锡和锡钛嵌锂薄膜材料的直流溅射制备及电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当今世界上主要使用的能源是以煤炭、石油、天然气为主的化石能源,但化石能源存在的污染大、破坏生态环境等问题,使得开发绿色无污染的新型高能化学电源成为研究热点。由于目前锂离子电池的商用负极材料已不能满足实际需求,对高比容量、高稳定性、高安全性、长寿命、低成本的新型锂离子电池负极材料的开发已显得迫不容缓。本文在综合评述了锂离子电池及其负极材料研究进展的基础上,选取锡(Sn)基负极材料作为研究对象,创新性的采用真空溅射技术在铜箔基片上制备了不同工艺参数的Sn、Sn/Ti和Ti/Sn复合膜。采用X射线衍射(XRD)、扫描电子显微镜(SEM)、电感耦合等离子体发射光谱(ICP)等设备和技术,以及循环伏安(CV)、恒电流充放电等电化学测试方法,研究了制备方法、工艺参数对Sn、Sn/Ti和Ti/Sn复合膜的形貌、成份、相结构及电化学性能等的影响,为利用真空溅射技术开发新型的锡基薄膜负极材料提供了理论依据和关键制备技术。
     研究了溅射功率对直流溅射Sn薄膜沉积速率、微结构及电化学性能的影响。结果表明,功率与沉积速率存在近似线性关系。随着溅射功率的增加,薄膜的晶化加剧,晶粒粗化;当功率达24W时,锡铜相互扩散生成CuSn合金相。16W功率下制备的Sn薄膜电极具有最优的电化学性能:首次循环效率达82.2%,30次循环后比容量维持在300mAh/g。
     研究了溅射时间对Sn薄膜微结构的影响,随着时间的增加,Sn薄膜晶化程度逐渐加剧,颗粒不断增大。当沉积时间达20分钟时,Sn颗粒的棱角收缩,使表面颗粒存在球形化趋势,从而使Sn薄膜电极具有最优的循环性能。
     研究了复合金属钛对Sn薄膜表面形貌和电化学性能的影响。制备了Sn/Ti和Ti/Sn复合膜,研究了复合薄膜的表面形貌、成份及锂离子嵌脱行为,分析了Sn/Ti和Ti/Sn复合膜电极的容量衰减机理以及加入Ti后的作用机制。研究发现,金属Sn和Ti的溅射顺序对性能有极大影响,先溅射Sn的Sn/Ti复合膜具有较佳的电化学性能。
     从整体上说,金属Ti的引入大大地改善了Sn/Ti复合膜的锂离子嵌脱行为。Sn/Ti复合膜电极的首次放电容量为896.1mAh/g,第2次循环时放电容量为827.9mAh/g,容量损失仅为7.58%,远远小于Ti/Sn复合膜电极的容量损失。电极第3次循环的放电容量为788.5mAh/g,到第12次循环时其放电容量达到最低值749.1mAh/g,随后其放电容量开始缓慢增加,到第50次循环时达到777.8mAh/g。从第3次到第50次循环,Sn/Ti复合膜电极组装的电池几乎没有容量损失,Sn/Ti复合膜电极组装电池的电化学性能远优于Ti/Sn复合膜和纯Sn电极。
     Sn/Ti复合膜电极的首次充放电容量为875.8mAh/g,从第2次到第20次循环仅有27%的容量损失,远远小于Ti/Sn复合膜电极的容量损失。对比Sn薄膜20次循环后300mAh/g左右的充放电容量,有了29%的性能提升。
     最后,本文简要介绍了密度泛函理论的基本原理,并采用基于密度泛函理论的第一性原理,用Material Studio 4.0软件中的CASTEP模块,研究了Li_xSn合金不同嵌锂中间相的物理性质和电化学性能,对Li-Sn合金的嵌锂机理进行了解释。计算了Sn-Ti合金嵌锂中间相Li-Ti_2Sn/Ti_3Sn的电子结构,并对其嵌锂性能进行预测,为实验结果提供了理论解释。
The fossil energy,which includes coal,oil and natural gas is the world's main energy provider.Due to the huge damage the fossil energy done to the environment, the new pollution-free and high-energy chemical energy has become the hot spots around the world.As the current business anode materials can't meet the actual demand,there is an interest in developing new cathode materials with higher capacity, higher stability,higher safety and lower cost for lithium ion batteries.On the basis of reviewing the development of lithium ion battery and cathodes materials,this thesis selected tin-based materials as cathodes for lithium ion batteries.Different types of Sn, Sn/Ti and Ti/Sn composite films were prepared by vacuum sputtering on Cu foil.The composition,phase structure,electrochemical performance of films with different technology parameters were investigated by X-Ray Diffractionthesis(XRD),Scanning Electron Microscopy(SEM),Inductively Coupled Plasma Spectroscopy(ICP)and electrochemical methods like cyclic voltammetry(CV)and constant current charge/ discharge(CC).This work results provide the mechanism and preparation technology for tin-based films cathode materials by vacuum sputtering.
     The influence of sputtering power on the deposition rate,microstructures and electrochemical properties of Sn films was investigated.The result showed that the sputtering power and the deposition rate have a approximate linear relationship.The crystallization of the film increased with the sputtering power.When the sputtering power is 24W,tin and copper diffused to each other and created a alloy phase of CuSn. When the sputtering power is 16W,Sn films got the optimum electrochemical performance:the 1~(st)cycle efficiency reached 82.2%,the reversible capacity retained 300mAh/g after 30 cycles.
     The influence of sputtering time on the microstructures of Sn thin films was investigated.With the sputtering time increased,the crystallization intensified as well. When the sputtering time reach 20 min,the grain of Sn shrinked and turned the surface of the grain to round form.As a result,the Sn film got the optimum electrochemical performance.
     The influence of adding Ti to Sn films on the microstructures,composition and electrochemical performance was investigated.The Sn/Ti and Ti/Sn composite films were perpared,the film's microstructures,electrochemical performance,composition and the inset and emersion behavior of Li~+ were researched.The mechanism of the composite film's capacity decrease and the function of the Ti were analyzed.It was founded that the sputtering sequence of the Sn and Ti metal would greatly change the performance of the film.The Sn/Ti composite film which sputtered Sn first got a better electrochemical performance.
     Mainly,the addition of Ti greatly improved the inset and emersion behaving of Li~+.The 1~(st)cycle capacity of the Sn/Ti composite films reached 896.1mAh/g.The 2~(nd) cycle capacity is 827.gmAh/g with only 7.58%capacity decrease which is far less than the Ti/Sn composite films.The 3~(rd)cycle capacity is 788.5mAh/g,and the 12~(th) cycle capacity reached the lowest 749.1mAh/g,then the cycle capacity kept growing slowly to the 777.8 mAh/g of 50~(th)cycle.From the 3~(rd)to the 50~(th),the cycle capacity almost didn't have a decrease,which make the Sn/Ti composite films got a far better electrochemical performance then Ti/Sn composite films and pure Sn films.
     At the end of the thesis,the basic principles of density functional theory were introduced.With the CASTEP modules from the Material Studio 4.0 software which base on the density functional theory and the first principles,the physical and electrochemical performance of Li-Sn alloys were studied.The electronic structures of the Li-Ti_2Sn/Ti_3Sn alloy were calculated,the properties of lithium intercalation were forecasted,and the theoretical explanation for the experiments were provided.
引文
[1]杜菲,王春忠,陈岗.锂离子二次电池正极材料研究现状及发展[J].Advanced Materials Industry,2005,7:45-47.
    [2]萧提军.各类商品电池综合性能对比—镉镍电池之我见[J].电池工业,2005,10(1):43-46.
    [3]J.M.Tarascon,M.Armand.Issues and challenges facing rechargeable lithium batteries[J].Nature,2001,414:359-367.
    [4]倪喜芬,王建营,孙家跃等.锂电池正极材料最新研究概况[J].化学世界,2004,4:209-211.
    [5]吴宇平,万春荣,姜长印等.锂离子二次电池[M].北京:化学工业出版社,2002.
    [6]Noel M,Suryanarayanan V1[J].J Power Sources,2002,111:193-209.
    [7]A.Dailly,R.Schneider,D.Billaud,et al.New graphite-antimony composites as anodic materials for lithiumion batteries.Preparation,characterisation and electrochemical performance[J].Electrochimica Acta,2002,47:4207-4212.
    [8]梁宏.电池发展史[J].多媒体世界,2004,10:58-59.
    [9]吴宇平,戴晓兵,马军旗等.锂离子电池-应用与实践[M].北京:化学工业出版社,2002.
    [10]N.Goldenfeld.Dynamics of dendrite growth[J].Journal of Power Sources,1989,26:121-128.
    [11]Zon-Ichiro Takohara,Kiyoshi Kanamura.Historical development of rechargeable lithium batteries in Japan[J].Electroehim Acta,1993,1169-1177.
    [12]马树华.作为锂二次电池负极的炭材料[J].炭素技术,1995,3:19-21.
    [13]M.Armand.Materials for Advanced Batteries[D].New York:Plenum Press,1980.
    [14]T.Nagaura,K.Tozawa.Lithium-ion rechargeable battery[J].Prog Batts Sol Cell,1990,9:209-217.
    [15]K.T.Nam,D.W.Kim,P.J.Yoo,et al.Virus-enables synthesis and assembly of nanowires for lithium-ion battery electrodes[J].Science,2006,312:885-888.
    [16]M.S.Wu,C.P.Julia.Electrochemically deposited nanowires of manganese oxdie as an anode material for lithium-ion batteries[J].Electrochemistry Communications ,2006,8:383-388.
    [17]Z.L.Mo,H.Chen,Y.L.Sun,et al.Preparation and characterization of Li_2Mo_(0.g)La_(0.2)O_4anode material[J].Rare Metals,2006,25(3):221-224.
    [18]W.Choi,Y.J.Lee,B.H.Jung,et al.Mieristructure and electrochemical properties of a nanometer-scale tin anode for lithium secondary batteries[J].J Power Sources,2004,136:154-159.
    [19]A.Catia,L.Mariachiara,M.Marina.Recent trends in research activity on lithiumion batteries in Italy[J].J Power Sources,2005,146:3-9.
    [20]J.M.Tarascon,M.Armand.Issues and challenges facing rechargeable lithium batteries[J].Nature,2001,144(15):359-367.
    [21]杨林.2004年日本电池工业生产与销售概况[J].中国通报,2005,15:18-20.
    [22]石璐,胡社军,李伟善等.锂离子电池正极材料LiFePO_4的研究进展.材料导 报,2007,11:.
    [23]H.B.GUO,X.Y.KANG,et al.Study on Synthesis of LiNi_(0.7)Co_(0.3)O_2 by High Temperature Solid Phase Method in Atmosphere[J].Electronic Components &Materials,2005,24(6):35-37.
    [24]P.Suresh,A.K.Shukla,N.Munichandraiah.Characterization of Zn-and Fe-substituted LiMnO_2 as cathode materials in Li-ion cells[J].Journal of Power Sources,2006,103:7-9.
    [25]J.Kim,B.H.Kim,et al.Effect of(Al,Mg)substitution in LiNiO_2 electrode for lithium batteries[J].Journal of Power Sources,2006,158:641-645.
    [26]Y.G.Xia,Masaki Yoshio,Hideyuki Noguchi.Improved electrochemical performanee of LiFePO_4 by increasing its specific surface area[J].Electrochimica Acta,2006,52:240-245.
    [27]J.J.Chen,M.Stanley.Hydrothermal synthesis of lithium iron phosphate[J].Electrochemistry Communications,2006,8:855-858.
    [28]M.Benaissa,M.Joseyacaman,T.D.Xiao,et al.Phys Lett,1997,70:2120-2122.
    [29]W.C.West,N.V.Myung,et al.Journal of Power Sources,2004,126:203-206.
    [30]A.N.Mansour,P.H.Smith,W.M.Baker,et al.J Electrochem Soc,2003,150(4):A403-A4131.
    [31]J.G.Xie,X.Y.Cao,et al.Application of ultrasonic irradiation to the sol-gel synthesis of silver vanadium oxides[J].Ultrasonics Sonochemistry,2005,12:289-293.
    [32]宁雅楠,王维坤等.新型锂离子电池正极材料多硫代聚苯乙烯的制备[J].化工科技,2004,12(1):29-31.
    [33]王维坤,王安邦等.锂离子电池阴极材料多硫代聚苯撑的制备及电化学性能[J].Chemical Journal of Chinese Universities,2005,26(5):918-921.
    [34]A.K.Padhi,K.S.Nanjundaswamy,J.B.Goodenough.Phospho-olivines as positiveelectrode materials for rechargeable lithium batteries[J].J Electrochem Soc,1997,144:1609.
    [35]Yamada.A,Chung.S.C,Hinokuma.K.Optimized LiFePO_4 for lithium battery cathodes[J].J Electrochem Soc,2001,148(3):224-229.
    [36]宁延生,赵庆云.锂离子电池用电解液快速发展[J].中国金属通报,2005,44:5-6.
    [37]何永祥,赵海鹏.锂离子二次电池碳负极材料的研究进展[J].平顶山工学院学报,2007,16(3):40-43.
    [38]Bruno Scrosati.Lithium rocking chair batteries:an old concept?[J].J Electrochem Soc,1992,139(10):2776-2781.
    [39]孙颢,蒲薇华,何向明等.锂离子电池硬碳负极材料研究进展[J],化工新型材料,2005,33(11):7-10.
    [40]B.Gao,A.Kleinhammes,X.P.Tang,et al.Electrochemical Intercalation of singlewalled carbon nanotubes with lithium[J].Chem Phys Lett,2000,307(4):153-157.
    [41]A.S.Claye,J.E.Fischer,C.B.Huffman,et al.Solid-state electrochemistry of the Li single wall carbon nanotubes system[J].J Electrochem Soc,2000,8(147):2845-2852.
    [42]尤金跨,杨勇,舒东等.锂离子电池纳米电极材料研究[J].电化学,1998,4:94-100.
    [43]刘春燕,唐致远,赵秉英.纳米碳管作为锂离子电池负极材料的研究[J].天津大学学报,2001,34:31-34.
    [44]张爱黎,翟秀静,符岩等.碳纳米管的电化学贮锂性能研究[J].无机材料学报,2004,19(1):244-248.
    [45]Y.Idota,T.Kubota,A.Matsufuji,et al.Tin-base amorphous oxide:a high-capacity lithium-ion-storage material[J].Science,1997,276:1395-1397.
    [46]W.Liu,X.Huang,Z.Wang,et al.Studies of stannic oxide as an anode material for lithium-ion batteries[J].J Electrochem Soc,1998,145:59-62.
    [47]杨晓燕,华寿南,张树永.锂钛复合氧化物锂离子电池负极材料的研究[J].电化学,2000,6(3):350-356.
    [48]黄峰,袁正勇,周运鸿等.纳米钴基氧化物锂离子电池负极材料的研究[J].电化学,2002,8(4):397-403.
    [49]M.Winter,J.O.Besenhard.Electrochemical lithiation of tin and tin-based intermetallics and composites[J].Eleetrochemica Acta,1999,45(1):31-50.
    [50]任建国,王科,何向明等.锂离子电池合金负极材料的研究进展[J].化学进展,2005,17(4):597-603.
    [51]M.Egashira,H.Takatsuji,S.Okada,et al.Properties of Containing Sn Nanoparti -cles Activated Carbon Fiber for a Negative Electrode in Lithium Batteries[J].J Power Sources,2002,107:56-60.
    [52]N.Tamura,R.Ohshita,M.Fujimoto,et al.Advanced structures in electrodeposited tin base negative electrodes for lithium secondary batteries[J].J Electrochemical Society,2003,150(6):A679-A683.
    [53]J.H.Ahn,Y.J.Kim,C.J.Choi.Electrochemical properties of nanocrystalline Snbased alloy for lithium battery[J].Matedals Transactions,2002,396-388:609-614.
    [54]G.X.Wang,L.Sun,D.H.Bradhurst,et al.Lithium storage properties of nanocry -stalline eta-Cu_6Sn_5 alloys prepared by ball-milling[J].Journal of Alloys and Compounds,2000,299:L12-L15.
    [55]H.Kim,J.Choi,H.Sohn,et al.The insertion mechanism of lithium into Mg_2Si anode material for Li-ion batteries[J].J Electrochemical Society,1999,146(12):4401-4405.
    [56]G.X.Wang,L.Sun,D.H.Brandhurst,et al.Nanocrystalline NiSi alloy as an anode material for lithium-ion batteries[J].Journal of Alloys and Compounds,2000,306:249-252.
    [57]G.S.Cao,X.B.Zhao,T.Li,et al.Zn_4Sb_3(-C7)powders as a potential anode material for lithium-ion batteries[J].J Power Sources,2001,94:102-107.
    [58]张丽娟,赵新兵,蒋小兵等.金属间化合物CoSb_3的电化学嵌锂特性研究[J].稀有金属材料与工程,2001,30(4):268-272.
    [59]Chamberlain R,Novikov D,Shi J,et al.203rd Meeting of the Electrochemical Society[C],2003,4.
    [60]N.Dimov,K.Fukuda,T.Umeno,et al.Characterization of carbon coated silicon:Structural evolution and possible limitation[J].J Power Sources,2003,114:88-95.
    [61]文钟晟,谢晓华,王可等.锂离子电池中高容量硅铝/碳复合负极材料的制备与性能研究[J].无机材料学报,2005,20(1):139-143.
    [62]左朋建,尹鸽平.锂离子电池Si-Mn/C负极材料的电化学性能[J].无机材料学 报,2006,21(3):599-604.
    [63]I.A.Courtney,J.R.Dahn.Electrochemical and in-situ X-ray diffraction studies of the reaction of lithium with tin oxide composite[J].J Electrochem Soc,1997,144:2045-2052.
    [64]M.Wachtler,J.O.Besenhard,M.Winter.Tin and tin-based intermetallics as new anode materials for lithium-ion cells[J].J Power Sources,2001,94:189-193.
    [65]I.A.Coutney,W.R.McKinnon,J.R.Dahn.On the aggregation of tin in SnO compo -site glasses caused by the reversible reaction with lithium[J].J Electrochem Soc,1999,146:59-68.
    [66]C.M.Li,Q.M.Huang,R.Y.Zhang,et al.Comparison of the performances of two kinds of Sn films as lithium-ion insertion electrodes prepared by electrodepositi -on.Acta Metallurgica Sinica,2007,43:515-520.
    [67]朱承飞,程新群,史鹏飞.锂离子电池用金属锡电极的初步研究[J].电池,2002,32(1):10-12.
    [68]M.Inaba,T.Uno,A.Tasaka.Irreversible capacity of electrodeposited Sn thin film anode[J].J Power Sources,2005,146:473-477.
    [69]J.H.Kim,G.J.Jeong,et al.Tin-based oxide as anode materials for lithium secondary batteries[J].J Electrochem Soc,2003,150(11):A1544-A1547.
    [70]J.Yang,Y.Takeda,N.Imanishi,et al.Morphology modification and irreversibility compensation for SnO anodes[J].J Power source,2001,7:216-218.
    [71]V.Subramanian,K.I.Gnanasekar,et al.Nanocrystalline SnO_2 and In-doped SnO_2as anode materials forlithium batteries[J].Solid State Ionics,2004,175:81-184.
    [72]J.Y.Lee,Y.W.Xiao,Z.L.Liu,et al.Amorphous Sn_2B_2O_5,Sn_2P_2O_7 and Sn_2BPO_6anodes for lithium-ion batteries[J].Solid State Ionics,2000,133:25-35.
    [73]H.Morimoto,M.Nakal,et al.Mechanochemical synthesis and anode properties of SnO-Based amorphous materials[J].J Electrochem Soc,1999,146(11):3970.
    [74]J.L.Morales,L.Sanchez.Improving the electrochemical performance of SnO_2cathodes in lithium secondary batteries by doping with Mo[J].J Electrochem Soc,1999,146(5):1640-1642.
    [75]Y.Li,J.P.Tu,et al.Mechanochemical synthesis and electrochemical properties of nanosized SnS as an anode material for lithium-ion batteries[J].Materials Science and Engineering B,2006,128:75-79.
    [76]F.J.Femandz,Madrigal,et al.On the structure and electrochemical reactions with lithium of tin(Ⅱ)phosphate chloride[J].J Electrochem Soc,2000,147(5):1663.
    [77]J.Yin,M.Wada,T.Sakai,et al.New Ag-Sn alloy anode materials for lithium-ion batteries[J].J Electrochem Soc,2003,150(8):A1129-A1135.
    [78]S.J.Lee,H.Y.Lee,S.H.Jeong,et al.Performance of tin-containing thin-film anodes for rechargeable thin-film batteries[J].J Power Sources,2002,111:345-349.
    [79]H.Y.Lee,S.W.Jang,S.M.Lee,et al.Lithium storage properties of nanocrystalline Ni_3Sn_4 alloys prepared by mechanical alloying[J].J power Sources,2002,112:8-12.
    [80]J.Yang,Y.Takeda,N.Imanishi,et al.Ultrafme Sn and SnSb_(0.14)powders for lithium storage matrices in lithium-ion batteries[J].J Electrochem Soc,1999,146(11):4009-4013.
    [81]H.Li,J.Z.Li.The studies on nanosized materials for lithium-ion batteries[J].Elect -rochemistry,2000,6:131-145.
    [82]L.Wang,S.Kitamura,K.Obata,et.al.Multilayered Sn-Zn-Cu alloy thin-film as negative electrodes for advanced lithium-ion batteries[J].J Power Sources,2005, 141:286-292.
    [83]郑妙生,宋怀河,章颂云等.Sn/C复合材料的制备及其电化学性能[J].电源技术,2004,28(6):334-337.
    [84]S.C.Nam,Y.S.Yoon,W.I.Cho,et al.Enhancement of thin film tin oxide negative electrodes for lithium batteries[J].Electrochemistry Comnunications,2001,3:6-10.
    [85]L.Y.Beaulieu,K.C.Hewitt,J.R.Dahn,et al.The electrochemical reaction of Li with amorphous Si-Sn alloys[J].J Electrochem Soc,2003,150(2):A149-A156.
    [86]M.Wachtler,J.O.Besenhard,M.Winter.Tin and tin-based intermetallics as new anode materials for lithium-ion cells[J].J Power Sources,2001,94:189-193.
    [87]J.H.Lee,H.Y.Lee,S.M.Oh,et al.Effect of carbon coating on electrochemical perfor-mance of hard carbons as anode materials for lithium-ion batteries[J].J Power Sources,2007,166:250-254.
    [88]F.Nobili,S.Dsoke,T.Mecozzi,et al.Metal-oxidized graphite composite electrodes for lithium-ion batteries[J].Electrochimica Acta,2005,51:536-544.
    [89]L.Yuan,K.Konstantinov,G.X.Wang,et al.Nano structured SnO_2-carbon composite obtained by insitu spray pyrolysis method as anodes in lithium batteries[J].J Power Source,2005,14:180-184.
    [90]L.H.Shi,H.Li,Z.Wang,et al.Nano-SnSb alloy deposited on MCMB as a anode material for lithium-ion batteries[J].J Mater Chem,2001,11:1502-1505.
    [91]H.Li,Q.Wang,L.Shi,et al.Nanosized SnSb alloy pinning on hard non-graphitic carbon spherules as anode materials for a Li ion battery[J].Chem Mater,2002,14:103-108.
    [92]J.Santo-Pena,T.Brousse,D.M.Schleich.Search for suitable matrix for the use of tin-based anodes in lithium-ion batteries[J].Solid State Ionics,2000,135:87-93.
    [93]Brousse T,Retoux R.Thin-film crystalline SnO_2-lithium electrode[J].J Electroch -em Soc,1998,145(1):1-4.
    [94]H.Mukaibo,T.Sumi,T.Yokoshima,et al.Electrochemical Sn-Ni alloy film as a high capacity anode material for lithium-ion secondary batteries[J].Electrochem Solid-State Lett,2003,6(10):A218-A220.
    [95]N.Tamutra,M.Fujimoto,M.Kamino,S.Fujitani.Mechanical stability of Sn-Co alloy anodes for lithium secondary batteries[J].Electrochim Acta,2004,49:1949-1956.
    [96]S.D.Beattie,J.R.Dahn.Single bath pulsed electrodeposition of copper-tin alloy negative electrodes for lithium-ion batteries[J].J Electrochem Soc,2003,150(7):A894-A898.
    [97]T.D.Hatchard,J.M.Topple,M.D.Fleischauer,et al.Electrochemical performance of SiAlSn films prepared by combinatorial sputtering[J].Electrochem Solid-State Lett,2003,6(7):A129-A132.
    [98]田民波.溅射镀膜的特点和应用[J].稀有金属,1987,(1):35-40.
    [99]郑伟涛.薄膜材料与薄膜技术[M].北京:化学工业出版社,2004.
    [100]陈光华,邓金祥.纳米薄膜技术与应用[M],北京:化学工业出版社,2004.
    [101]石旺舟,梁锐,马学鸣等.Fe-Si-B-Nb-Cu薄膜微结构与磁性的影响[J].物理学报,2004,10:3614-3618.
    [102]陈新坤.ICP-AES等离子体光谱法原理和应用[M].天津:南开大学出版社,1987.
    [103]田昭武.电化学研究方法[M].北京:科学出版社,1984.
    [104]I.A.Coutney,W.R.McKinnon,J.R.Dahn.On the Aggregation of Tin in SnO Composite Glasses Caused by the Reversible Reaction with Lithium[J].J Electro -chem Soc,1999,146:59-68.
    [105]D.Aurbach,M.D.Levi,E.Levi,et al.Failure and stabilization mechanisms of graphite electrodes[J].J Phys Chem,1997,B101:2195.
    [106]程新群,史鹏飞.锂离子蓄电池用锡基电极的研究[J].电源技术,2003,27(增刊):172-174.
    [107]A.Trifonova,M.Wachtler,M.R.Wagner,et al.Influence of the reductive preparation conditions on the morphology and on the electrochemical performance of Sn/SnSb[J].Solid State Ionics,2004,168:51-59.
    [108]R.A.Huggins.Lithium alloy negative electrodes formed from convertible oxides[J].Solid State Ionics,1998,57:113-115.
    [109]陈继涛,周恒辉,常文保等.粒度对石墨负极材料嵌锂性能的影响[J].物理化学学报,2003,19(3):278-282.
    [110]蒲薇华,任建国,何向明等.锂离子电池用锡铜合金负极的研究[J].电池,2006,2:10-12.
    [111]程丙勋,吴卫东,何智兵等.溅射功率对直流磁控溅射Ti膜结构的影响[J].强激光与粒子束,2006,18(6):961-964.
    [112]唐新村,何莉萍,陈宗璋等.恒压.恒流充电容量比值法测定石墨电极中锂离子扩散系数[J].物理化学学报,2002,18(8):705-709.
    [113]G.X.Wang,J.H.Ahn,M.J.Lindsay,et al.Graphite-tin composites as anode materials for lithium-ion batteries[J].J Power Sources,2001,97:211-215.
    [114]陈志武,程璇,张颖等.锂离子电池正极材料第一原理计算研究[J].稀有金属材料与工程,2003,32(9):693-698.
    [115]P.Hohenberg,W.Kohn.Inhomogeneous electron gas[J].Phys Rev B,1964,136:864-871.
    [116]W.Kohn,L.Sham.Self-Consistent Equations Including Exchange and Correlation Effects[J].Phys Rev A,1965,140:1133-1138.
    [117]D.M.Ceperley,B.Alder.Ground State of the Electron Gas by a Stochastic Method[J].Phys Rev Lett,1980,45:566-569.
    [118]J.P.Perdew,A.Zunger.Self-interaction correction to density-functional approxi -mations for many-electron systems[J].Phys Rev B,1981,23:5048-5079.
    [119]J.P.Perdew,K.Burke,M.Emzerhof.Generalized Gradient Approximation Made Simple[J].Phys Rev Lett,1996,77:3865-3868.
    [120]B.Hammer,L.B.Hansen,J.K.Norskov,et al.Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Emzerhof functionals[J].Phys Rev B,1999,59:7413-7421.
    [121]J.P.Perdew,J.A.Chevary,S.H.Vosko.Atoms,molecules,solids,and surfaces:Applications of the generalized gradient approximation for exchange and correlation[J].Phys Rev B,1992,46:6671-6687.
    [122]D.Vanderbilt.Soft Self-Consistent Pseudopotentials in a Generalized Eigen -value Formolism[J].Phys Rev B,1990,43(11):7892-7895.
    [123]A.Mewis,H.U.Sehuster.Die struktur der phasen LiCo_2Ge and LiNi_2Sn[J].Zeitschrift Fuer Naturforschung,Teil B:Anorganische Chemie,Organische Chemie,Biovhemie,Biophysik,Biologie,1971,26(B):62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700