SIgA免疫系统的研究进展.细胞与分子免疫学杂志,1997.13(A02):p.38-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700