从钴二次资源中回收钴制备四氧化三钴的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于我国的钴资源缺乏,国家每年都要用大量外汇进口镍钴矿及深加工资源。世界钴消费量呈增长趋势。中国已成为世界钴消费大国。从钴二次资源中回收钴,实现二次资源循环产业化已经迫在眉睫。
     本文研究了从废锂离子二次电池、废硬质合金料等二次资源回收钴制备钴酸锂前驱体四氧化三钻的方法;研究了COCl2与CoSO4溶液经过除铁、除钙、P204萃取除杂、P507萃取制备高纯氯化钴溶液的过程及除杂效果。
     废锂离子电池材料采用氢氧化钠除铝、硫酸浸提钴、水解沉铝制备CoSO4溶液;硬质合金粉料采用煅烧氧化、氢氧化钠浸出三氧化钨、盐酸+硫酸浸钴制备CoSO4溶液。
     结果表明,硫酸从锂离子材料中浸钴最优条件为:反应温度80℃,反应时间3 h,双氧水用量系数3.0,硫酸反应系数2.4,Co浸出率达到97%以上。氢氧化钠浸出硬质合金氧化物中的钨最优条件为:碱用量系数2.6,固液比1:4,反应时间2.0h,反应温度100℃,浸出率最高可达98%以上。硫酸浸出钴渣中的钴最优条件为:浸出温度为100℃、固液比为1:4、酸用量系数为1.8、浸出时间为2 h。钴的浸出率达到98%以上。
     制备的氯化钴溶液沉淀CoCO3,并经过煅烧制备Co3O4粉末。由于钴酸锂对Co3O4粉末的粒度和形貌提出越来越严格的要求,本文研究了反应pH、反应时间、搅拌转速对碳酸钴形貌及粒度的影响;对四氧化三钴粒度及振实密度的煅烧过程相关影响因素分别进行考察。
     结果表明反应pH、反应时间、搅拌转速对碳酸钴形貌及粒度的影响影响显著,提高反应时间及降低搅拌转速,降低pH有利于提高碳酸钴粒度及改善形貌;影响Co3O4物理指标的主要因素在一定范围内存在一定的规律,其中煅烧温度、煅烧时间是影响Co3O4粒度和振实密度的关键因素。
Due to the lack of resources,China imports large quantity nickel-cobalt ore and deep processing resources by foreing exchange every year. The world is a growing trend of cobalt consμmption. China has become the world cobalt consμmption. From the second resource recovery of cobalt cobalt,realize the industrialization of secondary resources circulation is imminent.
     In this thesis recycling method of cobalt from the waste lithiμm-ion secondary battery,carbide materials,and other secondary resources as well as preparation method of cobalt acid lithiμm precursor-the cobalt oxide has been studied.
     Waste lithiμm ion battery was disintegrated at first,then alμminμm was leached by alkaline. COSO4 was prepaired by acid leaching from the residue and alμminμm sinked after. Hard alloy material was calcined at first,then tungsten was leached by sodiμm hydroxide.Use hydrochloric and sulphuric acid leach cobalt from the residue.Results show that under the appropriate technology condition,high cobalt leaching rate achieved. CoCl2 or COSO4 solution was made into high purity CoCl2 after purified by iron and calciμm elimination and organic extraction.
     CoCO3 was synthesized by precipitation from CoCl2 solution. Co3O4 powder was synthesized by calcined from CoCO3. Due to Co3O4 acid lithiμm cobalt powder size and morphology of forward more and more stringent requirements,in this thesis CoCO3 wet process was explored in different conditions,the size and shape of the CoCO3 were investgated. Thermal decomposition of CoCO3 in different conditions was explored and the size and shape of the Co3O4 were investgated as well as.
引文
[1]林河成.用含钻废催化剂制取氧化钴的研究[J].湿法冶金,1998,(12):44.
    [2]《有色金属提取冶金手册》编辑委员会.有色金属提取冶金手册(锌镉铅铋分册)[M].北京:冶金工业出版社,1992:246.
    [3]郭炳锟,李新海,杨松青.化学电源—电池原理及制造技术[M].长沙:中南工业大学出版社,2000.
    [4]程菊.镍氢电池及储氢合金的进展[J].金属功能材料,1996,4(3):118~121.
    [5]刘彦龙,国内外锂电池行业发展现状[J].中国化学与物理电源行业交流会议,2008:9.
    [6]席国喜.废干电池资源化研究新进展[J].化工进展,2001,7:136~139.
    [7]金泳勋,松田光明等.用浮选法从废锂离子电池中回收锂钻氧化物[J].国外金属矿选矿,2003,7:32~37.
    [8]方季云.美国钨工业简介[J].中国钨业,2002,(6):43.
    [9]夏文堂.钨的二次资源及其开发前景[J].再生资源研究,2006,(1):12.
    [10]陈立宝.钨合金废料的资源再生利用技术[J].粉末冶金技术,2003,(6):169~174.
    [11]张超凡,虞星波.废硬质合金的回收[J].硬质合金,1981,(3):1~1.
    [12]翟昕.硬质合金回收利用工艺现状[J].有色金属再生与利用,2004:1
    [13]孟宪红,李悦.再谈废催化剂中金属的回收.化工环保,1998,18:277~280
    [14]乐颂光.钴冶金[D].冶金工业出版社.1987:154.
    [15]乐颂光.钴冶金[D].冶金工业出版社.1987:158.
    [16]杨佼庸,刘大星.萃取[M].北京:冶金工业出版社,1995.
    [17]S.Sakomoto, M. Yoshinaka, K. Hirota, O. Yamaguchi, Fabrication, Mechanical properities and electrical conductivity of Co3O4 ceramics[J].Am.Ceram.Sco.1997180: 267~2801.
    [18]R. Van Zee, Y. Hamrick, S.Li, W.Weltner. Cobalt, Rhodiμm and Iridiμm Dioxide Molecules and walsh-type rules[J].Phys. Chem.1992,96:7247~7249
    [19]D. Chen, Y Wen, N. Rommel, Electrolyte electro reflectance dsingle-crystall Cd In2 Se4 in a photo electro chemical Solar Cell[J].E lectrochem.Soc.1984,131 (4): 731~733.
    [20]M. H. Tikkanen, A.Taskinen, P. Taskinen. Characteristic properties of cobaltpowder suitable for hard metal production[J].Powder Metallurgy.1975,36(18): 259-282
    [21]E. Ingier-Stocka, A Grabowska Characterization and Post-annealing of Cobalt Oxides Nanostructures by Thermal Chemical Vapor Deposition[J].Therm. Anal. Calorim.1998,54(1):115-118.
    [22]Z. Xu, H. Zeng. Thermal evolution of cobalt hydroxides:a comparation study of their various structural phases [J].Mater. Chem.1998, (11):2499~2506.
    [23]P. Jeevanandam,Yu. Koltypin,A.Gedanken,etal.Synthesisof a-cobalt(Ⅱ)hydroxide using ultrasound radiation[J].Materials Chemistry 2000,10:511~514.
    [24]B. Pejova, A. sahi,M. Najdoski, tal.Fabrication and characterization of nanocrystalline cobalt oxide thin film[J].Materials Research Bulletin.2001,36:161 ~ 170.
    [25]T. shikawa, E. Matijevic. Formation of uniform particles of cobalt compound sand cobalt[J].Colloid Polym.Sc i.1991,269:179~18.
    [26]李亚栋,贺蕴普,李龙泉等.液相控制沉淀法制备纳米级Co3O4微粒[J].高等学校化学学报,1999,20(4):519~522.
    [27]孙继红,张哗,范文浩,吴东,孙予罕.Sol-Gel技术与纳米材料的化学剪裁[J].化学进展.1999,11(1):8085.
    [28]王小慧,王子忱,李熙等.超微粒Co3O4的合成与表征[J].高等学校化学学报.1991,12(11):1421~1424.
    [29]施尔畏,夏长泰,王步国等.水热法的应用与发展[J].无机材料学报.1996,11(2):193~206.
    [30]R Sapieszko, E Matijevic. Preparation of well defined colloidal particles by thermal decomposition of metal chelates Ⅱ cobalt and nickel[J].Corrosion-Nace. 1980,36(10):522~530.
    [31]B.Basavalingu, J.A.K.Tareen,G.T.Bhanadage.Thermo dynamic properties of Co(OH)2 from hydrothermale quilibriμmin cobalt oxide system[J].Journal of Materials Science Leters.1986,(5):1227~1229.
    [32]T.Sugimoto, E.Matijevic.Colloidal cobalt hydrous oxides preparation and properties of monodispersed Co3O4[J].Inorg. Nucl. Chem.1979,41:165~172.
    [33]Gialiana F.,Leonardo F..Precipitation of spherical Co3O4 particles[J].J. of Colloid and Interface Sci.1995,170:169~175
    [34]Y Ni, X Ge, Z Zhang, etal.A simple resuction-oxidation route to prepare Co3O4 nanocrystals[J].Materials Research Bulletin.2000,36:2383~2387.
    [35]H.C.Zeng, Y.Ling.Synthesis of Co3O4 spinel atambient conditions[J].J Mater Res.2000,15(6):1250~1253.
    [36]W Akao H, H Hiraguchi, T Ishii. Evaluation of giga-cycle fatigue properties of some maraging steels by intermittent ultrasonic fatigue testing [J].Fatigue & Fracture of Engineering Materials & Structures,1987,35:169~178
    [37]王静康.化学工程手册:结晶[M].北京:化学工业出版社,1996.
    [38]C Rasmuson,L Magnus,Marika Torbacke.On the influence of mixing in reaction crystal-llization.ISIC.An overview of the present status and expectations for the 21st century [C].Tokyo,Japan.1998:82~91.
    [39]张昭,彭少方,刘栋昌.无机精细化工工艺学[M].北京:化学工业出版社,2002.
    [40]罗电宏,马荣骏.对超细粉末团聚问题的探讨[J].湿法冶金,2002,21(2):57~61.
    [41]陈建峰,陈甘棠.混合反应结晶过程[J].化工学报,1994,45(2):176.
    [42]乐颂光.钴冶金[D].冶金工业出版社.1987:192.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700