高倍率氟化铁纳米电极的构筑与电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,氟化铁作为一种新型的锂离子电池正极材料,以其较高的平台电位、高达237mAh g1的理论容量和低廉的价格吸引了研究人员的广泛关注。尽管具有以上的这些优点,氟化铁材料固有的低锂离子电导率和电子电导率在很大程度上限制了其倍率性能的发挥。本文针对氟化铁的特点,从构筑氟化铁电极结构的角度出发,设计合成了四种具有独特微观结构的氟化铁电极材料。借助X射线衍射、拉曼光谱、扫描电子显微镜、氮气吸脱附测试、透射电子显微镜、电池充放电测试、电化学交流阻抗谱等分析测试手段,深入全面的表征了制备材料的物理化学性质并系统研究了其电化学嵌脱锂性能。
     采用“绿色溶剂”[Bmim][BF4]离子液体作为氟源和石墨烯纳米片的分散剂,利用离子液体咪唑阳离子与石墨烯π电子之间的强烈作用,使石墨烯在反应体系中均匀分散,这样就避免了使用氧化石墨烯所带来的后续还原处理。整个复合过程为一步原位合成法,FeF3·0.33H2O纳米晶成核和结晶长大的过程都发生在石墨烯的表面,这种原位的复合方法保证了石墨烯和氟化铁颗粒紧密的导电接触,为其优异的倍率性能和循环性能提供了结构方面的保证。FeF3·0.33H2O/GNS复合电极材料在1C充放电倍率下,经过200次循环,放电容量依然可以保持在142mAh g1;在10C充放电倍率下循环250次,容量依然可以保持在115mAh g1。
     采用纳米浇铸的方法,制备了具有高速电子传输速率和发达孔道结构的FeF3·0.33H2O@CMK-3复合电极材料。FeF3·0.33H2O颗粒与高电子电导的CMK-3牢固接触,构筑了一个优越的导电网络。FeF3·0.33H2O纳米晶的生长和团聚被有序介孔碳的孔道结构有效地限制,微小的FeF3·0.33H2O纳米晶可以促进电子和Li+传输,从而显著改善材料的电化学性能。复合电极材料具有适合Li+快速传输的规则有序的孔道结构,巨大的比表面积保证了电解液与活性物质的充分接触。这些因素有机结合,相互协同作用,使FeF3·0.33H2O@CMK-3复合电极材料倍率性能得到了显著的改善。在高达50C的放电倍率下,进行100次充放电循环,复合电极材料的放电容量依然可以稳定的保持在79mAh g1左右。
     基于碳纳米角π电子与离子液体[Bmim][BF4]咪唑环之间的π-π相互作用,采用简单的液相合成方法,制备了具有高比表面积和发达孔结构的FeF3·0.33H2O@CNHs复合电极材料。在FeF3·0.33H2O@CNHs复合电极材料中,FeF3·0.33H2O纳米颗粒主要位于相邻的锥形碳纳米管形成的空隙位置,由于相邻锥形碳管的限域作用有效地限制了FeF3·0.33H2O纳米颗粒的长大和团聚,使得具有微小尺寸的FeF3·0.33H2O(~5nm)纳米颗粒均匀的分散于碳纳米角形成的导电网络结构中。氮气吸脱附测试的结果显示,FeF3·0.33H2O@CNHs的比表面积高达268.9m2g1,平均孔径尺寸为5.59nm,发达的孔道结构和大比表面积保证了电解液的充分浸润和锂离子的快速传输。FeF3·0.33H2O@CNHs复合电极材料在0.5C、1C、2C、5C、10C和20C的倍率下进行充放电,放电容量分别为169,157,140,131、120和106mAh g1。在高达50C的充放电倍率下,复合电极材料依然可以稳定的释放高达81mAh g1的容量。在1C的充放电倍率下,50次充放电循环后放电容量为153mAh g1。
     采用溶剂热合成的方法,制备了具有分等级结构的自支撑FeF3·0.33H2O花状阵列电极,通过分析不同溶剂热反应时间所得样品的微观形貌,研究FeF3·0.33H2O花状阵列的生长机理。FeF3·0.33H2O花状阵列是由10nm厚的―纳米花瓣”相互连接形成直径约为1μm的分等级花状结构。进一步借助氮气吸脱附测试对花状阵列的孔径分布进行了分析,样品在3.5nm和10-20nm这两个位置存在着明显的介孔分布。其中,3.5nm的介孔为组成“纳米花瓣”的纳米颗粒之间形成的孔道;而10-20nm的介孔则对应着相邻的“纳米花瓣”之间形成的开放孔道结构。FeF3·0.33H2O花状阵列不仅具有高速的电子传输通道,还兼具开放的花状结构、独特的等级孔道结构和大比表面积,这些独特的结构特点使FeF3·0.33H2O电极材料的电化学性能得到了显著的提高。
Iron fluoride has attracted a rapidly increasing amount of attention because of its high operating potential, high theoretical capacity of237mAh g1, and relatively low cost. Despite these advantages, the application of iron trifluoride has been limited due to its intrinsic drawbacks, for instance, the slow diffusion of Li+and low electron conductivity. With regards to the features of iron fluoride, our work develops several new strategies to construct four kinds iron fluoride electrode materials with unique nanostructure. X-ray diffraction, Raman spectrum, Scanning Electron Microscopy, Nitrogen adsorption-desorption techniques, Transmission Electron Microscopy, Discharge/charge measurement and Electrochemical impedance spectroscopy are applied to characterize the physicochemical properties and electrochemical behavior of Li+insertion/extraction process of the as-obtained iron trifluoride smaples.
     A tactful ionic-liquid (IL)-assisted approach on in situ synthesis of iron fluoride/graphene nanosheet (GNS) hybrid nanostructures was developed. To ensure uniform dispersion and tight anchoring of the iron fluoride on graphene, we employed an IL which served not only as a green fluoride source for the crystallization of iron fluoride nanoparticles but also as a dispersant of GNSs. GNSs were chosen as the starting materials instead of graphene oxide (GO), to avoid additional reductive treatment to obtain GNSs from GO, which could easily cause destruction to the structure of iron fluoride. Thus, both the nucleation and crystallization of FeF3·0.33H2O nanoparticles occurred on the surface of GNSs. It is a typical one-pot and in situ method. Owing to the electron transfer highways created between the nanoparticles and the GNSs, the iron fluoride/GNS hybrid cathodes exhibited a remarkable improvement in both high-rate and long-term cycle performance. The iron fluoride/GNS hybrid shows an impressive rate cycling performance of142mAh g1at1C after200cycles and115mAh g1at10C after250cycles.
     We also reported a facile strategy for the synthesis of mesoporous FeF3·0.33H2O@CMK-3nanocomposite with high electron conductivity and well-developed pore structure by nanocasting technique, in which iron fluoride nanoparticles were confined in mesoporous CMK-3. The intimate conductive contact between the FeF3·0.33H2O nanoparticles and the carbon framework provides an expressway of electron transfer for Li+insertion/extraction. Here, the CMK-3can suppress the growth and agglomeration of FeF3·0.33H2O nanoparticles during the crystallization process. The small FeF3·0.33H2O particles confined in mesoporous carbon matrix exhibited reduced electron and Li+transport resistance, which improved the electrochemical performance of the FeF3·0.33H2O@CMK-3nanocomposite. Additionally, well-defined, continuous channels provide a large specific surface area that increases the electrolyte-electrode contact area, ensuring that the electrolyte could easily penetrate the mesoporous. By combining these outstanding qualities, the FeF3·0.33H2O@CMK-3nanocomposite demonstrated excellent ultra-high rate performance. Remarkably, even under an ultrahigh charge/discharge rate of50C, the confined FeF3·0.33H2O@CMK-3showed a stable high specific capacity of79mAh g1after100cycles.
     Based on the π-cation interactions between the imidazolium cation of the [Bmim][BF4] and the π-electrons of the carbon nanohorns, the carbon nanohorns (CNHs) carried FeF3·0.33H2O nanocomposites (FeF3·0.33H2O@CNHs) with large specific surface area and well-developed pore structure was presented by a facile solution-based method for the first time. In the FeF3·0.33H2O@CNHs nanocomposites, the FeF3·0.33H2O nanoparticles were mainly located in the interstitial site between horn-shaped carbon nanotubes. The growth and agglomeration of FeF3·0.33H2O nanoparticles were effectively suppressed by the carbon nanohorns. The tiny FeF3·0.33H2O nanoparticles (~5nm) were well dispersed among the conductive network. The Brunauer-Emmett-Teller (BET) specific surface area and pore size distribution of the FeF3·0.33H2O@CNHs nanocomposite were measured by nitrogen isothermal adsorption analysis. The BET surface area of the FeF3·0.33H2O@CNHs nanocomposite is as high as268.9m2g1, the BJH average pore size is5.59nm. The high BET specific surface area of the FeF3·0.33H2O@CNHs nanocomposite and the well-developed pore structure provides more reaction sites and is beneficial for electrolyte access. The discharge capacities of the nanocomposite at0.5C,1C,2C,5C,10C and20C are169,157,140,131,120and106mAh g1, respectively. The FeF3·0.33H2O@CNHs composite can delivery a stable high capacity of81mAh g1even under an ultrahigh rate of50C. Meanwhile, the nanocomposite shows a stable cycle performance of153mAh g1at1C after50cycles.
     At last, we presented a tactful and advanced architecture design of self-supported, binder-free3D hierarchical FeF3·0.33H2O flower-like array directly growing on Ti foil by a solvothermal approach. In order to understand the formation process of the iron fluoride, the morphologies of the samples were studied by SEM at different stages of the reaction. The probable growth mechanism of the3D microflower was explored by the time-dependent analysis. The entire structure of the3D hierarchical architectureis constructed with dozens of nanopetals. These nanopetals are approximately10nm thick and500nm wide, and connect to each other through the center to form3D hierarchical structure approximately1μm in diameter. The products were scraped off from the Ti foil and collected for nitrogen isothermal adsorption measurement to further examine the pore structure of the FeF3·0.33H2O3D microflower. The sample exhibits a unique hierarchical porous structure. The smaller pore of3.5nm is mainly contributed by the pores existing between the FeF3·0.33H2O nanoparticles. The larger pores between10 nm and20nm might stem from the open space between neighboring nanopetals. The excellent electrochemical performance of the FeF3·0.33H2O flower-like array could be definitely ascribed to the synergistic effect of charge transfer expressway, high specific surface area and porous hierarchical structure.
引文
[1] Liu J, Zhang J G, Yang Z, et al. Materials science and materials chemistry forlarge scale electrochemical energy storage: from transportation to electrical grid[J].Advanced Functional Materials,2013,23:929-946.
    [2] Choi N S, Chen Z, Freunberger S A, et al. Challenges facing lithium batteries andelectrical double-layer capacitors[J]. Angewandte Chemie-International Edition,2012,51:9994-10024.
    [3] Dunn B, Kamath H, Tarascon J M. Electrical energy storage for the grid: a batteryof choices[J]. Science,2011,334:928-935.
    [4]杨同勇.锂离子电池5V正极材料LiNi0.5Mn1.5O4的制备及改性[D].哈尔滨:哈尔滨工业大学,2011:1.
    [5] Jeong G, Kim Y U, Kim H, et al. Prospective materials and applications for Lisecondary batteries[J]. Energy&Environmental Science,2011,4:1986-2002.
    [6] Yang Z, Zhang J, Kintner-Meyer M C, et al. Electrochemical energy storage forgreen grid[J]. Chemical Reviews,2011,111:3577-3613.
    [7] Kim T H, Park J S, Chang S K, et al. The current move of lithium ion batteriestowards the next phase[J]. Advanced Energy Materials,2012,2:860-872.
    [8]谢凯,郑春满,洪晓斌等.新一代锂二次电池技术[M].北京:国防工业出版社,2013:15-17.
    [9] Goodenough J B, Kim Y. Challenges for rechargeable Li batteries[J]. Chemistryof Materials,2010,22:587-603.
    [10] Gong Z L, Yang Y. Recent advances in the research of polyanion-type cathodematerials for Li-ion batteries[J]. Energy&Environmental Science,2011,4:3223-3242.
    [11]庞春会,吴川,吴锋等.锂离子电池纳米正极材料合成方法研究进展[J].硅酸盐学报,2012,40:247-255.
    [12] Yuan L X, Wang Z H, Zhang W X, et al. Development and challenges of LiFePO4cathode material for lithium-ion batteries[J]. Energy&Environmental Science,2011,4:269-284.
    [13] Thackeray M M, Kang S H, Johnson C S, et al. Li2MnO3-stabilized LiMO2(M=Mn, Ni, Co) electrodes for lithium-ion batteries[J]. Journal of Materials Chemistry,2007,17:3112-3125.
    [14] Murphy W, Broodhead J, Steel B C. Materials for advanced batteries[J]. NewYork. Plenum Press,1980,145:99-101
    [15] Fey G T K, Kumar T P. Long-cycling coated LiCoO2cathodes for lithiumbatteries-A review[J]. Journal of Industrial and Engineering Chemistry,2004,10:1090-1103.
    [16] Mizushima K, Jones P C, Wiseman P J, et al. LixCoO2(0    [17] Thackeray M M, Wolverton C, Isaacs E D. Electrical energy storage fortransportation-approaching the limits of, and going beyond, lithium-ionbatteries[J]. Energy&Environmental Science,2012,5:7854-7863.
    [18] Whitingham M S. Lithium batteries and cathode materials[J]. Chemical Reviews,2004,104,10,4271-4301.
    [19] Antolini E. LiCoO2: formation, structure, lithium and oxygen nonstoichiometry,electrochemical behaviour and transport properties[J]. Solid State Ionics,2004,170:159-171.
    [20] Okubo M, Hosono E, Kim J, et al. Nanosize effect on high-rate Li-ionintercalation in LiCoO2electrode[J]. Journal of the American Chemical Society,2007,129:7444-7452.
    [21] Wei T, Zeng R, Sun Y, et al. A reversible and stable flake-like LiCoO2cathode forlithium ion batteries[J]. Chemical Communications,2014,50:1962-1964.
    [22] Hao Q, Xu C, Jia S, et al. Improving the cycling stability of LiCoO2at4.5Vthrough surface modification by Fe2O3coating[J]. Electrochimica Acta,2013,113:439-445.
    [23] Hudaya C, Park J H, Lee J K, et al. SnO2-coated LiCoO2cathode material forhigh-voltage applications in lithium-ion batteries[J]. Solid State Ionics,2014,256:89-92.
    [24] Shim J H, Lee S, Park S S. Effects of MgO coating on the structural andelectrochemical characteristics of LiCoO2as cathode materials for lithium ionbattery[J]. Chemistry of Materials,2014,26:2537-2543.
    [25]廖春发,陈辉煌,陈子平.稀土掺杂锂离子电池正极材料LiCoO2的影响研究[J].江西有色金属,2004,18:33-37.
    [26] Zhu X, Shang K, Jiang X, et al. Enhanced electrochemical performance ofMg-doped LiCoO2synthesized by a polymer-pyrolysis method[J]. CeramicsInternational,2014,40:11245-11249.
    [27] Geder J, Hoster H E, Jossen A, et al. Impact of active material surface area onthermal stability of LiCoO2cathode[J]. Journal of Power Sources,2014,257:286-292.
    [28] Wang Z, Wang Z, Guo H, et al. Enhanced high-voltage electrochemicalperformance of LiCoO2coated with ZrOxFy[J]. Materials Letters,2014,123:93-96.
    [29] Yan B, Lim C, Yin L, et al. Simulation of heat generation in a reconstructedLiCoO2cathode during galvanostatic discharge[J]. Electrochimica Acta,2013,100:171-179.
    [30] Ding Y H, Zhang P, Long Z L, et al. The morphology, structure andelectrochemical properties of LiNi1/3Mn1/3Co1/3O2prepared by electrospunmethod[J]. Journal of Alloys and Compounds,2008,462:340-342.
    [31] Kageyama M, Li D, Kobayakawa K, et al. Structural and electrochemicalproperties of LiNi1/3Mn1/3Co1/3O2-xFx prepared by solid state reaction[J]. Journalof Power Sources,2006,157:494-500.
    [32] Kiziltas Y N, Herklotz M, Hashem A M, et al. Synthesis, structural, magnetic andelectrochemical properties of LiNi1/3Mn1/3Co1/3O2prepared by a sol-gel methodusing table sugar as chelating agent[J]. Electrochimica Acta,2013,113:313-321.
    [33] Koyama Y, Tanaka I, Adachi H, et al. Crystal and electronic structures ofsuperstructural Li1x[Co1/3Ni1/3Mn1/3]O2(0≤x≤1)[J]. Journal of Power Sources,2003,119-121:644-648.
    [34] Ngala J K, Chernova N A, Ma M, et al. The synthesis, characterization andelectrochemical behavior of the layered LiNi0.4Mn0.4Co0.2O2compound[J]. Journalof Materials Chemistry,2004,14:214-220.
    [35] Machida N, Kashiwagi J, Naito M, et al. Electrochemical properties ofall-solid-state batteries with ZrO2-coated LiNi1/3Mn1/3Co1/3O2as cathodematerials[J]. Solid State Ionics,2012,225:354-358.
    [36]蔡少伟.锂离子电池正极三元材料的研究进展及应用[J].电源技术,2013,37:1065-1068.
    [37] Riley L A, Van Ana S, Cavanagh A S, et al. Electrochemical effects of ALDsurface modification on combustion synthesized LiNi1/3Mn1/3Co1/3O2as alayered-cathode material[J]. Journal of Power Sources,2011,196:3317-3324.
    [38] Shivashankaraiah R B, Manjunatha H, Mahesh K C, et al. Electrochemicalcharacterization of polypyrrole-LiNi1/3Mn1/3Co1/3O2composite cathode materialfor aqueous rechargeable lithium batteries[J]. Journal of Solid StateElectrochemistry,2012,16:1279-1290.
    [39] Han Y M, Zhang Z F, Zhang L B, et al. Influence of carbon coating prepared bymicrowave pyrolysis on properties of LiNi1/3Mn1/3Co1/3O2[J]. Transactions ofNonferrous Metals Society of China,2013,23:2971-2976.
    [40] Padhi A K, Nanjundaswamy K S, Goodenough J B. Phospho-olivines as positiveelectrode materials for rechargeable lithium batteries[J]. Journal of theElectrochemical Society,1997,144:1188-1194.
    [41] Jin E M, Jin B, Jun D K, et al. A study on the electrochemical characteristics ofLiFePO4cathode for lithium polymer batteries by hydrothermal method[J].Journal of Power Sources,2008,178:801-806.
    [42] Liu J, Jiang R, Wang X, et al. The defect chemistry of LiFePO4prepared byhydrothermal method at different pH values[J]. Journal of Power Sources,2009,194:536-540.
    [43] Yu F, Zhang J, Yang Y, et al. Reaction mechanism and electrochemicalperformance of LiFePO4/C cathode materials synthesized by carbothermalmethod[J]. Electrochimica Acta,2009,54:7389-7395.
    [44] Liu Y, Cao C, Li J. Enhanced electrochemical performance of carbonnanospheres-LiFePO4composite by PEG based sol-gel synthesis[J].Electrochimica Acta,2010,55:3921-3926.
    [45] Yang Z, Xia J, Zhi L, et al. An improved solid-state reaction route to Mg2+-dopedLiFePO4/C cathode material for Li-ion battery[J]. Ionics,2013,20:169-174.
    [46]黄学杰.锂离子电池正极材料磷酸铁锂研究进展[J].电池工业,2004,9:176-180.
    [47] Ni J, Zhao Y, Chen J, et al. Site-dependent electrochemical performance of Mgdoped LiFePO4[J]. Electrochemistry Communications,2014,44:4-7.
    [48] Nyten A, Abouimrane A, Armand M, et al. Electrochemical performance ofLi2FeSiO4as a new Li-battery cathode material[J]. ElectrochemistryCommunications,2005,7:156-160.
    [49] Kamon I O, Klysubun W, Limphirat W, et al. An insight into crystal, electronic,and local structures of lithium iron silicate (Li2FeSiO4) materials upon lithiumextraction[J]. Physica B: Condensed Matter,2013,416:69-75.
    [50] Liivat A. Structural changes on cycling Li2FeSiO4polymorphs from DFTcalculations[J]. Solid State Ionics,2012,228:19-24.
    [51] Lv D, Bai J, Zhang P, et al. Understanding the high capacity of Li2FeSiO4: In situXRD/XANES study combined with first-principles calculations[J]. Chemistry ofMaterials,2013,25:2014-2020.
    [52] Zhang P, Zheng Y, Yu S, et al. Insights into electrochemical performance ofLi2FeSiO4from first-principles calculations[J]. Electrochimica Acta,2013,111:172-178.
    [53] Zhou H, Einarsrud M A, Vullum B F. In situ X-ray diffraction and electrochemicalimpedance spectroscopy of a nanoporous Li2FeSiO4/C cathode during the initialcharge/discharge cycle of a Li-ion battery[J]. Journal of Power Sources,2013,238:478-484.
    [54] Masese T, Orikasa Y, Tassel C, et al. Relationship between phase transitioninvolving cationic exchange and charge-discharge rate in Li2FeSiO4[J]. Chemistryof Materials,2014,26:1380-1384.
    [55] Devaraju M K, Tomai T, Honma I. Supercritical hydrothermal synthesis of rodlike Li2FeSiO4particles for cathode application in lithium ion batteries[J].Electrochimica Acta,2013,109:75-81.
    [56] Yang J, Kang X, He D, et al. Hierarchical shuttle-like Li2FeSiO4as a highlyefficient cathode material for lithium-ion batteries[J]. Journal of Power Sources,2013,242:171-178.
    [57] Singh S, Mitra S. Improved electrochemical activity of nanostructuredLi2FeSiO4/MWCNTs composite cathode[J]. Electrochimica Acta,2014,123:378-386.
    [58] Zhang L L, Duan S, Yang X L, et al. Systematic investigation oncadmium-incorporation in Li2FeSiO4/C cathode material for lithium-ionbatteries[J]. Scientific Reports,2014,4:5064:1-8.
    [59] Zhu H, Wu X, Zan L, et al. Superior electrochemical capability of Li2FeSiO4/C/Gcomposite as cathode material for Li-ion batteries[J]. Electrochimica Acta,2014,117:34-40.
    [60] Idemoto Y, Inoue M, Kitamura N. Composition dependence of average and localstructure of xLi(Li1/3Mn2/3)O2-(1x)Li(Mn1/3Ni1/3Co1/3)O2active cathode materialfor Li ion batteries[J]. Journal of Power Sources,2014,259:195-202.
    [61]杜柯,胡国荣.锂离子电池正极材料富锂锰基固溶体的研究进展[J].科学通报,2012,57:794-804.
    [62]张洁,王久林,杨军.锂离子电池用富锂正极材料的研究进展[J].电化学,2013,19:215-224.
    [63] Shen C H, Wang Q, Fu F, et al. Facile synthesis of the Li-rich layered oxideLi1.23Ni0.09Co0.12Mn0.56O2with superior lithium storage performance and newinsights into structural transformation of the layered oxide material duringcharge-discharge cycle: in situ XRD characterization[J]. ACS Applied Materials&Interfaces,2014,6:5516-5524.
    [64] Numata K, Sakaki C, Yamanaka S. Synthesis of solid solutions in a system ofLiCoO2-Li2MnO3for cathode materials of secondary lithium batteries[J].Chemistry Letters,1997,8:725-726.
    [65] Wu F, Wang Z, Su Y, et al. Li[Li0.2Mn0.54Ni0.13Co0.13]O2-MoO3compositecathodes with low irreversible capacity loss for lithium ion batteries[J]. Journal ofPower Sources,2014,247:20-25.
    [66] Xiang X, Li W. Self-directed chemical synthesis of lithium-rich layered oxideLi[Li0.2Ni0.2Mn0.6]O2with tightly interconnected particles as cathode of lithiumion batteries with improved rate capability[J]. Electrochimica Acta,2014,127:259-265.
    [67] Yu H, Qian Y, Otani M, et al. Study of the lithium/nickel ions exchange in thelayered LiNi0.42Mn0.42Co0.16O2cathode material for lithium ion batteries:experimental and first-principles calculations[J]. Energy&EnvironmentalScience,2014,7:1068-1078.
    [68]吴晓彪,董志鑫,郑建明等.锂离子电池正极材料Li[Li0.2Mn0.54Ni0.13Co0.13]O2的碳包覆研究[J].厦门大学学报(自然科学版),2008,47:224-227.
    [69] Zhang Q, Peng T, Zhan D, et al. Synthesis and electrochemical property ofxLi2MnO3·(1x)LiMnO2composite cathode materials derived from partiallyreduced Li2MnO3[J]. Journal of Power Sources,2014,250:40-49.
    [70] Baggetto L, Mohanty D, Meisner R A, et al. Degradation mechanisms oflithium-rich nickel manganese cobalt oxide cathode thin films[J]. RSC Advances,2014,4:23364-23371.
    [71] Hy S, Felix F, Rick J, et al. Direct in situ observation of Li2O evolution on Li-richhigh-capacity cathode material, Li[NixLi(1-2x)/3Mn(2-x)/3]O2(0    [72] Iddir H, Benedek R. First-Principles analysis of phase stability in layered-layeredcomposite cathodes for lithium-ion batteries[J]. Chemistry of Materials,2014,26:2407-2413.
    [73] Armstrong A R, Holzapfel M, Novak P, et al. Demonstrating oxygen loss andassociated structural reorganization in the lithium battery cathodeLi[Ni0.2Li0.2Mn0.6]O2[J]. Journal of the American Chemical Society,2006,128:8694-8698.
    [74] Yabuuchi N, Yoshii K, Myung S T, et al. Detailed studies of a high-capacityelectrode material for rechargeable batteries, Li2MnO3-LiCo1/3Ni1/3Mn1/3O2[J].Journal of the American Chemical Society,2011,133:4404-4419.
    [75] Li H, Balaya P, Maier J. Li-storage via heterogeneous reaction in selected binarymetal fluorides and oxides[J]. Journal of the Electrochemical Society,2004,151:A1878-A1885.
    [76] Armstrong M J, Panneerselvam A, O'Regan C, et al. Supercritical-fluid synthesisof FeF2and CoF2Li-ion conversion materials[J]. Journal of Materials ChemistryA,2013,1:10667-10676.
    [77] Nishijima M, Gocheva I D, Okada S, et al. Cathode properties of metaltrifluorides in Li and Na secondary batteries[J]. Journal of Power Sources,2009,190:558-562.
    [78]王欣,王先友,伍文等.锂二次电池金属氟化物正极材料研究进展[J].电源技术,2009,33:231-235.
    [79]王欣.锂二次电池新型正极材料BiF3的制备、改性和电化学性能研究[D].湘潭:湘潭大学,2009:10-11.
    [80] Wang F, Robert R, Chernova N A, et al. Conversion reaction mechanisms inlithium ion batteries: study of the binary metal fluoride electrodes[J]. Journal ofthe American Chemical Society,2011,133:18828-18836.
    [81] Wiaderek K M, Borkiewicz O J, Castillo M E, et al. Comprehensive insights intothe structural and chemical changes in mixed-anion FeOF electrodes by usingOperando PDF and NMR spectroscopy[J]. Journal of the American ChemicalSociety,2013,135:4070-4078.
    [82] Wiaderek K M, Borkiewicz O J, Pereira N, et al. Mesoscale effects inelectrochemical conversion: coupling of chemistry to atomic-and nanoscalestructure in iron-based electrodes[J]. Journal of the American Chemical Society,2014,136:6211-6214.
    [83] Yamakawa N, Jiang M, Key B, et al. Identifying the local structures formedduring lithiation of the conversion material, iron fluoride, in a Li ion battery: asolid-state NMR, X-ray diffraction, and pair distribution function analysis study[J].Journal of the American Chemical Society,2009,131:10525-10536.
    [84] Garcia T E, Valvo M, Lafont U, et al. Nanostructured Fe2O3and CuO compositeelectrodes for Li ion batteries synthesized and deposited in one step[J]. Journal ofPower Sources,2011,196:6425-6432.
    [85] Shadike Z, Zhou Y N, Ding F, et al. The new electrochemical reaction mechanismof Na/FeS2cell at ambient temperature[J]. Journal of Power Sources,2014,260:72-76.
    [86] Geng H B, Zhou Q, Pan Y, et al. Preparation of fluorine-doped,carbon-encapsulated hollow Fe3O4spheres as an efficient anode material forLi-ion batteries[J]. Nanoscale,2014,6:3889-3894.
    [87] Badway F, Pereira N, Cosandey F, et al. Carbon-metal fluoridenanocomposites-structure and electrochemistry of FeF3:C[J]. Journal of theElectrochemical Society,2003,150: A1209-A1218.
    [88]李婷.锂离子电池高容量转化正极材料的研究[D].武汉:武汉大学,2011:30-31.
    [89] Makimura Y, Rougier A, Tarascon J M. Pulsed laser deposited iron fluoride thinfilms for lithium-ion batteries[J]. Applied Surface Science,2006,252:4587-4592.
    [90] Gonzalo E, Kuhn A, Garcia A F. On the room temperature synthesis of monoclinicLi3FeF6: A new cathode material for rechargeable lithium batteries[J]. Journal ofPower Sources,2010,195:4990-4996.
    [91] Liu P, Vajo J J, Wan J S, et al. Thermodynamics and kinetics of the Li/FeF3reaction by electrochemical analysis[J]. Journal of Physical Chemistry C,2012,116:6467-6473.
    [92] Chu Q X, Xing Z C, Ren X B, et al. Reduced graphene oxide decorated with FeF3nanoparticles: Facile synthesis and application as a high capacity cathode materialfor rechargeable lithium batteries[J]. Electrochimica Acta,2013,111:80-85.
    [93] Chu Q X, Xing Z C, Tian J Q, et al. Facile preparation of porous FeF3nanospheres as cathode materials for rechargeable lithium-ion batteries[J]. Journalof Power Sources,2013,236:188-191.
    [94] Tan H J, Smith H L, Kim L, et al. Electrochemical cycling and lithium insertion innanostructured FeF3cathodes[J]. Journal of the Electrochemical Society,2014,161: A445-A449.
    [95] Ma R G, Lu Z G, Wang C D, et al. Large-scale fabrication of graphene-wrappedFeF3nanocrystals as cathode materials for lithium ion batteries[J]. Nanoscale,2013,5:6338-6343.
    [96] Xu X P, Chen S, Shui M, et al. One step solid state synthesis of FeF3·0.33H2O/Cnano-composite as cathode material for lithium-ion batteries[J]. CeramicsInternational,2014,40:3145-3148.
    [97] Tan J L, Liu L, Hu H, et al. Iron fluoride with excellent cycle performancesynthesized by solvothermal method as cathodes for lithium ion batteries[J].Journal of Power Sources,2014,251:75-84.
    [98] Lu Y, Wen Z Y, Jin J, et al. Hierarchical mesoporous iron-based fluoride withpartially hollow structure: facile preparation and high performance as cathodematerial for rechargeable lithium ion batteries[J]. Physical Chemistry ChemicalPhysics,2014,16:8556-8562.
    [99] Liu J, Liu W, Ji S M, et al. Iron fluoride hollow porous microspheres: facilesolution-phase synthesis and their application for Li-ion battery cathodes[J].Chemistry-A European Journal,2014,20:5815-5820.
    [100] Luo J, Xia X, Luo Y, et al. Rationally designed hierarchical TiO2@Fe2O3hollownanostructures for improved lithium ion storage[J]. Advanced Energy Materials,2013,3:737-743.
    [101] Li C L, Yin C L, Gu L, et al. An FeF3·0.5H2O polytype: a microporous frameworkcompound with intersecting tunnels for Li and Na batteries[J]. Journal of theAmerican Chemical Society,2013,135:11425-11428.
    [102] Rangan S, Thorpe R, Bartynski R A, et al. Conversion reaction of FeF2thin filmsupon exposure to atomic lithium[J]. Journal of Physical Chemistry C,2012,116:10498-10503.
    [103] Sina M, Nam K W, Su D, et al. Structural phase transformation and Fe valenceevolution in FeOxF2-x/C nanocomposite electrodes during lithiation andde-lithiation processes[J]. Journal of Materials Chemistry A,2013,1:11629-11640.
    [104] Parkinson M F, Ko J K, Halajko A, et al. Effect of vertically structured porosity onelectrochemical performance of FeF2films for lithium batteries[J]. ElectrochimicaActa,2014,125:71-82.
    [105] Liu L, Guo H P, Zhou M, et al. A comparison among FeF3·3H2O, FeF3·0.33H2Oand FeF3cathode materials for lithium ion batteries: Structural, electrochemical,and mechanism studies[J]. Journal of Power Sources,2013,238:501-515.
    [106] Li C L, Mu X K, van Aken P A, et al. A High-capacity cathode for lithiumbatteries consisting of porous microspheres of highly amorphized iron fluoridedensified from its open parent phase[J]. Advanced Energy Materials,2013,3:113-119.
    [107] Li C L, Gu L, Tong J W, et al. Carbon nanotube wiring of electrodes for high-ratelithium batteries using an imidazolium-based ionic liquid precursor as dispersantand binder: a case study on iron fluoride nanoparticles[J]. ACS Nano,2011,5:2930-2938.
    [108] Zhou M J, Zhao L W, Okada S, et al. Thermal characteristics of a FeF3cathode viaconversion reaction in comparison with LiFePO4[J]. Journal of Power Sources,2011,196:8110-8115.
    [109] Badway F, Cosandey F, Pereira N, et al. Carbon metal fluoride nanocompositeshigh-capacity reversible metal fluoride conversion materials as rechargeablepositive electrodes for Li batteries[J]. Journal of The Electrochemical Society,2003,150: A1318-A1327.
    [110] Kim S W, Seo D H, Gwon H, et al. Fabrication of FeF3nanoflowers on CNTbranches and their application to high power lithium rechargeable batteries[J].Advanced Materials,2010,22:5260-5264.
    [111] Zhao X, Hayner C M, Kung M C, et al. Photothermal-assisted fabrication of ironfluoride-graphene composite paper cathodes for high-energy lithium-ionbatteries[J]. Chemical Communications,2012,48:9909-9911.
    [112] Ma D L, Cao Z Y, Wang H G, et al. Three-dimensionally ordered macroporousFeF3and its in situ homogenous polymerization coating for high energy andpower density lithium ion batteries[J]. Energy&Environmental Science,2012,5:8538-8542.
    [113] Garcia A F. Reaching the full capacity of the electrode material Li3FeF6bydecreasing the particle size to nanoscale[J]. Journal of Power Sources,2012,197:260-266.
    [114] Liu J, Wan Y L, Liu W, et al. Mild and cost-effective synthesis of ironfluoride-graphene nanocomposites for high-rate Li-ion battery cathodes[J].Journal of Materials Chemistry A,2013,1:1969-1975.
    [115] Wu W, Wang Y, Wang X Y, et al. Structure and electrochemical performance ofFeF3/V2O5composite cathode material for lithium-ion battery[J]. Journal ofAlloys and Compounds,2009,486:93-96.
    [116] Liu L, Meng Z, Wang X Y, et al. Synthesis and electrochemical performance ofspherical FeF3/ACMB composite as cathode material for lithium-ion batteries[J].Journal of Materials Science,2012,47:1819-1824.
    [117] Wu W, Wang X Y, Wang X, et al. Effects of MoS2doping on the electrochemicalperformance of FeF3cathode materials for lithium-ion batteries[J]. MaterialsLetters,2009,63:1788-1790.
    [118] Ma Y, Garofalini S H. Atomistic insights into the conversion reaction in ironfluoride: a dynamically adaptive force field approach[J]. Journal of the AmericanChemical Society,2012,134:8205-8211.
    [119] Reddy M A, Breitung B, Chakravadhanula V S K, et al. CFx derived carbon FeF2nanocomposites for reversible lithium storage[J]. Advanced Energy Materials,2013,3:308-313.
    [120] Martha S K, Nanda J, Zhou H, et al. Electrode architectures for high capacitymultivalent conversion compounds: iron (II and III) fluoride[J]. RSC Advances,2014,4:6730-6737.
    [121] Ma Y, Garofalini S H. Interplay between the ionic and electronic transport and itseffects on the reaction pattern during the electrochemical conversion in an FeF2nanoparticle[J]. Physical Chemistry Chemical Physics,2014,16:11690-11697.
    [122] Breitung B, Reddy M A, Chakravadhanula V S K, et al. Influence of particle sizeand fluorination ratio of CFx precursor compounds on the electrochemicalperformance of C-FeF2nanocomposites for reversible lithium storage[J]. BeilsteinJournal of Nanotechnology,2013,4:705-713.
    [123] Amatucci G G, Pereira N, Badway F, et al. Formation of lithium fluoride/metalnanocomposites for energy storage through solid state reduction of metalfluorides[J]. Journal of Fluorine Chemistry,2011,132:1086-1094.
    [124] Santos O R, Volkov V, Schmid S, et al. Microstructure and electronic bandstructure of pulsed laser deposited iron fluoride thin film for battery electrodes[J].ACS Applied Materials&Interfaces,2013,5:2387-2391.
    [125] Li C L, Gu L, Tsukimoto S, et al. Low-temperature ionic-liquid-based synthesis ofnanostructured iron-based fluoride cathodes for lithium batteries[J]. AdvancedMaterials,2010,22:3650-3654.
    [126] Li C L, Gu L, Tong J W, et al. A mesoporous iron-based fluoride cathode of tunnelstructure for rechargeable lithium batteries[J]. Advanced Functional Materials,2011,21:1391-1397.
    [127] Di C L, Conte D E, Kemnitz E, et al. Microwave-assisted fluorolytic sol-gel routeto iron fluoride nanoparticles for Li-ion batteries[J]. Chemical Communications,2014,50:460-462.
    [128] Baek S, Yu S H, Park S K, et al. A one-pot microwave-assisted non-aqueoussol-gel approach to metal oxide/graphene nanocomposites for Li-ion batteries[J].RSC Advances,2011,1:1687-1690.
    [129] Russo P A, Donato N, Leonardi S G, et al. Room-temperature hydrogen sensingwith heteronanostructures based on reduced graphene oxide and tin oxide[J].Angewandte Chemie-International Edition,2012,51:11053-11057.
    [130] Yu S H, Conte D E, Baek S, et al. Structure-properties relationship in ironoxide-reduced graphene oxide nanostructures for Li-ion batteries[J]. AdvancedFunctional Materials,2013,23:4293-4305.
    [131] Pan A, Wu H B, Yu L, et al. Synthesis of hierarchical three-dimensional vanadiumoxide microstructures as high-capacity cathode materials for lithium-ionbatteries[J]. ACS Applied Materials&Interfaces,2012,4:3874-3879.
    [132] Xu G L, Xu Y F, Fang J C, et al. Facile synthesis of hierarchicalmicro/nanostructured MnO material and its excellent lithium storage property andhigh performance as anode in a MnO/LiNi0.5Mn1.5O(4-δ) lithium ion battery[J].ACS Applied Materials&Interfaces,2013,5:6316-6323.
    [133] Lu Y, Wen Z Y, Jin J, et al. Size-controlled synthesis of hierarchical nanoporousiron based fluorides and their high performances in rechargeable lithium ionbatteries[J]. Chemical Communications,2014,50:6487-6490.
    [134] Li C L, Yin C L, Mu X K, et al. Top-down synthesis of open framework fluoridefor lithium and sodium batteries[J]. Chemistry of Materials,2013,25:962-969.
    [135] Sun B, Liu H, Munroe P, et al. Nanocomposites of CoO and a mesoporous carbon(CMK-3) as a high performance cathode catalyst for lithium-oxygen batteries[J].Nano Research,2012,5:460-469.
    [136]伍文,王先友,王欣等.锂二次电池新型正极材料FeF3·(H2O)0.33的制备及电化学性能研究[J].功能材料,2008,39:1824-1827.
    [137] Dees D W, Kawauchi S, Abraham D P, et al. Analysis of the GalvanostaticIntermittent Titration Technique (GITT) as applied to a lithium-ion porouselectrode[J]. Journal of Power Sources,2009,189:263-268.
    [138] Wu Z S, Ren W C, Wen L, et al. Graphene anchored with Co3O4nanoparticles asanode of lithium ion batteries with enhanced reversible capacity and cyclicperformance[J]. ACS Nano,2010,4:3187-3194.
    [139] Hummers W S, Offeman R E. Preparation of graphitic oxide[J]. Journal of theAmerican Chemical Society,1958,80:1339-1339.
    [140] Zhou X S, Wan L J, Guo Y G. Facile synthesis of MoS2@CMK-3nanocompositeas an improved anode material for lithium-ion batteries[J]. Nanoscale,2012,4:5868-5871.
    [141] Yang C M, Noguchi H, Murata K, et al. Highly ultramicroporous single-walledcarbon nanohorn assemblies[J]. Advanced Materials,2005,17:866-870.
    [142] Yuge R, Yudasaka M, Toyama K, et al. Buffer gas optimization in CO2laserablation for structure control of single-wall carbon nanohorn aggregates[J].Carbon,2012,50:1925-1933.
    [143] Zhou G, Wang D W, Li F, et al. Graphene-wrapped Fe3O4anode material withimproved reversible capacity and cyclic stability for lithium ion batteries[J].Chemistry of Materials,2010,22:5306-5313.
    [144] Geim A K, Novoselov K S. The rise of graphene[J]. Nature Materials,2007,6:183-191.
    [145] Luo B, Fang Y, Wang B, et al. Two dimensional graphene-SnS2hybrids withsuperior rate capability for lithium ion storage[J]. Energy&EnvironmentalScience,2012,5:5226-5230.
    [146] Liu C, Yu Z, Neff D, et al. Graphene-based supercapacitor with an ultrahighenergy density[J]. Nano Letters,2010,10:4863-4868.
    [147] Castro N A H, Guinea F, Peres N M R, et al. The electronic properties ofgraphene[J]. Reviews of Modern Physics,2009,81:109-162.
    [148] Chang K, Chen W, L-cysteine-assisted synthesis of layered MoS2/graphenecomposites with excellent electrochemical performances for lithium ionbatteries[J]. ACS Nano,2011,5:4720-4728.
    [149] Peng C, Chen B, Qin Y, et al. Facile ultrasonic synthesis of CoO quantumdot/graphene nanosheet composites with high lithium storage capacity[J]. ACSNano,2012,6:1074-1081.
    [150] Sun Y, Hu X, Luo W, et al. Self-assembled hierarchical MoO2/graphenenanoarchitectures and their application as a high-performance anode material forlithium-ion batteries[J]. ACS Nano,2011,5:7100-7107.
    [151] Wang D, Choi D, Li J, et al. Self-assembled TiO2-graphene hybrid nanostructuresfor enhanced Li-ion insertion[J]. ACS Nano,2009,3:907-914.
    [152] Jacob D S, Bitton L, Grinblat J, et al. Are ionic liquids really a boon for thesynthesis of inorganic materials? A general method for the fabrication ofnanosized metal fluorides[J]. Chemistry of Materials,2006,18:3162-3168.
    [153] Kim H, Seo D H, Kim S W, et al. Highly reversible Co3O4/graphene hybrid anodefor lithium rechargeable batteries[J]. Carbon,2011,49:326-332.
    [154] Wang X Y, Zhou X F, Yao K, et al. A SnO2/graphene composite as a high stabilityelectrode for lithium ion batteries[J]. Carbon,2011,49:133-139.
    [155] Novoselov K S, Geim A K, Morozov S V, et al. Two-dimensional gas of masslessdirac fermions in graphene[J]. Nature,2005,438:197-200.
    [156] Stankovich S, Dikin D A, Dommett G H B, et al. Graphene-based compositematerials[J]. Nature,2006,442:282-286.
    [157] Geim A K. Graphene: status and prospects[J]. Science,2009,324:1530-1534.
    [158] Fukushima T, Aida T, Ionic liquids for soft functional materials with carbonnanotubes[J]. Chemistry-A European Journal,2007,13:5048-5058.
    [159] Acik M, Dreyer D R, Bielawski C W, et al. Impact of ionic liquids on theexfoliation of graphite oxide[J]. Journal of Physical Chemistry C,2012,116:7867-7873.
    [160] Zhang W, Ma L, Jun Y H, et al. Synthesis and characterization of in situFe2O3-coated FeF3cathode materials for rechargeable lithium batteries[J]. Journalof Materials Chemistry,2012,22:24769-24775.
    [161] Liu X, Cui J S, Sun J B, et al.3D graphene aerogel-supported SnO2nanoparticlesfor efficient detection of NO2[J]. RSC Advances,2014,4:22601-22605.
    [162] Zhao B, Zhang G H, Song J S, et al. Bivalent tin ion assisted reduction forpreparing graphene/SnO2composite with good cyclic performance and lithiumstorage capacity[J]. Electrochimica Acta,2011,56:7340-7346.
    [163] Mohiuddin T M G, Lombardo A, Nair R R, et al. Uniaxial strain in graphene byRaman spectroscopy: G peak splitting, Gruneisen parameters, and sampleorientation[J]. Physical Review B,2009,79:205433:1-8.
    [164] Ferrari A C, Meyer J C, Scardaci V, et al. Raman spectrum of graphene andgraphene layers[J]. Physical Review Letters,2006,97:187401:1-4.
    [165] Zhou J, Song H, Ma L, et al. Magnetite/graphene nanosheet composites:interfacial interaction and its impact on the durable high-rate performance inlithium-ion batteries[J]. RSC Advances,2011,1:782-791.
    [166] Zhu X, Zhu Y, Murali S, et al. Nanostructured reduced graphene oxide/Fe2O3composite as a high-performance anode material for lithium ion batteries[J]. ACSNano,2011,5:3333-3338.
    [167] Behera S K. Enhanced rate performance and cyclic stability of Fe3O4-graphenenanocomposites for Li ion battery anodes[J]. Chemical Communications,2011,47:10371-10373.
    [168] Ma R G, Dong Y C, Xi L J, et al. Fabrication of LiF/Fe/graphene nanocompositesas cathode material for lithium-ion batteries[J]. ACS Applied Materials&Interfaces,2013,5:892-897.
    [169] Weng Z, Su Y, Wang D W, et al. Graphene-cellulose paper flexiblesupercapacitors[J]. Advanced Energy Materials,2011,1:917-922.
    [170] Zhao X, Hayner C M, Kung M C, et al. In-plane vacancy-enabled high-powerSi-graphene composite electrode for lithium-ion batteries[J]. Advanced EnergyMaterials,2011,1:1079-1084.
    [171] Luo B, Wang B, Li X L, et al. Graphene-confined Sn nanosheets with enhancedlithium storage capability[J]. Advanced Materials,2012,24:3538-3543.
    [172] Qu Q T, Yang S B, Feng X L.2D sandwich-like sheets of iron oxide grown ongraphene as high energy anode material for supercapacitors[J]. AdvancedMaterials,2011,23:5574-5580.
    [173] Wang H L, Yang Y, Liang Y Y, et al. LiMn1-xFexPO4nanorods grown on graphenesheets for ultrahigh-rate-performance lithium ion batteries[J]. AngewandteChemie-International Edition,2011,50:7364-7368.
    [174] Yang S B, Feng X L, Ivanovici S, et al. Fabrication of graphene-encapsulatedoxide nanoparticles: towards high-performance anode materials for lithiumstorage[J]. Angewandte Chemie-International Edition,2010,49:8408-8411.
    [175] Chen Y T, Guo F, Jachak A, et al. Aerosol synthesis of cargo-filled graphenenanosacks[J]. Nano Letters,2012,12:1996-2002.
    [176] Ji H X, Zhang L L, Pettes M T, et al. Ultrathin graphite foam: a three-dimensionalconductive network for battery electrodes[J]. Nano Letters,2012,12:2446-2451.
    [177] Wang H L, Yang Y, Liang Y Y, et al. Graphene-wrapped sulfur particles as arechargeable lithium-sulfur battery cathode material with high capacity andcycling stability[J]. Nano Letters,2011,11:2644-2647.
    [178] Chen Y, Song B, Tang X, et al. One-step synthesis of hollow porous Fe3O4beads-reduced graphene oxide composites with superior battery performance[J].Journal of Materials Chemistry,2012,22:17656-17662.
    [179] Wang J, Manga K K, Bao Q, et al. High-yield synthesis of few-layer grapheneflakes through electrochemical expansion of graphite in propylene carbonateelectrolyte[J]. Journal of the American Chemical Society,2011,133:8888-8891.
    [180] Xiao J, Wang X, Yang X-Q, et al. Electrochemically induced high capacitydisplacement reaction of PEO/MoS2/graphene nanocomposites with lithium[J].Advanced Functional Materials,2011,21:2840-2846.
    [181] Chou S L, Wang J Z, Choucair M, et al. Enhanced reversible lithium storage in ananosize silicon/graphene composite[J]. Electrochemistry Communications,2010,12:303-306.
    [182] Zhang H J, Tao H H, Jiang Y, et al. Ordered CoO/CMK-3nanocomposites as theanode materials for lithium-ion batteries[J]. Journal of Power Sources,2010,195:2950-2955.
    [183] Ji X L, Lee K T, Nazar L F. A highly ordered nanostructured carbon-sulphurcathode for lithium-sulphur batteries[J]. Nature Materials,2009,8:500-506.
    [184] Chen J Z, Yang L, Fang S H, et al. Ordered mesoporous Sn-C composite as ananode material for lithium ion batteries[J]. Electrochemistry Communications,2011,13:848-851.
    [185] Cheng M Y, Hwang B J. Mesoporous carbon-encapsulated NiO nanocompositenegative electrode materials for high-rate Li-ion battery[J]. Journal of PowerSources,2010,195:4977-4983.
    [186] Shen L, Zhang X, Uchaker E, et al. Li4Ti5O12nanoparticles embedded in amesoporous carbon matrix as a superior anode material for high rate lithium ionbatteries[J]. Advanced Energy Materials,2012,2:691-698.
    [187] Fang B, Kim M S, Kim J H, et al. Ordered multimodal porous carbon withhierarchical nanostructure for high Li storage capacity and good cyclingperformance[J]. Journal of Materials Chemistry,2010,20:10253-10259.
    [188] Jun S, Joo S H, Ryoo R, et al. Synthesis of new, nanoporous carbon withhexagonally ordered mesostructure[J]. Journal of the American Chemical Society,2000,122:10712-10713.
    [189] Lee J S, Joo S H, Ryoo R. Synthesis of mesoporous silicas of controlled pore wallthickness and their replication to ordered nanoporous carbons with various porediameters[J]. Journal of the American Chemical Society,2002,124:1156-1157.
    [190] Wang G, Liu H, Liu J, et al. Mesoporous LiFePO4/C nanocomposite cathodematerials for high power lithium ion batteries with superior performance[J].Advanced Materials,2010,22:4944-4948.
    [191] Qiao H, Li J, Fu J, et al. Sonochemical synthesis of ordered SnO2/CMK-3nanocomposites and their lithium storage properties[J]. ACS Applied Materials&Interfaces,2011,3:3704-3708.
    [192] Shen L, Uchaker E, Yuan C, et al. Three-dimensional coherent titania-mesoporouscarbon nanocomposite and its lithium-ion storage properties[J]. ACS AppliedMaterials&Interfaces,2012,4:2985-2992.
    [193] Zeng L, Zheng C, Deng C, et al. MoO2-ordered mesoporous carbonnanocomposite as an anode material for lithium-ion batteries[J]. ACS AppliedMaterials&Interfaces,2013,5:2182-2187.
    [194] Zhou G M, Wang D W, Li L, et al. Nanosize SnO2confined in the porous shells ofcarbon cages for kinetically efficient and long-term lithium storage[J]. Nanoscale,2013,5:1576-1582.
    [195]陈欣.氧化铜自支撑3D微纳米电极的构筑与储锂性能研究[D].哈尔滨:哈尔滨工业大学,2012:41.
    [196] Chang P Y, Huang C H, Doong R A. Ordered mesoporous carbon-TiO2materialsfor improved electrochemical performance of lithium ion battery[J]. Carbon,2012,50:4259-4268.
    [197] Li Z Q, Liu N N, Wang X K, et al. Three-dimensional nanohybrids ofMn3O4/ordered mesoporous carbons for high performance anode materials forlithium-ion batteries[J]. Journal of Materials Chemistry,2012,22:16640-16648.
    [198] Han F, Li W C, Li M R, et al. Fabrication of superior-performance SnO2@Ccomposites for lithium-ion anodes using tubular mesoporous carbon with thincarbon walls and high pore volume[J]. Journal of Materials Chemistry,2012,22:9645-9651.
    [199] Baughman R H, Zakhidov A A, de Heer W A. Carbon nanotubes-the route towardapplications[J]. Science,2002,297:787-792.
    [200] Zhu S, Xu G. Single-walled carbon nanohorns and their applications[J].Nanoscale,2010,2:2538-2549.
    [201] Zhao Y, Li J, Ding Y, et al. Single-walled carbon nanohorns coated with Fe2O3asa superior anode material for lithium ion batteries[J]. Chemical Communications,2011,47:7416-7418.
    [202] Zhao Y, Li J, Ding Y, et al. A nanocomposite of SnO2and single-walled carbonnanohorns as a long life and high capacity anode material for lithium ionbatteries[J]. RSC Advances,2011,1:852-856.
    [203] Utsumi S, Urita K, Kanoh H, et al. Preparing a magnetically responsivesingle-wall carbon nanohorn colloid by anchoring magnetite nanoparticles[J].Journal of Physical Chemistry B,2006,110:7165-7170.
    [204] Zobir S A M, Zainal Z, Keng C S, et al. Synthesis of carbon nanohorn-carbonnanotube hybrids using palm olein as a precursor[J]. Carbon,2013,54:492-494.
    [205] Yin L, Wang J, Lin F, et al. Polyacrylonitrile/graphene composite as a precursor toa sulfur-based cathode material for high-rate rechargeable Li-S batteries[J].Energy&Environmental Science,2012,5:6966-6972.
    [206] Hong J, Park M K, Lee E J, et al. Origin of new broad Raman D and G peaks inannealed graphene[J]. Scientific Reports,2013,3:2700:1-5.
    [207] Elias D C, Nair R R, Mohiuddin T M G, et al. Control of graphene's properties byreversible hydrogenation: evidence for graphane[J]. Science,2009,323:610-613.
    [208] Evanoff K, Magasinski A, Yang J B, et al. Nanosilicon-coated graphene granulesas anodes for Li-ion batteries[J]. Advanced Energy Materials,2011,1:495-498.
    [209] Yuge R, Manako T, Nakahara K, et al. The production of an electrochemicalcapacitor electrode using holey single-wall carbon nanohorns with high specificsurface area[J]. Carbon,2012,50:5569-5573.
    [210] Harada M, Inagaki T, Bandow S, et al. Effects of boron-doping and heat-treatmenton the electrical resistivity of carbon nanohorn-aggregates[J]. Carbon,2008,46:766-772.
    [211] Li N, Wang Z, Zhao K, et al. Synthesis of single-wall carbon nanohorns byarc-discharge in air and their formation mechanism[J]. Carbon,2010,48:1580-1585.
    [212] Yudasaka M, Ichihashi T, Kasuya D, et al. Structure changes of single-wall carbonnanotubes and single-wall carbon nanohorns caused by heat treatment[J]. Carbon,2003,41:1273-1280.
    [213] Xu J X, Tomimoto H, Nakayama T. What is inside carbon nanohornaggregates?[J]. Carbon,2011,49:2074-2078.
    [214] Deshmukh A B, Shelke M V. Synthesis and electrochemical performance of asingle walled carbon nanohorn-Fe3O4nanocomposite supercapacitor electrode[J].RSC Advances,2013,3:21390-21393.
    [215] Pan A Q, Wu H B, Zhang L, et al. Uniform V2O5nanosheet-assembled hollowmicroflowers with excellent lithium storage properties[J]. Energy&Environmental Science,2013,6:1476-1479.
    [216] Yu L, Wang Z, Zhang L, et al. TiO2nanotube arrays grafted with Fe2O3hollownanorods as integrated electrodes for lithium-ion batteries[J]. Journal of MaterialsChemistry A,2013,1:122-127.
    [217] Cheng C, Fan H J. Branched nanowires: Synthesis and energy applications[J].Nano Today,2012,7:327-343.
    [218] Zhu J, Jiang J, Feng Y, et al. Three-dimensional Ni/SnOx/C hybrid nanostructuredarrays for lithium-ion microbattery anodes with enhanced areal capacity[J]. ACSApplied Materials&Interfaces,2013,5:2634-2640.
    [219] Zhu Z, Zhang D, Yan H, et al. Precise preparation of high performance sphericalhierarchical LiNi0.5Mn1.5O4for5V lithium ion secondary batteries[J]. Journal ofMaterials Chemistry A,2013,1:5492-5496.
    [220] Wang Y, Xia H, Lu L, et al. Excellent performance in lithium-ion battery anodes:rational synthesis of Co(CO3)0.5(OH)0.11H2O nanobelt array and its conversioninto mesoporous and single-crystal Co3O4[J]. ACS Nano,2010,4:1425-1432.
    [221] Xue X Y, Yuan S, Xing L L, et al. Porous Co3O4nanoneedle arrays growingdirectly on copper foils and their ultrafast charging/discharging as lithium-ionbattery anodes[J]. Chemical Communications,2011,47:4718-4720.
    [222] Jiang J, Li Y, Liu J, et al. Building one-dimensional oxide nanostructure arrays onconductive metal substrates for lithium-ion battery anodes[J]. Nanoscale,2011,3:45-58.
    [223] Xia X, Tu J, Zhang Y, et al. Porous hydroxide nanosheets on preformed nanowiresby electrodeposition: branched nanoarrays for electrochemical energy storage[J].Chemistry of Materials,2012,24:3793-3799.
    [224] Li L, Meng F, Jin S. High-capacity lithium-ion battery conversion cathodes basedon iron fluoride nanowires and insights into the conversion mechanism[J]. NanoLetters,2012,12:6030-6037.
    [225] Zhong L S, Hu J S, Liang H P, et al. Self-assembled3D flowerlike iron oxidenanostructures and their application in water treatment[J]. Advanced Materials,2006,18:2426-2431.
    [226] Burda C, Chen X B, Narayanan R, et al. Chemistry and properties of nanocrystalsof different shapes[J]. Chemical Reviews,2005,105:1025-1102.
    [227] Cheng Y, Wang Y S, Zheng Y H, et al. Two-step self-assembly of nanodisks intoplate-built cylinders through oriented aggregation[J]. Journal of PhysicalChemistry B,2005,109:11548-11551.
    [228] Liu J, Li Y, Fan H, et al. Iron oxide-based nanotube arrays derived from sacrificialtemplate-accelerated hydrolysis: large-area design and reversible lithiumstorage[J]. Chemistry of Materials,2010,22:212-217.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700