锂离子电池正极材料LiFePO_4的合成与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
橄榄石结构的LiFePO_4作为新型锂离子电池正极材料具有高安全价、长寿命、低成本和环境友好等特点,因而成为目前电池界竞相开发与研究的热点。本文以合成高性能的LiFePO_4/C复合材料作为研究目标,比较系统地从材料合成及改性方法、导电网络构建、结构特征、电化学性能及结构-性能关系等方面进行了研究。
     首先考察了不同比表面积碳源对碳热还原过程制备LiFePO_4/C复合材料结构和性能的影响。结果表明,采用不同比表面积的碳导电剂前驱物对LiFePO_4高温固相反应过程中的晶粒长大活化能进行了计算,探讨了比表面积差异对LiFePO_4晶粒大小的影响。研究表明,较大比表面积的碳导电添加剂能够明显抑制LiFePO_4晶粒的长大,所得产品粒径较小,电化学性能变好。
     基于LiFePO_4材料“纳米-微米”化的结构设计思路,以乙二醇甲醚和水为溶剂,采用新的溶胶-凝胶方法制备了具有纳米碳导电网络分布的LiFePO_4/C复合材料。利用XRD、FE-SEM、EDS、HR-TEM对其进行了结构和形貌分析。所得材料一次粒子为纳米晶LiFePO_4,二次粒子为微米级的纳米团簇体。蔗糖分解产生的碳原位包覆在LiFePO_4晶粒表面,形成薄碳膜,厚度在5~8nm之间,晶粒与晶粒之间通过碳膜相互连接,使二次粒子内部形成导电网络。不同含碳量复合材料的比表面积测试结果表明,LiFePO_4表面薄碳膜为多孔结构,Li~+迁移阻力较小。通过改变二次造粒的条件可以对材料的粒径进行调控,从而优化其振实密度。电化学测试表明,该复合材料具有优良的倍率性能和循环稳定性,10C倍率下充放电首次容量为108 mAh·g~(-1),电位平台3.15V左右,循环50次后,容量保持率为95.4%。
     论文提出了在LiFePO_4正极材料中构建复合导电网络的材料制备思路,并通过凝胶前驱体辅助碳热还原法制备得到新型LiFePO_4/C+Fe_2P复合材料。分别考察了热处理温度和碳添加量对复合材料结构和性能的影响。实验发现,Fe_2P在LiFePO_4中所占比例对复合材料的电化学性能具有较大影响。较低的热处理温度(700℃),碳过量3wt.%,Fe_2P比例为3.8%时,材料能表现出最优的电化学性能。我们还详细考察了Fe_2P的生成对复合材料充放电循环过程和高温(55℃)电化学性能的影响。充放电循环过程中,不同电位下电极材料的XRD结果表明,Fe_2P相在复合材料中结构稳定,不参与Li~+脱嵌过程,为非电化学活性材料。相比常温,其高温循环稳定性较差。结合TGA、XRD和FE-SEM分析确定了较低热处理温度下Fe_2P相的生成反应。
     尖晶石型Li_4Ti_5O_(12)是目前锂离子电池负极热点研究材料,针对其电导率低、振实密度不高的问题,首次采用流变相法合成了具有窄粒径分布的Li_4Ti_5O_(12)/C复合负极材料。复合负极材料的充放电容量和倍率性能较纯相Li_4Ti_5O_(12)材料有明显提高。将此负极材料与LiFePO_4正极材料组装成电池,Li_4Ti_5O_(12)/LiFePO_4全电池较之MCMB/LiFePO_4全电池具有较平的充放电电压平台和无SEI膜生成。
Olivine structure lithium iron phosphate,LiFePO_4,has recently attracted significant interest due to its high-safety,long cycle life,low cost and environmental benignity components.With aim to synthesize LiFePO_4/C composite with good electrochemical properties,many studies have been carried out including:synthesis and modification method,conductive webs build,structure properties, electrochemical properties and structure-properties relationship.
     In this study,the CTR method was employed to synthesize the carbon-coated LiFePO_4 using three different surface area carbon including acetylene black,VXC and BP2000 carbon black.The purpose of current investigation was to find the effects of different specific surface area carbon on the structure and electrochemical properties of LiFePO_4.According to active energy calculation of crystalline growth, the relationship between specific and particle size has been investigated.The results showed that the carbon with higher specific surface area could hinder the growth of LiFePO_4 crystalline clearly,improve the electrochemical kinetic of LiFePO_4 electrode.
     Based on the material design concept of "nano-micro",Using 2-methoxyethanol-water solution as the media,nano-LiFePO_4/carbon composite cathode material has been synthesized via a simple and new sol-gel route from iron nitrate,lithium dihydrogen phosphate.X-ray diffraction analysis,field emission scanning electron microscopy and transmission electron microscope observations showed that LiFePO_4 with a well-crystallized olivine structure appeared in the heat-treated powder,and primary particles were nanocrystalline,secondary particles were sphere-liked micrometer nano-cluster.Through pyrolysis of the sucrose dispersed in aqueous gelatin,carbon can be in situ coated on the surface of LiFePO_4 crystalline to form thin carbon film(5~8nm).To connecting between LiFePO_4 crystalline forms conductive webs inter secondary particle.Specific surface area measurement showed that coated carbon film with porous structure on the surface of LiFePO_4 particles did not block the direct contact between the active particles and penetrated electrolyte.According to adjust the secondary particle size using different milling time for heated products,tap density of final products could be optimized. The favorable physical characteristics of the nano-LiFePO_4/carbon composite materials exhibited excellent rate performance and cyclability,delivering a discharge capacity of 103 mAh·g~(-1)(10 C charge/discharge rate) after 50 cycles.
     LiFePO_4 materials with in situ formed conductive carbon and Fe_2P phase were synthesized by gel precursor assistant carbothermal reduction method.XRD and SEM-EDX analysis identified the existence of Fe_2P phase,which was produced by the reduction reaction of phosphate and iron oxide in excess of carbon.The results indicated that Fe_2P could optimize the conductive webs by increasing the electronic conductivity so as to promote the electrochemical kinetics.The electrochemical performances of the LiFePO_4/C+Fe_2P powder,synthesized at 700℃,containing 3.8 %of Fe_2P were evaluated using an electrochemical model cell by galvanostatic charge and discharge at different charge/discharge rates.The material achieved capacities of ca.160 mAh·g~(-1) at 0.1 C rate and ca.102 mAh·g~(-1) at 5 C rate, exhibiting good discharge capacity and rate capability.In addition,the effects of Fe_2P on charge/discharge and electrochemical properties at high temperature(55℃) were investigated.The results showed that Fe_2P was non-active material without structure change during charge and discharge,but the capacity at 55℃faded seriously.Finally,corresponding synthesis mechanism of Fe_2P at relatively low heat-treatment temperatures was obtained by TGA、XRD and FE-SEM.
     Recently there is increasing interest in spinel Li_4Ti_5O_(12) as a potential anode material for Li-ion batteries.In order to improve the conductivity and tap density, coating carbon on the surface of Li_4Ti_5O_(12) was synthesized by a rheological phase method.Its average particle size is about 2.1μm with a narrow size distribution as a result of homogeneous mixing of the precursors.The in situ carbon coating produced by decomposition of PVB played an important role in improving electrical conductivity,thereby enhancing the rate capacity of Li_4Ti_5O_(12) as anode material in Li-ion batteries.The Li_4Ti_5O_(12)/C composite,synthesized at 800℃for 15 h under argon,containing 0.98 wt.%of carbon,exhibited better electrochemical properties in comparison with the pristine Li_4Ti_5O_(12),which could be attributed to the enhanced electrical conductive network of the carbon coating on the particle surface.Finally, the electrochemical properties of Li_4Ti_5O_(12)/LiFePO_4 cell initially assessed by CV and charge/discharge measurements showed that it had a flat charge/discharge platform and no SEI film during Li~+ insertion.
引文
[1]郭炳煜,徐徽,王先友,肖立新.锂离子电池.长沙,中南大学出版社,2002
    [2]T.Nagaura,K.Tozawak.Lithium ion rechargeable battery.Prog.Batts.Sol.Cells,1990,9:209-210
    [3]张世超.锂离子电池关键材料产业技术现状与发展趋势,新材料产业,2006:32-36
    [5]汪继强.锂离子电池技术进展及市场.电源技术,1996,20(4):147-151.
    [6]赖琼钰,卢集政,邹宏如.摇椅锂离子二次电池及其嵌入式电极材料.化学研究与应用,1998,10(1):21-26.
    [7]吴宇平,万春荣,江长印.锂离子二次电池.化学工业出版社.2002
    [8]徐国宪,章庆权编.化学电源.新型国防工业出版社.1984.63-65
    [9]夏熙,刘玲.二氧化锰在锂离子电池中的应用.电源技术.1997.21(3):120-126
    [10]梁文平,杨俊林,陈拥军,李灿.新世纪的物理化学-学科前沿与展望.科学出版社.449-451
    [11]K.Mizushima,P.C.Jones,P.J.Wiseman and J.B.Goodenough.LixCoO_2(0<x<1):A new cathode material for batteries of high energy density.Mat.Res.Bull.,1980,15(6):783-789.
    [12]J.M.Paulsen,J.R.Muller-Nehaus,J.R.Dahn.Layered LiCoO_2 with a different oxygen stacking(O_2 structure) as a cathode material for rechargeable lithium batteries.J.Electrochem.Soc.,2000,147(2):508-516.
    [13]A.G.Ritchie.Recent development and future prospects for lithium rechargeable batteries.J.Power Sources,2001,96(1):1-4.
    [14]M.Inaba,Z.Ogumi.Up-to-date development of lithium-ion battery in Japan.IEEE Electrical Insulation Magazine,2001,17(6):6-20.
    [15]J.D.Perkins,C.S.Bahn,P.A.Parilla,J.M.McGraw,M.L.Fu,M.Duncan,H.Yu,D.S.Ginley.LiCoO_2 and LiCo_(1-x)AlxO_2 thin film cathodes grown by pulsed laser ablation.J Power Sources,1999,81-82(9):675-679.
    [16]M.Mladenov,R.Stoyanova,E.Zhecheva,S.Vassilev.Effect of Mg Doping and MgO-surface modification on cycling stability of LiCoO_2 electrodes.Electroche Commun.,2001,3(8):410-416.
    [17]S.Oh,J.K.Lee,D.Byun,W.I.Cho,W.C.Byung.Effect of Al_2O_3 coating on electrochemical performance of LiCoO_2 as cathode materials for secondary lithium batteries.J Power Sources,2004,132(1/2):249-255.
    [18]W.Huang,R.Frech.Vibrational spectroscopic and electrochemical studies of the low and high temperature phase of LiCo_(1-x)M_xO_2(M=Ni or Ti).Solid State Ionic,1996,86-88(1):395-400.(Proceedings of the 10th International Conference on Solid State Ionics)
    [19]吴宇平,方世壁,刘昌炎.锂离子电池正极材料氧化钴锂的进展.电源技术.1997.21(95):208-209
    [20]彭忠东,杨建红,邓朝阳.锂离子电池正极材料的研制进展.电池.1999,29(3):125-127
    [21]C.Julien,G.A.Nazri,A.Rougier.Electrochemical performances of layered LiM1-yMyO_2(M=Ni,Co,M'=Mg,Al,B) oxisides in lithium batteries.Solid State Ionics,2000,135:121-130.
    [22]J.M.Tarascon,F.Coowar,G.Amatuci,F.K.Shokoohi,D.G.Guyomard.The system materials and electrochemical aspects.J Power Sources,1995,54(1):103-108.
    [23]P.Arora,E.R.White.Capacity fade mechanisms and side reactions in lithium-ion batteries.J Electrochem Soc..1998,145(10):3647-3667.
    [24]M.M.Thackeray,P.J.Johnson,L.A.de Picciotto,P.G.Bruce,J.B.Goodenough.Electrochemical extraction of lithium maganate(LiMn_2O_4).Mate Res Bull,1984,19(2):179-187.
    [25]Y.Xia,M.Yoshi,An investigation of lithium ion insertion into spinel structure Li-Mn-O compounds.J Electrochem Soc,1996,143(3):825-833.
    [26]Y.Xia,Y.Zhou,M.Yoshio.Capacity fading on cycling of 4V Li/LiMn_2O_4 cells.J Electrochem Soc..1997,144(8):2593-2600.
    [27] A.R. Armstrong, P.G. Bruce. Synthesis of layered LiMnO_2 as an electrode for rechargeable lithium batteries. Nature, 1996, 381(6): 499-500.
    [28] S. Franger, S. Bach, N. Baffler, et al. Chemistry and electrochemistry of low temperature manganese oxides as lithium intercalation compounds. J Electrochem. Soc, 2000, 147(9): 3226-3230.
    [29] F. Munakata. Positive electrode material and battery for nonaquous electrolyte sencondary battery. United Stated Patent Application, 20020012843, Jan.31,2000.
    [30] A.G Ritchie, C.O. Giwa, J.C. Lee, P. Bowles, A. Gilmour, J. Allan, D.A. Rice, F.Brady. Future cathode materials for lithium rechargeable batteries. J. Power Soures, 1999, 80(1): 98-102.
    [31] B. Markovsky, A. Rodkin, Y. S. Cohen, O. Palchik, E. Levi, D. Aubach, H.-J.Kim, M. Schmidt. The study of capacity fading process of Li-ion batteries:major factors that play a role. J. Power Sources, 2003,119-121(1-2): 504-510.
    [32] M. Broussely, P. Biensan, B. Simon. Lithium insertion into best materials: the key to success for Li-ion batteries. Electrochem. Acta, 1999,45(1-2): 7-12.
    [33] M.H. Lee, Y.J. Kang, S.T. Myung, Y.K. Sun. Synthetic optimization of Li[Ni)(1/3)Co_(1/3)Mn_(1/3)]O_2 via co-precipitation. Electrochimica Acta. 2004, 50(4):939-948.
    [34] H. Kobayashi, Y. Arachi, S. Emura, et al. Investigation on lithiumde-intercalation mechanism for Li_1 Ni_(1/3)Mn_(1/3)Co_(1/3)O_2. J. PowerSources, 2005, 146 (1-2):640-644.
    [35] W.S. Yoon, C.P. Grey, M. Balasubramanian, et al. Combined NMR and XAS study on local environments and electronic structures of electrochemically Li-ion deintercalated Li_(1-x) Co_(1/3)Ni_(1/3)Mn_(1/3)O_2 electrode system. Electrochem.Solid-State Lett., 2004, 7(3):A53-A55.
    [36] A. Deb, U. Bergmann, S. P. Cramer, et al. In situ x-ray absorption spectroscopic study of the Li[Ni_(1/3)Co_(1/3)Mn_(1/3)]O_2 cathode material. J. Appl. Phys., 2005,97:113-523.
    [37] N. Yabuuchi, T. Ohzuku. Novel lithium insertion material of LiCo_(1/3)Ni_(1/3)Mn_(1/3)O_2 for advanced lithium-ion batteries. J. Power Sources, 2003, (119-121):171-174.
    [38]N.Yabuuchi,T.Ohzuku.Electrochemical behaviors of LiCo_(1/3)Ni_(1/3)Mn_(1/3)O_2 in lithium batteries at elevated temperatures.J.Power Sources,2005,146(1-2):636-639.
    [39]M.H.Lee,Y.J.Kang,S.T.Myung,et al.Synthetic optimization of Li[Ni_(1/3)Co_(1/3)Mn_(1/3)]O_2 via co-precipitation.Electrochim.Acta,2004,50(4):939-948.
    [40]J Choi,A.Manthiram.Role of chemical and structural stabilities on the electrochemical properties of layered LiNi_(1/3)Mn_(1/3)Co_(1/3)O_2 cathodes.J.Electrochem.Soc.,2005,152(9):A1714-A1718.
    [41]N.Tran,L.Croguennec,Jordy C,et al.Influence of the synthesis route on the electrochemical properties of LiNi_(0.425)Mn_(0.425)Co_(0.15)O_2.Solid State Ion.,2005,176(17-18):1539-1547.
    [42]T.H.Cho,S.M.Park,M.Yoshio,et al.Effect of synthesis condition on the structural and electrochemical properties of Li[Ni_(1/3)Mn_(1/3)Co_(1/3)]O_2 prepared by carbonate co-precipitation method.J.Power Sources,2005,142(1-2):306-312.
    [43]T-H Cho,Y.Shiosaki,H.Noguchi.Preparation and characterization of layered LiMn_(1/3)Ni_(1/3)Co_(1/3)O_2 as a cathode material by an oxalate co-precipitation method.J.Power Sources,2006,159(2):1322-1327.
    [44]S.Zhang,X.Qiu,Z.He,et al.Nanoparticled Li(Ni_(1/3)Co_(1/3)Mn_(1/3))O_2 as cathode material for high-rate lithium-ion batteries.J.Power Sources,2006,153(2):350-353.
    [45]Hui Cao,Yao Zhang,Jian Zhang,Baojia Xia.Synthesis and electrochemical characteristics of layered LiNi_(0.6)Co_(0.2)Mn_(0.2)O_2 cathode material for lithium ion batteries,Solid State Ionics,2005,176:1207-1211.
    [46]B.J Hwang,Y.W.Tsai,D.Carlier.A combined computational/experimental study on LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2.Chem.Mater.,2003,15(19):3676-3682.
    [47]Y.S.Meng,Y.W.Wu,B.J.Hwang,et al.Combining ab initio computation with experiments for designing new electrode materials for advanced lithium batteries:LiNi_(1/3)Fe_(1/6)Co_(1/6)Mn_(1/3)O_2.J.Electrochem.Soc.,2004,151(8):A1134-A1140.
    [48] J.H Kim, C.W Park, Y.K. Sun. Synthesis and electrochemical behavior of Li[Li_(0.1)Ni_(0.35-x/2_Co_xMn_(0.55-x/2)]O_2 cathode materials. Solid State Ion., 2003,164(1-2):43-49.
    [49] P.G. Balakrishnan, R. Ramesh, T.P. Kumar. Safety mechanisms in lithium ion batteries. Journal of Power Sources 2006,155: 401-414.
    [50] www.degussa.com
    [51] K. Nakahara , S. Iwasa, M. Satoh, Y. Morioka, J. Iriyama, M. Suguro,E.Hasegawa. Rechargeable batteries with organic radical cathodes. Chemical Physics Letters, 2002, 359:351-354
    [52] A. K. Padhi, K. S. Nanjiundaswamy, J. B. Goodenough, Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. Journal of The Electrochemical Society, 1997,144(4): 1188-1192
    [53] C. Delacourt, L. Laffont, R. Bouchet, C. Wurm, J.-B. Leriche, M. Morcrette,J.-M. Tarascon, and C. Masquelier. Toward understanding of electrical limitations (electronic, Ionic) in LiMPo_4 (M = Fe, Mn) electrode materials.Journal of The Electrochemical Society, 2005,152 (5): A913-A921
    [54] M. Minakshi, P. Singh, S. Thurgate, and K. Prince. Electrochemical behavior of olivine-type LiMnPO_4 in aqueous solutions. Electrochemical and Solid-State Letters, 2006, 9(10): A471-A474
    [55] N.-H Kwon, T. Drezen, I. Exnar, I. Teerlinck, M. Isono, and M. Graetzel.Enhanced electrochemical performance of mesoparticulate LiMnPO_4 for lithium ion batteries. Electrochemical and Solid-State Letters, 2006, 9(6): A277-A280
    [56] J. Barker, M. Y. Saidi, and J. L. Swoyer. Electrochemical insertion properties of the novel lithium vanadium fluorophosphate, LiVPO_4F. Journal of The Electrochemical Society, 2003,150(10): A1394-A1398
    [57] J. Barker, R. K. B. Gover, P. Burns, and A. Bryan. A symmetrical lithium-Ion cell based on lithium vanadium, fluorophosphate, LiVPO_4F. Electrochemical and Solid-State Letters, 2005, 8 (6): A285-A287
    [58] J. Barker, R. K. B. Gover, P. Burns, and A. Bryan. A lithium-ion cell based on Li_(4/3)Ti_(5/3)O_4 and LiVPO_4F. Electrochemical and Solid-State Letters, 2007, 10(5): A130-A133
    [59] W. F. Howard, R. M. Spotnitz. Theoretical evaluation of high-energy lithium metal phosphate cathode materials in Li-ion batteries. Journal of Power Sources,2007,165: 887-891
    [60] J. J. Chen, M. J. Vacchio, S. J. Wang, N. Chernova, P. Y. Zavalij, M. S.Whittingham. The hydrothermal synthesis and characterization of olivines and related compounds for electrochemical applications. Solid State Ionics, 2008,178: 1676-1693
    [61] A. K. Padhi, K. S. Nanjundaswamy, C. Masquelier, and J. B. Goodenough.Mapping of transition metal reclox energies in phosphates with NASICON structure by lithium intercalation. Journal of The Electrochemical Society, 1997,144(8): 2581-2587
    [62] M.Y. Saidi, J. Barker, H. Huang, J.L. Swoyer, G. Adamson. Electrochemical properties of lithium vanadium phosphate as a cathode material for lithium-ion batteries. Electrochemical and Solid-State Letters, 2002, 5(7): A149-A151
    [63]. Barker, R.K.B. Gover, P. Burns, A. Bryan. The effect of Al substitution on the electrochemical insertion properties of the lithium vanadium phosphate,Li_3V_2(PO_4)_3. Journal of the Electrochemical Society, 2007,154 (4): A307-A313
    [64] A.K. Padhi, K.S. Nanjundawamy, C. Masquelier, S. Okada, J.B. Goodenough. Effect of structure on the Fe~(3+)/Fe~(2+) redox couple in iron phosphates. J.Electrochem. Soc, 1997, 144(5):1609-1613.
    [65] M.S. Whittingham. Lithium batteries and cathode materials. Chem. Rev., 2004,104(10):4271-4301.
    [66] V. Srinivasan, J. Newman. Discharge model for the lithium iron-phosphate electrode. Journal of The Electrochemical Society, 151(10): A1517-A1529
    [67] A. Yamada, H. Koizumi, N. Sonoyama, R. Kanno. Phase change in LixFePO_4.Electrochemical and Solid-State Letters. 8(8): A409-A413
    [68] J.L. Dodd, R. Yazami, B. Fultz. Phase diagram of LixFePO_4. Electrochemical and Solid-State Letters, 2006,9(3): A151-A155
    [69] D. Morgan, A.V. Ven, G. Ceder. Li conductivity in Li_xMPO_4 (M=Mn, Fe, Co, Ni) olivine materials. Electrochem. Solid-State Lett., 2004,7: A30-A32
    [70] P.P. Prosini, M. Lisi, D. Zane, M. Pasquali. Determination of the chemical diffusion coefficient of lithium in LiFePO_4. Solid State Ionics. 2002, 148(1-2):45-51
    [71] N. Ravet, Y. Chouinard, J.F. Magnan, S. Besner, M. Gauthier, M. Armand. Electroactivity of natural and synthetic triphylite. J. Power Sources, 2001,97-98(1-2): 503-507.
    [72] J. Jiang, J.R. Dahn, ARC studies of the thermal stability of three different cathode materials: LiCoO_2; Li[Ni_(0.1)Co_(0.8)Mn_(0.1)]O_2; and LiFePO_4, in LiPF_6 and LiBOB EC/DMC electrolytes. Electrochemistry Communications. 2004,6(1):39-43.
    [73] M. takahashi, S. Tobishimn, K. Takei, YojiSakurai. Reaction behaviour of LiFePO_4 as a cathode material for chargeable lithium batteries. Solid state ionics.2002,148 (3-4): 283-289.
    [74] J.R. Dahn, E.W. Fuller, M. Obrovac, U. sacken. Thermal stability of Li_xCoO_2,Li_xNiO_2 and λ-MnO_2 and consequences for the safety of Li-ion cells, Solid state ionic. 1994, 69(1): 26.
    [75] X.Q. Yang, X. Sun, J. Mcbreen. New phases and phase transitions observed in Li_(1-x)CoO_2 during charge: in situ synchrotron X-ray diffraction studies. Electrochem. Commun., 2000, 2(2):100-103.
    [76] S. Venkatraman, Y. Shin, A. Manthiram. Phase relationships and structural and chemical stabilities of charged Li_(1-x)CoO_(2-δ) and Li_(1-x)Ni_(0.85)Co_(0.15)O_(2-δ) cathodes.Electrochem. Solid-State Lett.., 2003, 6(1): A9-A12
    [77] N. Takimi, A. Satoh, M. hara, T. Ohsaki. Structural and kinetic characterization of lithium intercalation into carbon anodes for secondary lithium batteries. J.Electrochem Soc, 1995, 142(2): 371-379.
    [78] T. Uchina, Y. Marikaua, H. Ikuta, M. Wakihara, K. Suzuki. Chemcal diffusion coefficient of lithium in carbon fiber. J. Electrochem. Soc, 1996, 143(8):2606-2610.
    
    [79] A.A. Andriiko, P.V. Rudenok, L.I. Nyrkova. Diffusion coefficient of Li~+ in solid-state rechargeable battery materials.J.Power Sources,1998,72(2):146-149.
    [80]A.Yamada,M.Hosoya,S.C.Chung,Y.Kudo,K.Hinokuma,K.Y.Liu,Y.Nishi.Olivine-type cathodes Achievements and problems.J.Power Sources.2003,119-121(1-2):232-238.
    [81]J.B.Lu,Z.L.Tang,Z.T.Zhang,W.C.Shen.Structural and Electrochemical Properties of Multihollow LiFePO_4 for Lithium Battery Cathodes.J.Electrochem.Soc.,2005,152(7):1441-1444.
    [82]M.S.Islam,D.J.Driscoll,C.A.J.Fisher,P.R.Slater.Atomin-Scale Investigation of Defects,Dopants,and Lithium Transport in the LiFePO_4 Olivine-Type Battery Naterial.Chem.Mater.2005,17(20):5085-5092.
    [83]P.P.Prosini,M.Lisi,D.Zane,M.Pasquali.Determination of the chemical diffusion coefficient of lithium in LiFePO_4.Solid State Ionics.2002,148(1-2):45-51.
    [84]S.T.Myung,S.Komaba,N.Hirosaki,H.Yashiro,N.Kumagai.Emulsion drying synthesis of olivine LiFePO_4/C composite and its electrochemical properties as lithium intercalation material.Electrochimica Acta 2004,49(24):4213-4222.
    [85]A.A.M.Prince,S.Mylswamy,T.S.Chan,R.S.Liu,B.Hannoyer,M.Jean,C.H.Shen,S.M.Huang,J.F.Lee,G.X.Wang.Investigation of Fe valence in LiFePO_4by Mossbauer and XANES spectroscopic techniques.Solid State Communications.2004,132(7):455-458.
    [86]M.Takahashi,S.Tobishima,K.Takei,Y.Sakurai.Characterization of LiFePO_4as the cathod material for rechargeable lithium batteries,J.Power Sources,2001,97-98(1-2):508-511.
    [87]米常焕.橄榄石型LiFePO_4_/C复合正极材料研究.浙江大学博士学位论文,2005,5,杭州
    [88]K.Striebel,J.Shim,V.Srinivasan,J.Newman.Comparison of LiFePO_4 from Different Sources.J.Electrochem.Soc.,2005,152(4):A664-A670.
    [89]J.Barker,M.Y.Saidi,J.L.Swoyer.Lithium iron.II,phospho-olivines prepared by a novel carbothermal reduction method.Electrochemical and Solid-State Letters, 2003, 6(3): A53-A55
    [90] S. Franger, F.L. Cras, C. Bourbon, H. Rouault. Comparison between different LiFePO_4 synthesis routes and their influence on its physico-chemical properties, J. Power Sources, 2003,119-121(1-2): 252-257.
    [91] Croce F, Epifanio A D, Hassoun J, et al., A Novel concept for the synthesis of an improved LiFePO_4 lithium battery cathode, Electrochem. Solid State Lett., 2002,5(3):A47-A50.
    [92] N. Iltchev, Y. Chen, S. Okada, J. Yamaki. LiFePO_4 storage at room and elevate temperatures, J. Power Source, 2003,119-121(1-2): 749-754.
    [93] S. Scaccia, M. Carewska, P. Wisniewski, P.P. Prosini, Morphological investigation of Sub-micron FePCu and LiFePO_4 particales for rechargeable lithium batteries, Materials Research Bulletin, 2003, 38(7):1155-1163.
    [94] J.J.Chen, M. Stanley. Hydrotermal synthesis of lithium iron phosphate.Electrochem. Commun. 2006, 8:855.
    [95] S.F. Yang, P.Y. Zavalih, M.S. Whittingham. Hydrothermal synthesis lithium iron phosphate cathodes. Electrochem. Commun. 2001, 3: 505-508.
    [96] J. Lee, A.S. Teja. Characteristics of lithium iron phosphate particles synthesized in subcritical and supercritical water. J. Suppercrit Fluids, 2005, 35:83-90.
    [97] C.S. Wang, J. Hong. Ionic/electronic conducting characteristics of LiFePO_4 cathode Materials. Electrochemical and Solid-State Letters, 2007,10(3):A65-A69
    [98] M. Abbate, S.M. Lala, L.A. Montoro, J.M. Rosolen. Ti-, A1-, Cu-doping induced gap states in LiFePO_4, Electrochemical and Solid-State Letters, 2005,8(6):A288-A290.
    [99] S.Y. Chung, J.T. Bloking, Y.M. Chiang. Electronically conductive phospho-olivines as lithium storage electrodes. Nature Materials, 2002,1(2):123-128.
    [100] P.S. Herle, B. Ellis, N. Coombs, L.F. Nazar. Nano-network electronic conduction in iron and nickel olivine phosphates. Nature materials, 2004, 3:147-152
    [101]D.Zane,M.Carewska,S.Scaccia,F.Cardellini,P.P.Prosini.Factor affecting rate performance ofundoped LiFePO_4.Electrochimica Acta,2004,49:4259-4271
    [102]C.Delacourt,P.Poizot,S.Levasseur,C.Masquelier.Size effects on carbon-free LiFePO_4 powders,Electrochemical and Solid-State Letters,2006,9(7):A352-A355
    [103]C.Delacourt,C.Wurm,L.Laffont,J.B.Leriche,C.Masquelier.Electrochemical and electrical properties of Nb-and/or C-containing LiFePO_4composites.Solid State Ionics,2006,177:333-341
    [104]A.Yamada,S.C.Chung,K.Kinokuma.Optimized LiFePO_4 for lithium battery cathodes.Journal of The Electrochemical Society,2001,148(3):A224-A229
    [105]N.Raver,J.B.Goodenough,S.Besner,M.Simoneau,P.Hovington,M.Armand.Abstract 127,the electrochemical society and the electrochemical society of Japan eeeting abstracts,Vol.99-2,Honolulu,HI,Oct 17-22,1999
    [106]H.Huang,S.C.Yin,L.F.Nazar.Approaching theoretical capacity of LiFePO_4at room temperature at high rates.Electrochem Solid-State Lett,2001,4(1):A 170-A172
    [107]Z.H.Chen,J.R.Dahn.Reducing carbon in LiFePO4/C composite electrodes to maximize specific energy,volumetric energy,and tap density.J.Electrochem.Soc.,2002,149(9):A1184-A1189
    [108]C.H.Mi,X.B.Zhao,G.S.Cao,J.P Tu.In-situ synthesis and properties of carbon-coated LiFePO_4 as Li-ion battery cathodes.J.Electrochem.Soc.,2005,152:A483-A487
    [109]赵新兵,谢健.新型锂离子电池正极材料LiFePO_4的研究进展,机械工程学报,2007,43(1):69-76
    [110]J.D.Wilcox,M.M.Doeff,M.Marcinek,R.Kostecki.Factors influencing the quality of carbon coatings on LiFePO_4.Journal of The Electrochemical Society,2007,154(5):A389-A395
    [111]M.M.Doeff.Synthesis and characterization of cathode materials.DOE merit review,Feb.25-28,2008
    [112] R. Dominko, M. Bele, M. Gaberscek, M. Remskar, D. Hanzel, S. Pejovnik, J.Jamnik. Impact of the carbon coating thickness on the electrochemical performance of LiFePO_4/C composites. J. Electrochem. Soc., 2005,152 (3):A607-A610.
    [113] W. Ojczyk, J. Marzec, K. Swierczek, et al. LiFePCvbased composite cathode materials for lithium ion batteries. J. Power Sources, 2007.
    [114] C.W. Kim, J.S. Park, K.S. Lee. Effect of Fe_2P on the electron conductivity and electrochemical performance of LiFePO_4 synthesized by mechanical alloying using Fe~(3+) raw material. J. Power Sources 2006,163(1):144-150
    [115] H.C. Shin, W. Cho, H. Jang. Electrochemical properties of the carbon-coated LiFePO_4 as a cathode material for lithium-ion secondary batteries. J. Power Sources, 2007.
    [116] Y. Xu, Y.J. Lu, L. Yan, Z.Y. Yang, R.D. Yang. Synthesis and effect of forming Fe_2P phase on the physicals and electrochemical properties of LiFePO_4/C materials. J. Power Sources 2006, 160(2): 570-577.
    [117] V. Palomares, A. Goni, I.G. Muro, I. Meatza, M. Bengoechea, O. Miguel, T.Rojo. New freeze-drying method for LiFePO_4 synthesis. J. Power Sources. 2007,171:879-885.
    [118] X.Z. Liao, Z.F. Ma, Y.S. He, X.M. Zhang, L. Wang, Y. Jiang. Electrochemical behavior of LiFePCVC cathode material for rechargeable lithium batteries. J.Electrochem. Soc, 2005, 152(10): A1969-A1973.
    [119] www.valence.com
    [120] www.al23systems.com
    [121] H. Takeshita. Worldwide market update on NiMH, Li-ion and polymer batteries for portable applications and HEVS. The 24th international battery seminar & exhibit, Fort Lauderdale, Florida, March 19, 2007
    [122] www.aleees.com
    [123] www.stl-energy.com.cn
    [124] www.pulead.com.cn
    [125]李树堂.X射线衍射.北京:冶金工业出版社,1993.
    [126]杨传铮.物相衍射分析.北京:冶金工业出版社,1989.
    [127]廖乾初.扫描电镜分析技术与应用.北京:机械工业出版社.1990.
    [128]魏金全.材料电子显微分析.北京:冶金工业出版社.1997.
    [129]蔡正千.热分析.北京:高等教育出版社,1993.
    [130]李余增.热分析.北京:清华大学出版社,1987.
    [131]英国马尔文Mastersizer2000用户手册,1997.
    [132]S.Gregg,K.S.W.Sing.吸附、比表面积与空隙率.高径倧译.北京:化学工业出版社,1986.
    [133]E.P.Barrett,L.G.Joyner,P.P.Halenda.The determination of pore volume and area distributions in porous substance I Computations from nitrogen isotherms.J.Amer.Chem.Soc.,1951(73):373-380.
    [134]孟令芝,龚淑玲,何永炳.有机波谱分析.第二版.武汉:武汉大学出版社,1997.
    [135]刘永辉.电化学测试技术.北京:北京航空学院,1987.
    [136]曹楚南,张鉴清,电化学阻抗谱导论(第一版),北京:科学出版社,2002年.
    [137]M.Takahashi,Shin-ichi,Tobishima,K.Takei,Y.Sakurai.Reaction behavior of LiFePO_4 as a cathode material for rechargeable lithium batteries.Solid State Ionics,2002(3-4):283-289.
    [138]C.G.Barral,J.P.Diard,B.L.Gorrec,C.Montella.Determination of the diffusion coefficient of an inserted species by impedance spectroscopy application to the H/HxNb_2O_5 system.J Appl.Electrochem.,1993(23):93-97.
    [139]米常焕.橄榄石LiFePO_4/C复合正极材料研究.浙江大学.2005
    [140]赖春艳.锂离子电池材料LiFePO_4的制备与改性研究.中科院上海微系统与信息技术研究所.2006
    [141]H.Huang,S.C.Yin,and L.F.Nazar,Approaching Theoretical Capacity of LiFePO_4 at Room Temperature at High Rates,Electrochem.Solid-State Lett.2001,4:A170.
    [142]A.Yamada,M.Hosoya,S.C.Chung,Y.Kudo,K.Hinokuma,K.Y.Liu,Y.Nishi,Olivine-type cathodes:Achievements and problems J.Power Sources 2003, 119-121:232.
    [143] Z. Chen, J.R. Dahn, Reducing Carbon in LiFePO_4/C Composite Electrodes to Maximize Specific Energy, Volumetric Energy, and Tap Density, J. Electrochem.Soc. 2002, 149:A1184.
    [144] R. Dominko, M. Gaberscek, J. Drofenik, M. Bele, S. Pejovnik, J. Jamnik, The role of carbon black distribution in cathodes for Li ion batteries J. Power Source 2003,119-121:770.
    [145] C.H. Mi, GS. Cao, X.B. Zhao, Low-cost, one-step process for synthesis of carbon-coated LiFePO_4 cathode Mater. Lett. 2005, 59:127.
    
    [146] C.H. Mi, X.B. Zhao, GS. Cao, J.P. Tu, J, In Situ Synthesis and Properties of Carbon-Coated LiFePO_4 as Li-Ion Battery Cathodes. Electrochem. Soc. 2005,152:A483.
    [147] A. Yamada, S.C. Chung, K. Hinokuma, Optimized LiFePO_4 for Lithium Battery Cathodes, J. Electrochem. Soc. 2001,148:A224.
    [148] P.P. Proshini, M. Carewska, S. Scaccia, A New Synthetic Route for Preparing LiFePO_4 with Enhanced Electrochemical Performance, J. Electrochem. Soc.2002, 149:A886-A890.
    [149] G Arnold, J. Garche, R. Hemmer, Fine-particle lithium iron phosphate LiFePO_4 synthesized by a new low-cost aqueous precipitation technique J. Power Sources 2003,119-121:247-251.
    [150] S.Y. Chung, J.T. Bloking, Y.M. Chiang. Electronically conductive phosphor olivines as lithium storage electrodes. Nat. Mater. 2002, 1(2): 123-128.
    [151] S. Y. Chung Y. M. Chiang, Microscale Measurements of the Electrical Conductivity of Doped LiFePO_4, Electrochem. Solid-State Lett. 2003, 6:A278.
    [152] J. Barker, M.Y. Saidi, J.L. Swoyer. Lithium iron(II) phosphor-olivines prepared by a novel carbothermal reduction method. Electrochem. Solid-state Lett, 2003, 6(3):A53-A55
    [153] V.V. Parfenov, R.A. Nazipov. Effect of synthesis temperature on the transport properties of copper ferrites. Inorganic Mater. 2002, 38(1):78-82.
    LiFePO4
    [154] S.V. Narasimhan. Formation of zinc ferrite by solid-state reaction and its
    ??characterization by XRD and XPS. J. Mater. Science, 2001, 36(22):379-384.
    [155] L. Baca, J. Plewa, L. Pach. Kinetic analysis crystallization of a-Al_2O_3 by dynamic DTA technique. J. Thermal Analysis and Calorimetry, 2001,66(3):803-813.
    [156] J. Malek. Kinetic analysis of crystallization processes in amorphous materials.Thermochimica Acta, 2000, 355(l-2):239-253.
    [157] H.R. Wang, Y.L. Gao, Y.F. Ye, et al. Crystallization kinetics of an amorphous Zr-Cu-Ni alloy calculation of the activation energy. J. Alloys. Compounds,2003, 353(1-2):200-206.
    [158] K. Gen. Raman spectroscopy of graphite and carbon materials and its recent application. Carbon, 1997, 35(5):716.
    [159] J.D. Wilcox, M.M. Doeff, M. Marcinek, R. Kostecki. Factor influencing the quality of carbon coating on LiFePO_4. J. Electrochem. Soc. 2007,154(5):A389-395.
    [160] M.M. Doeff, Y. Hu, F. Mclarnon, R. Kostecki. Effect of surface carbon structure on the electrochemical performance of LiFePO_4. Electrochem.Solid-State Lett. 2003,6(10):A207-209.
    [161] Tatsuya Nakamura, Yoshiki Miwa, Mitsuharu Tabuchi, Yoshihiro Yamada.Structural and Surface Modifications of LiFePO_4 Olivine Particles and Their Electrochemical Properties. J. Electrochem. Soc, 2006,153(6): A1108-A1114.
    [162] Heike Gabrisch, James D. Wilcox, Marca M. Doeff. Carbon Surface Layers on a High-Rate LiFePO_4. Electrochem. Solid-State Lett., 2006, 9 (7): A360-A363.
    [163] H.T. Chung, S.K. Jang, H.W. Ryu, K.B. Shim. Solid State Commun. 2004,131:549.
    [164] P.S. Herle, B. Ellis, N. Coombs, L.F. Nazar. Nano-network electronic conduction in iron and nickel olivine phosphates. Nat. Mater. 2004, 3: 147-152.
    [165] C.H. Mi. X.G. Zhang, X.B. Zhao, H.L. Li. Effect of sintering time on the physical and electrochemical properties of LiFePO_4/C composite cathodes. J.Alloys Compounds, 2006.
    [166]Z.H.Xu,L.Xu,Q.Y.Lai,X.Y.Ji.A PEG assisted sol-gel synthesis of LiFePO_4as cathodic material for lithium ion cells.Mater.Res.Bull.,2006,123:989-992.
    [167]M.A.E.Sanchez,G.E.S.Brito,M.C.A.Fantini,G.F.Goya,J.R.Matos.Synthesis and characterization of LiFePO_4 prepared by sol-gel technique.Solid State Ionics,2006,177:497-500.
    [168]R.Dominko,M.Bele,M.Gaberscek,M.Remskar,D.Hanzel,J.M.Goulpil,S.Pejovnik,J.Jamnik.Porous olivine composites synthesized by sol-gel technique.J.Power Sources,2006,153:274-280.
    [169]D.Choi,P.N.Kumta.Surfactant based sol-gel approach to nanostructured LiFePO_4 for high rate Li-ion batteries.J.Power Sources,2007,163:1064-1069.
    [170]J.S.Yang,J.J.Xu.Nonaqueous Sol-Gel synthesis of high-performance LiFePO_4.Electrochem.Solid-State Lett.2004,7(12):A515-518.
    [171]M.M.Doeff,Y.Q.Hu,F.Mclarnon,R.Kostechi.Effect of surface carbon structure on the electrochemical performance of LiFePO_4.Electrochem.Solid-State Lett.2003,6(10):A207-209.
    [172]D.H.Kim,J.Kim.Synthesis of LiFePO_4 nanoparticles in polyol medium and electrochemical properties.Electrochem.Solid-State Lett.2006,9(9):A439-442.
    [173]N.Ravet,J.B.Goodenough,S.Besner,M.Simoneau,P.Hovington,M.Armand.The Electrochemical Society and the Electrochemical Society of Japan Meeting Abstracts,Vol.99-2,honolulu,HI,17-22 October 1999(abstract no.127)
    [174]Robert Dominko,M.Gaberscek,J.Drofenik,M.Bele,S.Pejovnik,J.Jamnik,The role of carbon black distribution in cathodes for Li ion batteries,J.Power Sources,2003,119-121(1-2):770-773.
    [175]王宝峰.二次锂电池中高容量硅/碳复合负极材料的合成及电化学研究.中科院上海微系统与信息技术研究所.2004年7月.
    [176]N.Ravet,M.Gauthier,K.Zaghib,J.B.Goodenough,A.Mauger,F.Gendron,C.M.Julien.Mechnism of the Fe~(3+) reduction at low temperature for LiFePO_4synthesis from a polymeric additive.Chem.Mater.2007,19:2595-2602.
    [177]C.H.Mi,X.G.Zhang,X.B.Zhao,H.L.Li.Synthesis and performance of LiMn_(0.6)Fe_(0.4)PO_4/nano-carbon webs composite cathode. Materials Science and Engineering B, 2005.
    [178] X.L. Li, F. Kang, X. Bai, W. Shen. A novel network composite cathode of LiFePO_4/multiwalled carbon nanotubes with high rate capability for lithium ion batteries. Electrochem. Commun., 2007, 9: 663-666.
    [179] R. Dominko, M. Bele, M. Gaberscek, M. Remskar, D. Hanzel, J.M. Goulpil, S.Pejovnik, J. Jamnik. Impact of carbon coating thickness on the electrochemical performance of LiFePO_4/C composites. J. Electrochem. Soc, 2005,152(3):A607-610.
    [180] J. Moskon, T. Dominko, R. Cerckorosec, M. Gaberscek, J. Jamnik. Morphologh and electrical properties of conductive carbon coating for cathode materials. J.Power Sources 2007.
    [181] H. Gabrish, J.D. Wilcox, M.M. Doeff. Carbon surface layers on a high-rate LiFePO_4. Electrochem. Solid State Lett., 2006, 9(7): A360-363.
    [182] M.R. Roberts, A.D. Spong, G Vitins, J.R. Owen. High through screening of the effect of carbon coating in LiFePO_4 electrdes. J. Electrochem. Soc, 2007,154(10):A921-928.
    [183] S.T. Yang, N.H. Zhao, H.Y. Dong, J.X. Yang, H.Y. Yue. Synthesis and characterization of LiFePO_4 cathode material dispersed with nano-structured carbon. Electrochem. Acta 2005, 51:166-171.
    [184] A.K. Padhi, K.S. Nanjundawamy, J.B. Goodenough. Phospho-olivineas positive electrode materials for rechargeable lithium batteries. J. Electrochem. Soc.,1997, 144(4):1188-1194.
    [185] J. Barker, M.Y. Saidi, J.L. Swoyer. A carbothermal reduction method for the preparation of electroactive materials for lithium ion applicaions. J.Electrochem. Soc, 2003, 150(6):A684-A688.
    [186] S.Y. Chung, J.T. Bloking, Y.M. Chiang. Electronically conductive phosphor olivines as lithium storage electrodes. Nat. Mater. 2002,1(2): 123-128.
    [187] H. Huang, S.C. Yin, and L.F. Nazar, Approaching Theoretical Capacity of LiFePO_4 at Room Temperature at High Rates, Electrochem. Solid-State Lett. 2001,4:A170.
    [188]Y.Q.Wang,J.L.Wang,J.Yang,Y.N.Nuli.High-rate LiFePO_4 electrode material synthesized by a novel route from FePO_4·4H_2O.Advanced Fuctional Materials 2006,16:2135-2140.
    [189]C.G.Barral,J.P.Diard,B.L.Gorrec,C.Montella.Determination of the diffusion doefficient of an inserted species by impedence spectroscopy application.J.Appl.Electrochem.,1993,23:93-97.
    [190]R.C.Mehrotra.Synthesis and reactions of metal alkoxides.Journal of Non-Crystaline Solids 1988,100:1-5.
    [191]王筱留,钢铁冶金学(炼铁部分).北京:冶金工业出版社(第2版),2005.
    [193]M.Koltypin,D.Aurbach,L.Nazar,B.Ellis.More on the performance of LiFePO_4 electrodes-The effect of synthesis route,solution composition,aging,and temperature.J.Power Source 2007.
    [194]B.Ellis,P.S.Herle,Y.H.Rho,L.F.Nazar,et al.Nanostructured materials for lithium-ion batteries:Surface conductivity vs.bulk ion/electron transport.Faraday Discussions.,2007,134:119-141.
    [195]Y.H.Rho,L.F.Nazar,L.Perry,D.Ryan.Surface chemistry of LiFePO_4 studied by Mossbauer and X-ray photoelectron spectroscopy and its effect on electrochemical properties.J.Electrochem.Soc.,2007,154(4):A283-289.
    [196]Y.Xu,Y.J.Lu,L.Yan,Z.Y.Yang,R.D.Yang.Synthesis and effect of forming Fe_2P phase on the physicals and electrochemical properties of LiFePO_4/C materials.J.Power Sources 2006,160(2):570-577.
    [197]C.W.Kim,J.S.Park,K.S.Lee.Effect of Fe_2P on the electron conductivity and electrochemical performance of LiFePO_4 synthesized by mechanical alloying using Fe~(3+) raw material.J.Power Sources 2006,163(1):144-150
    [198]C.H.Mi,G.S.Cao,X.B.Zhao.One-step solid-state synthesis and high-temperature electrochemical performance of carbon coated LiFePO_4cathode.Chinese Journal of Inorganic Chemistry,2005,21(4):556-559.
    [199]K.Amine,J.Liu,I.Belharouak.High-temperature strorage and cycling of C-LiFePO_4/graphite Li-ion cells.Electrochem.Commun.,2005,7:669-673.
    [200]A.A.Salah,A.Mauger,C.M.Julien,F.Gendron.Nano-sized impurity phases in relation to the mode of preparation of LiFePO_4.Mater.Sci.Eng.B 2006,129:232-224.
    [201]A.A.Salah,A.Mauger,K.Zaghib,J.B.Goodenough,N.Ravet,M.Gauthier,F.Gauthier,F.Gendron,C.M.Julien,F.Gendron.Reduction of Fe~(3+) of impurities form pyrolysis of organic precursor used for carbon deposition.J.Electrochem.Soc.,2006,153(9):A1692-A1710.
    [202]陈方,梁海潮,李仁贵等.负极活性材料Li_4Ti_5O_(12)的研究进展.无机材料学报,2005,20(3):537-543.
    [203]徐仲榆,郑洪河.锂离子蓄电池碳负极/电解液的相容性研究进展Ⅱ电解液组成与碳负极/电解液的相容性.电源技术,2000,5:295-301.
    [204]J.O.Besenhard,J.Yang,M.Winter.Will advanced lithium-alloy anodes have a chance in lithium-ion batteries? J.Power Sources,1997,68(1):87-89.
    [205]J.Yang,M.Winter,J.O.Besenhard.Small particle size multiphase Li-alloy anodes for lithium-ion batteries.Solid State Ionics,1996,90(1-4):281-287.
    [206]J.T.Vaugheya,L.Franssonb,H.A.Swingera.Alternative anode materials for lithium-ion batteries:a study of Ag_3Sb.J.Power Sources,2003,119-121:64-68.
    [207]T.Ohzuku,A.Ueda,N.Yamamoto.Zero-strain insertion materials of Li[Li_(1/3)Ti_(5/3)]O_4 for rechargeable lithium cells.J.Electrochem.Soc.1995,142:1431-1435
    [208]G.X.Wang,D.H Brandhurst,S.X Dou,et al.Spine Li_2[Li_(1/3)Ti_(5/3)]O)4 as an anode material for lithium ion batteries.J.Power Sources,1999,(83):156-161.
    [209]S.Schamer,W.Weppner,et al.Evidence of two-phase formation upon lithium insertion into the Li_(1.33)Ti_(1.67)O_4 spinel.J.Electrochem.Soc.1999,146(3):857-861.
    [210]K Kanamura,T.Umegaki,H.Naito,et al.Structural and electrochemical characteristics of Li_(4/3)Ti_(5/3)O_4 as an anode material for rechargeable lithium batteries.J.Applied Electrochem.2001,31:73-78.
    [211]O.Tsutomu,U.Atsushi,Y.Norihiro.Zero-strain insertion materials of Li[Li_(1/3)Ti_(5/3)]O_4 for rechargeable lithium cells. J. Electrochem. Soc. 1995,140:1431-1435
    [212] S. Pyun, S.W. Kim, H.C. Shin. Lithium transport through Li_(1+σ) [Ti_(2-y)Li_y]O_4(y=0;1/3) electrode by analyze current transients upon large potential steps. J. Power Sources, 1999, 81-82:248-254.
    [213] K. Nakahara, R. Nakajima, T. Matsushima, H. Majima, Preparation of particulate Li_4Ti_5O_(12) having excellent characteristics as an electrode active material for power storage cells J. Power Sources 2003,117:131.
    [214] J. Gao, J. Ying, C. Jiang, C. Wan, High-density spherical Li_4Ti_5O_(12)/C anode material with good rate capability for lithium ion batteries J. Power Sources 2007,166:255.
    [215] L. Cheng, X.L. Li, H.J. Liu, H.M. Xiong, P.W. Zhang, Y.Y. Xia, J. Electrochem.Soc.
    [216] S.H. Huang, Z.Y. Wen, X.J. Zhu, et al. Preparation and electrochemical performance of Ag doped Li_4Ti_5O_(12).Electrochem. Commun., 2004,6:1093-1097.
    [217] S.H. Huang, Z.Y. Wen, J.C. Zhang, et al. Li_4Ti_5O_(12)/Ag composite as electrode materials for lithium-ion battery, Solid State ionics, 2006,177:851.
    [218] S.H. Huang, Z.Y. Wen, J.C. Zhang, X.L. Yang. Improving the electrochemical performance of Li_4Ti_5O_(12)/Ag composite by an electroless deposition method.Electrochem. Acta, 2007, 52:3704-3708
    [219] S.H. Huang, Z.Y. Wen, et al. Research on Li_4Ti_5O_(12)/Cu_xO Composite Anode Materials for Lithium-Ion Batteries, J. Electrochem. Soc. 2005,152:A1301
    [220] A.D. Robertson, L. Trevino, H. Tukamoto, J.T.S. Irvine, New inorganic spinel oxides for use as negative electrode materials in future lithium-ion batteries J.Power Sources 1999, 81-82:352.
    [221] P. Kubiak, A. Garcia, M. Womes, L. Aldon, J.O. Fourcade, P.E. Lippens, J.C.Jumas, Phase transition in the spinel Li_4Ti_5O_(12) induced by lithium insertion:Influence of the substitutions Ti/V, Ti/Mn, Ti/Fe J. Power Sources 2003,119-121:626.
    [222]K.Mukai,K.Ariyoshi,T.Ohzuku,Comparative study of Li[CrTi]O_4,Li[Li_(1/3)Ti_(5/3)]O_4 and Li_(1/2)Fe_(1/2)[Li_(1/2)Fe_(1/2)Ti]O_4 in non-aqueous lithium cells J.Power Sources 2005,146:213.
    [223]K.Ladislav,G.Michael.Facile synthesis of nanocrystalline Li_4Ti_5O_(12)(spinel)exhibiting fast Li insertion.Electrochem.Solid-State Lett.2002,5(2):A39-42.
    [224]A.Guerfi,S.Sevigny,M.Lagace,P.Hovington,K.Kinoshita,K.Zaghib,Nano-particle Li_4Ti_5O_(12) spinel as electrode for electrochemical generators J.Power Sources 2003,119-121:88.
    [225]K.N.Jung,S.Pyun,S.W.Kim,Thermodynamic and kinetic approaches to lithium intercalation into Li[Ti_(5/3)Li_(1/3)]O_4 film electrode J.Power Sources 2003,119-121:637.
    [226]A.Singhal,G.Skandan,G.Amatucci,F.Badway,N.Ye,A.Manthiram,H.Ye,J.J.Xu,Nanostructured electrodes for next generation rechargeable electrochemical devices J.Power Sources 2004,129:38.
    [227]Y.H.Rho,K.Kanamura.Li~+ ion diffusion in Li_4Ti_5O_(12) thin film electrode prepared by PVP sol-gel method.J.Solid State Chem.2004,177:2094-2100.
    [228]C.M.Shen,X.G.Zhang,Y.K.Zhou,H.L.Li.Preparation and characterization of nanocrystalline Li_4Ti_5O_(12) by sol-gel method.Mater.Chem.Phys.2002,78:437-441.
    [229]Y.H.Rho,K.Kanamura,M.Fujisaki,J.I.Hamagami,S.I.Suda,T.Umegaki.Preparation of Li_4Ti_5O_(12) and LiCoO_2 thin film electrodes form precursors obtained by sol-gel method.Solid State Ionics,2002,151:151-157.
    [230]Y.J.Hao,Q.G.Lai,Z.H.Xu,X.Q.Liu,X.Y.Ji.Synthesis by TEA sol-gel method and electrochemical properties of Li_4Ti_5O_(12) anode material for lithium-ion battery.Solid State ionics,2005,176:1201-1206.
    [231]M.Venkateswaelu,C.H.Chen,J.S.Do,C.W.Lin,T.C.Chou,B.J.Hwang.Electrochemical properties of nano-sized Li_4Ti_5O_(12) powders synthesized by a sol-gel process and characterized by X-ray absorption spectroscopy.J.Power Sources 2005,146:204-208.
    [232]Y.J.Hao,Q.Y.Lai,J.Z.Lu,et al.Synthesis and characterization of spinel anode material by oxalic acid-assisted sol-gel method. J. Power Sources 2006,158:1358-1364.
    
    [233] K Zaghib, M Simoneau , M Armand , et al. Electrochemical study of Li_4Ti_5O_(12) as negative electrode for Li-ion polymer rechargeable batteries. J Power Sources, 1999, 81-82: 300-305.
    
    [234] C.Y. Lee, H.M. Tsai, H.J. Chuang, S.Y. Li, P. Lin, T.Y. Tseng, Characteristics and electrochemical performance of supercapacitors with manganese oxide-carbon nanotube nanocomposite electrodes, J. Electrochem. Soc. 2005,152:A716.
    
    [235] K. Nakahara, R. Nakajima, T. Matsushima, H. Majima. Preparation of particulate Li_4Ti_5O_(12) having excellent characteristics as an electrode active material for power storage cells. J. Power Sources 2003,117:131-136.
    [236] L. Kavan, J. Prochazka, T.M. Spitler, et al. Li insertion into Li_4Ti_5O_(12) (spinel). J.Electrochem. Soc. 2003,150:A1000-1007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700