高温水中Zn离子抑制镍合金腐蚀机理半导体电化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核电站中采用Zn离子添加技术减少一回路材料的应力腐蚀破裂和职业辐照,其原理简单理解为Zn离子参与合金表面氧化膜中金属氧化物的生成,挤占氧化膜中部分金属空穴,高温水中添加Zn离子前后合金氧化膜的半导体性质改变并不明确。本文采用光电化学响应和交流阻抗(Mott-Schottky曲线)法分析了高温水中多种形式Zn离子添加对镍合金表面氧化膜的半导体性质的影响,结合氧化膜的电化学研究结果和表面形貌与成分分析,利用点缺陷模型讨论了高温水中Zn离子对镍合金氧化膜的半导体性质影响。并用上述实验方法进行了高温水中SUS316L不锈钢的实验,全面地分析高温水中Zn离子添加改变Fe基和Ni基合金表面氧化膜的半导体性质的机理及抑制腐蚀的原因。
     首先应用光电化学响应和Mott-Schottky曲线研究了纯Ni在500℃空气气氛下生成的氧化膜和在pH8.4中性缓冲溶液中阳极氧化生成钝化膜的半导体性质。其在中性溶液中生成钝化膜的光电化学响应表明,饨化膜由NiO内层和Ni(OH)2外层构成,其带隙宽度分别为2.8eV和1.6eV,其中,内层NiO的带隙宽度与纯Ni在高温空气气氛生成氧化膜的带隙宽度2.4eV相似。Mott-Schottky曲线表明纯Ni在pH8.4中性溶液中生成钝化膜的平带电位约0.40V,其在高温空气气氛生成氧化膜的平带电位约0.15V,前者的载流子浓度约是后者34倍。通过上述研究建立了纯Ni上钝化膜的电子能带结构模型,解释了其内层NiO和外层Ni(OH)2间同为p型半导体组成钝化膜的半导体性质。为后续镍合金和不锈钢的高温水实验研究创造基础条件。
     应用稳态光电流响应法分析了镍基合金在高温水中添加硫酸盐等形式Zn离子生成氧化膜的半导体性质,指出氧化膜中不同氧化相的特征带隙宽度分别为Fe2O32.2eV, Cr2O33.5eV, FexNi1-xCr2O44.1eV和ZnO3.2eV,在开路电压下,无Zn2+参与生成的氧化膜表现阴极光电流响应(p型半导体),有Zn离子参与生成的氧化膜表现阳极光电流响应(n型半导体)。Mott-Schottky曲线表明有Zn离子参与生成的氧化膜平带电位较负,相同极化电压下Csc-2(Csc空间电荷电容)值较大。
     采用恒电位仪和锁相放大器联用技术发展了暂态光电流响应分析方法,并应用于镍基合金和不锈钢在高温水中添加氧化锌(ZnO)形式Zn离子生成氧化膜的半导体性质分析,指出Zn离子取代氧化膜外层中部分Fe生成复杂Zn Fe、Ni和Cr氧化物,同时改变了氧化膜的半导体性质,使其在一定电位区间表现非典型的n型半导体响应。同时分析了氧化膜的暂态光电流响应的幅值与相角和外加电压间的关系,建立了采用相角判断氧化膜半导体类型的方法。结合金属表面氧化膜的点缺陷模型,分析了由Mott-Schottky曲线获得的平带电位和载流子浓度与氧化膜的稳定性(耐腐蚀性)的关系。
     采用表面分析技术研究了上述氧化膜的形貌和成分。SEM分析指出有Zn离子参与生成的氧化膜其表面氧化物颗粒较无Zn离子参与生成的小,较致密。XPS分析指出氧化膜表面和一定深度有Zn检出,其成0价和+2价形态,说明Zn离子与氧化膜中的其他氧化相共同作用生成了复杂氧化物。
Stress corrosion cracking and occupational radiation can be retarded effectively by zinc injection to the primary circuit of nuclear power plant. For simple understanding, the Zn ion cooperated with the other metallic oxide in the oxide film on the alloy and was instead of metallic hole. It is unclear the changes of the semiconductor properties of oxide films on alloy in high temperature water with zinc addition. The photoelectrochemical and capacitance responses(Mott-Schottky plots) were employed to investigate the semiconductor properties of the oxide films on Ni-based alloys in high temperature water with various Znion addition. And also the electrochemical analysis, surface morphology and component analysis were adopted. The results of the Znion addition to high temperature water were discussed by point defect model. Also the same experiment was introduced to SUS316L stainless steel. The semiconductor properties of oxide films on Ni-based and Fe-based alloys in high temperature water with Zn addition were fully discussed.
     The semiconductor properties of the passive film formed on pure Ni by anodic passivation in pH8.4borate buffer solution and the oxide film on pure Ni by thermally grown in air at500℃were investigated by photoelectrochemical response and Mott-Schottky plots analysis. The photocurrent spectra of the passive film on pure Ni were derived into two peaks for inner NiO and outer Ni(OH)2layers, respectively. The band gap energy Eg for the inner NiO was2.8eV and Eg for outer Ni(OH)2was1.6eV, respectively. Eg2.8eV of the inner NiO of the passive film on pure Ni was close to that2.4eV of the thermally grown oxide of pure Ni, indicating that the inner NiO in the passive film is crystalline structure. The Mott-Schottky plots for both the passive film and the thermal oxide film on pure Ni demonstrated that the two films exhibited p-type semiconductors with different values of flat band potential:0.40V for the passive film and0.15V for the thermally grown NiO. An electronic energy band model of both p-type semiconductors of inner NiO and outer Ni(OH)2layers was proposed to explain the photocurrent and Mott-Schottky plots for the passive film on pure Ni.
     The steady photocurrent response was employed to investigate the oxide films formed on Incone1600with various sulfate zinc addition. The photocurrent of the oxide film was plotted as a function of photon energy, for separating into several parts which can be derived from Fe2O3with a band gap energy2.2eV, Cr2O33.5eV, FexNi1-xCr2O44.1eV besides ZnO3.2eV which was firstly recorded in the oxide films of Incone1600by photoelectrochemical responses. For steady photoelectrochemical responses, the oxide film formed with zinc addition exhibited anodic photocurrent(n type semiconductor) at open circle potential while the film without zinc exhibited cathodic photocurrent(p type semiconductor). Mott-Schottky plots indicated a negative movement of the flat band potential of the oxide film on Incone1600with zinc addition to the film without zinc. At the same potential, the higher CSC-2(CSC, space charge capacitance) indicated a more compact oxide film of Incone1600with zinc addition in the high temperature water.
     A transient state photocurrent response was developed by coupling technique of potentiostat and lock-in amplifier and was also employed to investigate the semiconductor properties of oxide films on Ni-base alloys and stainless steel in high temperature water with ZnO addition. A compact structure oxide with formula ZnyFexNi1-x-yCr2O4of the outer layer, besides the chromium enrichment of the inner layer, of the oxide film on Incone1600in high temperature water with ZnO addition was studied. The semiconductor properties of the oxide films on Incone1600in high temperature water with ZnO addition suggested an untypical n-type semiconductor at anodic polarization with a negative movement of the flat band potential of the oxide films without ZnO. The value and dephasing angle of the transient state photocurrent response in function of the applied potential were also discussed. The relationship of the stability of the oxide film and the flat band potential and carrier density of the oxide film from Mott-Schottky plots were discussed by point defect model.
     The surface morphology and components of the corrosion oxide layers in high temperature water with Zn addition were examined by scanning electron microscopy(SEM) and X-ray photoelectron spectroscopy(XPS). The results revealed that smaller crystals on the alloys with Zn addition. And the Zn was detected on the surface and in the depth of the oxide film with both0valence and+2valence.
引文
[1].核电中长期发展规划(2005-2020年)[G],国家发展和改革委员会,2007年10月.
    [2]. Fuel Reliability, EPRI 2007 Portfolio, AP41.02[R], Electric Power Research Institute,2007.
    [3]. Jerzy A. Sawicki. Evidence of Ni2FeBO5 and m-ZrO2Precipitates in Fuel Rod Deposits in AOA-affected High Boiling Duty PWR Core[J], Journal of Nuclear Materials.2008,374:248-269.
    [4]. Dawn E. Janney, Douglas L. Porter. Characterization of Phases in'Crud'from Boiling-water Reactors by Transmission Electron Microscopy[J], Journal of Nuclear Materials,2007,362:104-115.
    [6]. Hideyuki HOSOKAWA. Makoto NAGASE. Investigation of Cobalt Deposition Behavior with Zinc Injection on Stainless Steel under BWR Conditions[J], J. Nucl. Sci. Technol., 2004,41(6):682-689.
    [7]. Peter Andresen. Effect of Primary Water Zinc Injection on PWSCC in Ni-Based RCS Components, Meeting between the Nuclear Regulatory Commission (NRC) Staff, Industry Representatives, and Electric Power Research Institute/Materials Reliability Project Representatives on Mitigation of Primary Water Stress Corrosion Cracking[C], NRC headquarters in Rockville, Maryland, May 30, 2007.
    [8]. Evaluation of Recent Experience Using Zinc Addition to Reduce BWR Primary System Radiation Buildup[R], EPRI TR-104606(Dec.1994).
    [10].S.E. Ziemniak, M. Hanson. Zinc Treatment Effects on Corrosion Behavior of 304 Stainless Steel in High Temperature, Hydrogenated Water [J], Corrosion Science,2006,48:2525-2546.
    [11].Stephen E. Ziemniak, Michael Hanson. Zinc Treatment Effects on Corrosion Behavior of Alloy 600 in High Temperature, Hydrogenated Water[J], Corrosion Science,2006,48:3330-3348.
    [12].M. Haginuma, S. Ono, M. Sambongi. Effect of metal ion addition on cobalt accumulation reduction and its thermodynamic evaluation[C],1998 JAIF Int. Conf. on Water Chemistry in Nuclear Power Plants, Kashiwazaki, Japan,1998: 13-16.
    [13].T.L. Sudesh L. Wijesinghe, Daniel John Blackwood. Photocurrent and Capacitance Investigations into the Nature of the Passive Films on Austenitic Stainless Steels[J]. Corrosion Science,2008,50:23-34.
    [14].M.F. Montemor, M.G.S. Ferreira, N.E. Hakiki, et al. Chemical Composition and Electronic Structure of the Oxide Films Formed on 316L Stainless Steel and Nickel Based Alloys in High Temperature Aqueous Environments[J], Corrosion Science,2000,42:1635-1650.
    [15].佐藤教男.金属腐食と半导体腐食の比较[J].材料と环境,2005,54:92-98.
    [16].L. Hamadou, A. Kadri, N. Benbrahim, et al. Characterization of Thin Anodically Grown Oxide Films on AISI 304L Stainless Steel[J], J. Electrochem. Soc.,2007, 154:291-297.
    [17].C.M. Rangel, T.M. Silva, M. da Cunha Belo. Semiconductor Electrochemistry Approach to Passivity and Stress Corrosion Cracking Susceptibility of Stainless Steels[J], Electrochimica Acta,2005,50:5076-5082.
    [18].Y.F. Cheng, J.L. Luo. Electronic Structure and Pitting Susceptibility of Passive Film on Carbon Steel[J], Electrochimica Acta,1999,44:2947-2957.
    [19].P. Schmuki, H. Bohni. Metastable Pitting and Semiconductive Properties of Passive Films[J], J. Electrochem. Soc.,1992,139:1908-1913.
    [20].Shinji Fujimoto, Hiroaki Tsuchiya. Semiconductor Properties and Protective Role of Passive Films of Iron Base Alloys[J], Corrosion Science,2007,49: 195-202.
    [21].Zhang S., Shibata T., Haruna T. Inhibition Effect of Metal Cations to Intergranular Stress Corrosion Cracking of Sensitized Type 304 Stainless Steel[J], Corrosion Science,2005,47:1049-1061.
    [22].Hiromitsu INAGAKI. Synergy Effect of Simultaneous Zinc and Nickel Addition on Cobalt Deposition onto Stainless Steel in Oxygenated High Temperature Water[J], Journal of Nuclear Science and Technology,2003,40:143-152.
    [23].K. Miyajima, H. Hirano. Thermodynamic Consideration on the Effect of Zinc Injection into PWR Primary Coolant for the Reduction of Radiation Buildup and Corrosion Control[C], Corrosion 2001, Paper No.01143.
    [24]. Y. J. Kim. Transformation Kinetics of Oxide Formed on Noble Metal Treated 304SS in 288 water[C], Corrosion 2001, Paper No.01136.
    [25].S.E. Ziemniak, M. Hanson. Corrosion Behavior of 304 Stainless Steel in High Temperature, Hydrogenated Water[J]. Corrosion Science,2002.44:2209-2230.
    [26].Stephen E. Ziemniak. Michael Hanson. Corrosion Behavior of NiCrFe Alloy 600 in High Temperature, Hydrogenated Water[J], Corrosion Science,2006,48: 498-521.
    [27J.T.M. Angeliu. P.L. Andresen.Effect of Zinc Addition on Oxide Rupture Strain and Repassivation Kinetics of Iron-based Alloys in 288℃ Water[J]. Corrosion. 1996,52:28-33.
    [28].H. Kawamura, H. Hirano, S. Shirai, et al.Inhibitory Effect of Zinc Addition to High Temperature Water on Mill-annealed and Prefilmed Alloy 600[J], Corrosion,2000.56:623-647.
    [29].Martin Bojinov, Anouk Galtayries, Petri Kinnunen, et al. Estimation of the Parameters of Oxide Film Growth on Nickel-based Alloys in High-temperature Water Electrolytes[J]. Electrochimica Acta,2007.52:7475-7483.
    [30].J.-M. Le Canut, S. Maximovitch. F. Dalard. Electrochemical Characterization of Nickel-based Alloys in Sulphate Solutions at 320℃[J], Journal of Nuclear Materials,2004,334:13-27.
    [31]. E. Becuerel. Sur Les Effets Electriques Qui se Produisent Sous L'influence solaire[J], C. R. Hebd. Sean. Acad. Sci.,1839,9:711-713.
    [32]. W. H. Brattain, C. G. B. Garrett. Experiments on the Interface between Germanium and an Electrolyte[J], Bell System Tech. J.1955,34:129-176.
    [33]. W. W. Gartner. Depletion-Layer Photoeffects in Semiconductors[J], Physical Rev.,1959,116:84-87.
    [34]. H. U. Harten. The Surface Recombination on Silicon Contacting an Electrolyte[J], J. Phys. Chem. Solids,1960,14:220-225.
    [35]. W. C. Tennant. Action of Lead Monoxide as an Inorganic Photosensitizer[J], J. Phys. Chem.,1968,72:1078-1080.
    [36]. J. Kruger. The Oxide Films Formed on Copper Single Crystal Surfaces in Pure Water[J], J. Electrochem. Soc.,1959,106:847-853.
    [37]. K. Leitner, J. W. Schultze, U. Stimming. Photoelectrochemical Investigations of Passive Films on Titanium Electrodes [J], J. Electrochem. Soc.,1986,133: 1561-1568.
    [38]. J. R. Birch, T. D. Burleigh. Oxides Formed on Titanium by Polishing, Etching, Anodizing, or Thermal Oxidizing[J], Corrosion,2000,56:1233-1241.
    [39]. S. Cattarin, M. Musiani. Photoelectrochemical Investigation of Film Formation at Titanium and Niobium Anodes in Acid Fluoride Media[J], J. Electroanal. Chem.,2001,571:101-108.
    [40]. A. W. E. Hodgson, Y. Mueller, D. Forster, et al. Electrochemical Characterisation of Passive Films on Ti Alloys under Simulated Biological Conditions[J], Electrochim. Acta,2002,47:1913-1923.
    [41]. T. D. Burleigh. Anodic Photocurrents and Corrosion Currents on Passive and Active-Passive Metals[J], Corrosion,1989.45:464-472.
    [42]. T. D. Burleigh. Photocurrents on Passive and Active-passive Metals[J], Corros. Sci.,1990,31:745-750.
    [43]. A. Goossens, M. Vazquez, D. D. Macdonald. The Nature of Electronic States in Anodic Zirconium Oxide Films Part 2:Photoelectrochemical Characterization[J], Electrochim. Acta,1996,41:47-55.
    [44]. F. Di Quarto, S. Piazza, C. Sunseri, et al. Photoelectrochemical Characterization of Thin Anodic Oxide Films on Zirconium Metal[J], Electrochim. Acta,1996. 41:2511-2521.
    [45]. M. Okui, T. Nishizaki. M. Uno. et al. Photoelectrochemical Study of Hydrogen in Zirconium Oxide[J]. J. Allys Comp.,2002,330-332:645-648.
    [46]. S. Menezes, R. Haak. G. Hagen, et al. Photoelectrochemical Characterization of Corrosion Inhibiting Oxide Films on Aluminum and Its Alloys[J], J. Electrochem. Soc.,1989,136:1884-1886.
    [47]. F. Di Quarto. C. Gentile, S. Piazza, et al. Photoelectrochemical Study on Anodic Aluminum Oxide Films[J], J. Electrochem. Soc.,1991,138:1856-1861.
    [48]. T. D. Burleigh. Photoelectrochemical Analysis of the Hydroxide Surface Films on Aluminum and its Alloys[J], Materials Science Forum,1995,185-188: 447-456.
    [49]. S. Lopez, J.-P. Petit, H. M. Dunlop, et al. Acid-Base Properties of Passive Films on Aluminum[J], J. Electrochem. Soc.,1998,145:823-829.
    [50]. S. Piazza, G. L. Biundo, M. C. Romano, et al. In Situ Characterization of Passive Films on Al-Ti Alloy by Photocurrent and Impedance Spectroscopy[J], Corros. Sci.,1998,40:1087-1108.
    [51]. F. Di Quarto, A. Di Paola, C. Sunseri. Semiconducting Properties of Anodic WO3 Amorphous Films[J], Electrochim. Acta,1981,26:1177-1184.
    [52]. F. Di Quarto, C. Gentile, S. Piazza, et al. A Photoelectrochemical Study on Anodic Tantalum Oxide Films[J], Corros. Sci.,1993,35:801-808.
    [53]. P. Scholl, X. Shan, D. Bonham, et al. Photoelectrochemical Characterization of the Anodic Film on Zinc in KOH Solution[J]. J. Electrochem. Soc.,1991,138: 895-899.
    [54]. T. D. Burleigh, H. Gerischer. Photoelectrochemical Study of Oxide Layers on Tin in IN KOH[J], J. Electrochem. Soc.,1988,135:2938-2942.
    [55]. C. A. Moina, F. E. Barela, L. F. Hernandez, et al. Semiconductor Properties of Passive Oxide Layers on Binary Tin+Indium Alloys [J], J. Electroanal. Chem., 1997,427:189-197.
    [56]. S. Kapusta, N. Hackerman. Capacitive Studies of the Semiconducting Properties of Passive Tin Electrodes[J], Electrochim. Acta,1980,25:1001-1006.
    [57]. C. A. Moina, G. O. Ybarra. Study of Passive Films Formed on Sn in the 7-14 pH Range[J], J. Electroanal. Chem.,2001,504:175-183.
    [58]. T. D. Burleigh, R. M. Latanision. The Effect of Phosphorus on the Corrosion of Glassy Copper-Zirconium Alloys[J], Corrosion,1987,43:471-475.
    [59]. I. Epelboin. M. Keddam. Faradaic Impedances:Diffusion Impedance and Reaction Impedance[J],J. Electrochem. Soc.,1970.117:1052-1056.
    [60]. I. Epelboin, M. Keddam. Kinetics of Formation of Primary And Secondary Passivity in Sulphuric Aqueous Media[J], Electrochim. Acta,1972,17:177-186.
    [61]. I. Epelboin. C. Gabrielli. M. Keddam, et al. A Model of the Anodic Behaviour of Iron in Sulphuric Acid Medium[J], Electrochim. Acta.1975,20:913-916.
    [62]. R. D. Armstrong, K. Edmondson. The Impedance of Metals in the Passive and Transpassive Regions[J]. Electrochim. Acta.1973.18:937-943.
    [63]. R. D. Armstrong, K. Edmondson. The Impedance of Cadmium in Alkaline Solution[J], J. Electroanal. Chem.,1974,53:371-387.
    [64]. J. L. Ord, J. M. Bartlett. Electrical Behavior of Passive Iron[J], J. Electrochem. Soc.,1965,112:160-166.
    [65]. U. Stimming, J. W. Schultze. A Semiconductor Model of the Passive Layer on Iron Electrodes And Its Application to Electrochemical Reactions[J], Electrochim. Acta,1979,24:859-869.
    [66]. B. D. Cahan, C. T. Chen. The Nature of the Passive Film on Iron[J], J. Electrochem. Soc.,1982,129:474-480.
    [68]. T Ohtsuka, T Otsuki. The Influence of the Growth Rate on the Semiconductive Properties of Titanium Anodic Oxide Films[J], Corros. Sci.,1998,40:951-958.
    [70]. D. J. Blackwood. Influence of the Space-charge Region on Electrochemical Impedance Measurements on Passive Oxide Films on Titanium [J], Electrochim. Acta,2000,46:563-569.
    [71]. A. Goossens, M. Vazques, D. D. Macdonald. The Nature of Electronic States in Anodic Zirconium Oxide Films Part 1:The Potential Distribution[J], Electrochim. Acta,1996,41:35-45.
    [72]. K. Juttner. Electrochemical Impedance Spectroscopy (EIS) of Corrosion Processes on Inhomogeneous Surfaces[J], Electrochim. Acta,1990,35: 1501-1508.
    [73]. J. Sikora, E. Sikora, D. D. Macdonald. The Electronic Structure of the Passive Film on Tungsten[J], Electrochim. Acta,2000,45:1875-1883.
    [74]. M. Metikos-Hukovic, S. Omanovic, A. Jukic. Impedance Spectroscopy of Semiconducting Films on Tin Electrodes[J], Electrochim. Acta.1999.45: 977-986.
    [75]. S. M. Wilhelm, K. S. Yun, L. W. Ballenger, et al. Semiconductor Properties of Iron Oxide Electrodes[J], J. Electrochem. Soc.,1979,126:419-424.
    [76]. S. M. Wilhelm, N. Hackerman. Photoelectrochemical Characterization of the Passive Films on Iron and Nickel[J], J. Electrochem. Soc.,1981,128: 1668-1674.
    [78]. K. Azumi, T. Ohtsuka, N. Sato. An Analysis of Transient Photocurrents Measured on Passivated Iron Electrodes[J], Corros. Sci.,1990,31:715-720.
    [79].衫本克久,松田史朗,一色实,等.高纯度铁の腐食特性[J],日本金属学会志.1982,46:155-161.
    [80]. M. Yang, L. Chen, S. Cai. Photoelectrochemical Study of Pitting on Iron in Borate Buffer Solution Containing Inhibitor[J], Corrosion,1997,53:11-15.
    [81]. Joon Shick Kim, Eun Ae Cho, Hyuk Sang Kwon. Photoelectrochemical Study on the Passive Film on Fe[J], Corros. Sci.,2001,43:1403-1415.
    [82]. C. Sunseri, S. Piazza, F. Di Quarto. Photocurrent Spectroscopic Investigations of Passive Films on Chromium[J], J. Electrochem. Soc.,1990,137:2411-2417.
    [83]. F. Di Quarto, S. Piazza, C. Sunseri. A Photocurrent Spectroscopic Investigation of Passive Films on Chromium [J], Corros. Sci.,1990,31:721-726.
    [84]. P. C. Searson, R. M. Latanision. A Photoelectrochemical Study of the Passive Film on Chromium[J], Electrochim. Acta,1990,35:445-450.
    [85]. De-Sheng Kong, Shen-Hao Chen, Chao Wang, et al. A Study of the Passive Films on Chromium by Capacitance Measurement[J]. Corros. Sci.,2003,45: 747-758.
    [86]. JoonShick Kim, EunAe Cho, HyukSang Kwon. Photo-electrochemical Analysis of Passive Film Formed on Cr in pH 8.5 Buffer Solution[J], Electrochim. Acta, 2001,47:415-421.
    [87]. P. Schmuki, M. Buchler, S. Virtanen, et al. Bulk Metal Oxides as a Model for the Electronic Properties of Passive Films[J], J. Electrochem. Soc.,1995,142: 3336-3342.
    [88]. S. Virtanen. P. Schmuki, H. Bohni, et al. Artificial Cr-and Fe-Oxide Passive Layers Prepared by Sputter Deposition[J], J. Electrochem. Soc.,1995,142: 3067-3972.
    [89]. M. Buchler, P. Schmuki. H. Bohni, et al. Comparison of the Semiconductive Properties of Sputter-Deposited Iron Oxides with the Passive Film on Iron[J], J. Electrochem. Soc.,1998.145:378-385.
    [90]. M. Metikos-Hukovic, M. Ceraj-Ceric.p-Type and n-Type Behavior of Chromium Oxide as a Function of the Applied Potential[J], J. Electrochem. Soc. 1987,134:2193-2197.
    [91]. C. Sunseri, S. Piazza. A. Di Paola. et al. A Photocurrent Spectroscopic Investigation of Passive Films on Ferritic Stainless Steels[J], J. Electrochem. Soc.,1987,134:2410-2416.
    [92]. A. Di Paola, F. Di Quarto, C. Sunseri. A Photoelectrochemical Characterization of Passive Films on Stainless Steels[J], Corros. Sci.,1986,26:935-948.
    [93]. A. Di Paola. Study of Passive Films on Stainless Steels by Photocurrent Measurements [J], Corros. Sci.,1990,31:739-744.
    [94]. A. Di Paola, D. Shukla, U. Stimming. Photoelectrochemical Study of Passive Films on Stainless Steel in Neutral Solutions[J], Electrochim. Acta,1991,36: 345-352.
    [95]. A. Di Paola. Semiconducting Properties of Passive Films on Stainless Steels[J], Electrochim. Acta,1989,34:203-210.
    [96]. M. J. Kloppers, F. Bellucci, R. M. Latanision. Application of Surface Analysis Methods to Environmental/Material Interactions; in D. R. Baer, C. R. Clayton, G. D. Davis (eds), Proceeding, vol.91-7 The Electrochemical Society, Pennington, NJ. p287-297.
    [97]. M. J. Kloppers, F. Bellucci, R. M. Latanision. Electronic Properties and Defect Structure of Fe and Fe-Cr Passive Films[J]. Corrosion,1992.48:229-238.
    [98]. S. Virtanen, P. Schmuki, H. Bohni. Semiconductive Properties of Passive Films on Amorphous Fe-Base Alloys[J], Mater. Sci. Forum,1992,111-112:129-138.
    [99]. A. M. P. Simoes, M. G. S. Ferreira, B. Rondot, et al. Study of Passive Films Formed on AISI 304 Stainless Steel by Impedance Measurements and Photoelectrochemistry[J], J. Electrochem. Soc.,1990,137:82-87.
    [100]. A. M. P. Simoes, M. G. S. Ferreira, G. Lorang, et al. Influence of Temperature on the Properties of Passive Films Formed on AISI 304 Stainless Steel [J]. Electrochim. Acta,1991,36:315-320.
    [101]. N. E. Hakiki, S. Boudin, B. Rondot, et al. The Electronic Structure of Passive Films Formed on Stainless Steels[J], Corros. Sci.,1995.37:1809-1822.
    [102]. M. F. Montemor, M. G. S. Ferreira. M. Walls, et al. Influence of pH on Properties of Oxide Films Formed on Type 316L Stainless Steel. Alloy 600. and Alloy 690 in High-Temperature Aqueous Environments[J]. Corrosion,2003.59: 11-21.
    [103]. R. Babic, M. Metikos-Hukovic. Semiconducting Properties of Passive Films on AISI 304 and 316 Stainless Steels[J], J. Electroanal. Chem.,1993,358:143-161.
    [104]. E.-A. Cho. H.-S. Kwon. D. D. Macdonald. Photoelectrochemical Analysis on the Passive Film Formed on Fe-20Cr in pH 8.5 Buffer Solution[J], Electrochim. Acta,2002,47:1661-1688.
    [105]. C. Y. Chao, L. F. Lin, D. D. Macdonald. A Point Defect Model for Anodic Passive Films[J], J. Electrochem. Soc.,1981,128:1187-1194.
    [106]. M. Bojinov, G. Fabricius, T. Laitinen, et al. Conduction Mechanism of the Anodic Film on Fe-Cr Alloys in Sulfate Solutions[J], J. Electrochem. Soc.,1999, 146:3238-3247.
    [107]. M. Bojinov, I. Betova, I. Kanazirski, et al. Modelling the Anodic Corrosion of Alloys in Acid Solutions on the Basis of AC Impedance and Photoelectrochemical Measurements [J], Mater, Sci, Forum,1998,289-292: 979-988.
    [108]. S. Fujimoto, H. Tsuchiya, M. Sakamoto, et al. XPS, Impedance and Photo-Electrochemical Characterization of Passive Films on Ni and Ni-18Cr in Sulphuric Acid Solution[C], Proceedings of the 201st Meeting of the Electrochemical Society, Philadelphia, Pennsylvania,12-17 May,2002, pp 278-284.
    [109]. C. Sunseri, S. Piazza. F. Di Quarto. Passivation of Metals and Semiconductors[J]. Mater. Sci. Forum.1995.185-188:435-446.
    [110].R.H. Bube. Photoelectronic Properties of Semiconductors. Cambridge University Press. Cambridge, UK,1992. pp 121-125.
    [111]. Elzbieta Sikora, Digby D. Macdonald. Nature of the Passive Film on Nickel[J], Electrochim. Acta,2002.48,69-77.
    [112]. K. Darowicki, S. Krakowiak, P. Slepski. Selection of Measurement Frequency in Mott-Schottky Analysis of Passive Layer on Nickel[J], Electrochim. Acta, 2006.51:2204-2208.
    [113].M. Da Cunha Belo. N.E. Hakiki, M.G.S. Ferreira. Semiconducting Properties of Passive Films Formed on Nickel-base Alloys Type Alloy 600:Influence of the Alloying Elements[J], Electrochim. Acta,1999.44:2473-2481.
    [114]. N.E. Hakiki. M. Da Cunha Belo, A.M.P. Simoes, et al. Semiconducting Properties of Passive Films Formed on Stainless Steels[J], J. Electrochem. Soc. 1998.145:3821-3829.
    [115].J. Scherer, B.M. Ocko, O.M. Magnussen. Structure, Dissolution, and Passivation of Ni(111) Electrodes in Sulfuric Acid Solution:an in Situ STM, X-ray Scattering, and Electrochemical Study [J], Electrochim. Acta.2003,48: 1169-1191.
    [116]. P.C. Searson, R.M. Latanision. et al. Analysis of the Photoelectrochemical Response of the Passive Film on Iron in Neutral Solutions[J]. J. Electrochem. Soc.1988,135:1358-1363.
    [117]. H. Tsuchiya, S. Fujimoto, O. Chihara, et al. Semiconductive Behavior of Passive Films Formed on Pure Cr and Fe-Cr Alloys in Sulfuric Acid Solution[J], Electrochim. Acta,2002,47:4357-4366.
    [118]. S. Piazza, M. Sperandeo, C. Sunseri,et al.Photoelectrochemical Investigation of Passive layers Formed on Fe in Different Electrolytic Solutions[J], Corros. Sci., 2004,46:831-851.
    [119]. L. Marchetti, S. Perrin, Y. Wouters,et al. Photoelectrochemical Study of Nickel Base Alloys Oxide Films Formed at High Temperature and High Pressure Water[J], Electrochim. Acta,2010,55,5384-5392.
    [120].F.Di Quarto, C. Sunseri, S. Piazza, et al. Semiempirical Correlation between Optical Band Gap Values of Oxides and the Difference of Electronegativity of the Elements. Its Importance for a Quantitative Use of Photocurrent Spectroscopy in Corrosion Studies[J], J. Phys. Chem. B,1997.101:2519-2525.
    [121].Macdonald. D. D., The Point Defect Model for the Passive State[J], J. Electrochem. Soc.1992.139:3434-3449
    [122]. T.L. Sudesh L; Wijesinghe; D.J. Blackwood. Characterisation of passive Films on 300 Series Stainless Steels[J]. Appl. Surf. Sci.2006.253:1006-1009.
    [123]. H. Tsuchiya; S. Fujimoto. Semiconductor Properties of Passive Films Formed on Sputter-deposited Fe-18Cr Alloy Thin Films with Various Additive Elements[J], Sci. Technol. Adv. Mater.2004,5:195-200.
    [124]. Henry S, Mougin J, Wouters Y, et al. Characterization of Chromia Scales Grown on Pure Chromium in Different Oxidizing Atmospheres[J], Mater High Temp,2000; 17:231-235.
    [125]. Calvarin G. Huntz A M, Molins R. Oxidation Mechanism of Ni-20Cr Thin Strips and Effect of a Mechanical Loading[J], Mater High Temp,2000; 17:257-264.
    [126]. Balaji S, Kalai S R, John B L, et al. Combustion Synthesis and Characterization of Sn4+Substituted Nanocrystalline NiFe2O4[J]. Mater Sci Eng,2005; B 119:119-124.
    [127]. Carpenter M K, Corrigan D A. Photoelectrochemistry of Nickel Hydroxide Thin Films[J], J Electrochem Soc,1989.136:1022-1026.
    [128]. Marchetti L, Perrin S, Raquet O, et al. Corrosion Mechanisms of Ni-Base Alloys in Pressurized Water Reactor Primary Conditions[J], Mater Sci Forum, 2008; 595-598:529-537.
    [129]. K. Fruzzetti. Pressurized Water Reactor Primary Water Zinc Application Guidelines, EPRI TR-113420, Palo Alto, USA; EPRI 2006
    [130]. M. Da Cunha Belo, M. Walls, N.E. Hakiki, et al. Composition, Structure and Properties of the Oxide Films Formed on the Stainless Steel 316L in a Primary Type PWR Environment[J], Corros. Sci.,1998,40:447-463.
    [131]. Y. Wouters, G. Bamba, A. Galerie, et al. Oxygen and Water Vapour Oxidation of 15Cr Ferritic Stainless Steels with Different Silicon Contents[J], Mater. Sci. Forum,2004,461-464:839-848.
    [132]. F. Di Quarto, S. Piazza, C. Sunseri. Photoelectrochemistry in Corrosion Studies: Achievements and Perspectives[J], Mater. Sci. Forum,1995,192-194:633-648.
    [133]. V. N. Antonov, B. N. Harmon, A. N. Yaresko. Electronic Structure and x-ray Magnetic Circular Dichroism in Fe3O4 and Mn-,Co-,or Ni-substituted Fe3O4[J], Phys.Rev.B:Condens.Matter.,2003,67:024417-024430.
    [134].F.Di Quarto,M.C.Romano.M.Santamaria,et al.A Semiempirical Correlation Between the Optical Band Gap of Hydroxides and the Electronegativity of Their Constituents[J],Russ.J.Electrochem.,2000,36: 1203-1208.
    [135].Buchler M.Schmuki P.Bohni H,et al.Comparison of the Semiconductive Properties of Sputter-deposited Iron Oxides with the Passive Film on Iron[J].J. Electrochem Soc.1998.145:378-385.
    [136].R.Oltra,M.Keddam.Application of EIS to Localized Corrosion[J]. Electrochim.Acta.1990.35:1619一1629
    [137].R.Oltra,M.Keddam.Application of Impedance Techniqtie to Localized Corrosion[J].Corros.Sci.1988.28:1-5,7-18
    [138].F.Mansfeld.S.Lin.S.Kim.H.Shih.Pitting and Passivation of Al Alloys and A1-based Metal Matrix Composites[J].J.Electrochem.Soc.1990.137:78-82.
    [139].F.Mansfeld,M.W.Kendig.Evaluation of Anodized Aluminum Surfaces with Electrochemical Impedance Spectroscopy[J].J.Electrochem.Soc.1988,135: 828-833.
    [140].F.Mansfeld,H.Shih.Detection of Pitting with Electrochemical Impedance Spectroscopy[J].J.Electrochem.Soc.1988,135:1171-1172.
    [141].Jin-Ju Park,Su-Il Pyun.Pit Formation and Growth of Alloy 600 in Cl-Ion—containing Thiosulphate Splution at Temperatures 298-573 K Using Fractal Geometry[J].Corros.Sci.2003,45:995-1010.
    [142].P.C.Pistorius,G.T.Burstein.Growth of Corrosion Pits on Stainless Steel in Chloride Solution Containing Dilute Sulphate [J].Corros. Sci.1992,33: 1885-1887.
    [143].David E.Williams,John Stewart,Peter H.Balkwill.The Nucleation,Growth and Stability of Micropits in Stainless Steel[J].Corros.Sci.1994.36: 1213-1235.
    [144].S.T.Pride,J.R.Scully,J.L.Hudson.Metastable Pitting of Aluminum and Criteria for the Transition to Stable Pit Growth[J].J.Electrochem.Soc.1994,41: 3028-3030
    [145].N.J.Laycock,R.C.Newman.Localised Dissolution Kinetics,Salt Films and Pitting Potentials[J].Corros.Sci.1997.39:1771-1790.
    [146].S.Krakowiak,K.Darowicki,P.Slepski.Impedance Investigation of Passive 304 Stainless Steel in the Pit Pre-initiation State [J]. Eletrochimica Acta.2005. 50:2699-2704.
    [147]. K. Darowicki, S. Krakowiak, P. Slepski. Evaluation of Pitting Corrosion by Means of Dynamic Electrochemical Impedance Spectroscopy [J]. Eletrochimica Acta.2004,49:2909-2918.
    [148]. J. Hitzig, K. Juttner. W.J. Lorenz, W. Paatsch. AC-impedance Measurements on Porous Aluminium Oxide Films [J]. Corros. Sci.1984,24:945-952.
    [149]. P.L. Cabot, J.A. Garrido. E. Perez, et al. Eis Study of Heat-treated Al-Zn-Mg Alloys in the Passive and Transpassive Potential Regions [J]. Electrochim. Acta. 1995,40:447-454.
    [150]. L. Chen, N. Myung, P.T.A. Sumodjo, et al. A Comparative Electrodissolution and Localized Corrosion Study of 2024A1 in Halide Media [J]. Electrochim. Acta.1999.44:2751-2764.
    [151]. T. Hong. G. w. Walter, M. Nagumo. The Observation of the Early Stages of Pitting on Passivated Type 304 Stainless Steel in a 0.5 M NaCl Solution at Low Potentials in the Passive Region by Using the AC Impedance Method [J]. Corros. Sci.1996.38:1525-1533.
    [152]. T. Hong. M. Nagumo. The Effect of Chloride Concentration on Early Stages of Pitting for Type 304 Stainless Steel Revealed by the AC Impedance Method [J]. Corros. Sci.1997.39:285-293.
    [153]. J.M. Bastidas. J.L. Polo. C.L. Torres, et al. A Study on the Stability of AISI 316L Stainless Steel Pitting Corrosion Through its Transfer Function [J]. Corros. Sci.2001,43:269-281.
    [154]. F. Wenger, S. Cheriet, B. Talhi, et al. Electrochemical Impedance of Pits. Influence of the Pit Morphology [J]. Corros. Sci.1997,39:1239-1252.
    [155]. J. M. Bastidas, M. F. Lopez. A. Gutierrez,et al.Chemical Analysis of Passive Films on Type AISI 304 Stainless Steel Using Soft X-ray Absorption Spectroscopy [J]. Corros. Sci.1998,40:435-438
    [156]. M.J. Carmezim, A.M. Simoes, M.F. Montemor, et al. Capacitance Behavior of Passive Films on Ferritic and Austenitic Stainless Steel [J]. Corros. Sci.2005, 47:581-591.
    [157]. F. J. Perez, A. Gutierrez, M. F. Lopez, et al. Surface Modification of Ion-implanted AISI 304 Stainless Steel After Oxidation Process:X-ray Absorption Spectroscopy Analysis [J]. Thin Solid Films.2002,415:258-265.
    [158]. J. Hitzig, K. Juttner, W.J. Lorenz, W. Paatsch. AC-Impedance Measurements on Corroded Porous Aluminum Oxide Films [J]. J. Electrochem. Soc.1986.133: 887-892.
    [159]. K. Juttner. W.J. Lorenz, W. Paatsh. The Role of Surface Inhomogeneities in Corrosion Processes-electrochemical Iimpedance Spectroscopy (EIS) on Different Aluminum Oxide Films [J]. Corros. Sci.1989.29:279-288.
    [160]. J. R. Park, D.D. Macdonald. Impedance Studies of the Growth of Porous Magnetite Films on Carbon Steel in High Temperature Aqueous Systems [J]. Corros. Sci.1983.23:295-315.
    [161]. H. S. Isaacs. The Behavior of Resistive Layers in the Localized Corrosion of Stainless Steel [J]. J. Electrochem. Soc.1977,120:1456-1462.
    [162]. J. Mankowski, Z. Szklarska-Smialowska. The Effect of Specimen Position on the Shape of Corrosion Pits in an Austenitic Stainless Steel [J]. Corros. Sci. 1977.17:725-735.
    [163]. Z. Szklarska-Smialowska. Pitting Corrosion of Metals[J], NACE.1986, p.221-223.
    [164]. G. S. Frankel. Pitting Corrosion of Metals[J]. J. Electrochem. Soc.,1998. 145(8):2186-2198.
    [165]. H. P. Leckie, H. H. Uhlig. Environmental Factors Affecting the Critical Potential for Pitting in 18-8 Stainless Steel[J]. J. Electrochem. Soc.,1966, 113(12):1262-1267.
    [166]. T. P. Hoar. The Corrosion of Tin in Nearly Neutral Solutions[J]. Trans. Faraday Soc.,1937,33(4),1152-1167.
    [167]. J. R. Galvele. Transport Processes and the Mechanism of Pitting of Metals[J]. J. Electrochem. Soc.,1976,123:464-474.
    [168]. J. R. Galvele, J. B. Lumsden, R. W. Staehle. Effect of Molybdenum on the Pitting Potential of High Purity 18% Cr Ferritic Stainless Steels[J]. J. Electrochem. Soc.,1978,125(8):1204-1208.
    [169]. Z. Szklarska-Smialowska, Pitting Corrosion of Metals[J], NACE,1986, p296-299

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700