SnO_2基锂离子电池负极材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文在详细评述了锂离子电池及相关材料研究进展的基础上,以SnO_2基负极材料为研究对象,围绕材料的比容量、循环性能和倍率性能等主要性能指标,采用非水溶剂溶胶-凝胶法、电沉积法、机械化学法、流变相法、均匀沉淀法等方法制备了SnO_2基负极材料,运用XRD、SEM、IR、BET、ESR、ICP、激光粒度分析以及电化学性能测试等现代分析测试技术对合成材料的表征、电化学性能以及相关机理进行了系统研究。
     以SnCl_4和乙二醇为原料,采用溶胶-凝胶工艺制备了纳米SnO_2粉末。讨论了非水溶剂溶胶-凝胶法制备纳米SnO_2的反应原理,研究表明纳米SnO_2的制备包括稳定溶胶的形成、溶胶-凝胶的转化和纳米SnO_2的形成等三个步骤。由于空间位阻作用,乙二醇阻止了Cl~-接近Sn~(4+),从而保证了溶胶的稳定性。乙二醇不仅是一种络合剂(形成聚合网络结构),而且是一种“隔离剂”(在凝胶干燥过程中保持金属氧化物之间的距离,防止金属氧化物之间的团聚)。采用XRD和IR光谱研究了热处理温度对纳米SnO_2结构演变和形貌的影响。研究表明,经500℃热处理4h得到的样品粒度分布均匀,平均粒径在15-20 nm之间。
     对纳米SnO_2粉末的电化学测试发现:热处理温度、充放电截止电压、电流密度以及粉末粒度大小对SnO_2电极的电化学性能具有较大的影响。500℃热处理4小时制备的纳米SnO_2的电化学性能最好:0.1C放电(放电区间为0-2.0V)时,其充电比容量达到为868mAh/g,经30次循环的容量衰减率为0.56%;0.5C放电(放电区间为0-1.0V)时,其可逆容量达到498 mAh/g,经30次循环后的容量衰减率只有0.075%。采用交流阻抗法对纳米SnO_2电极的界面过程进行了研究,得到了不同荷电状态下SnO_2电极交流阻抗谱的等效电路。
     首次采用电沉积法直接在铜箔上制备了纳米SnO_2薄膜,得到了SnO_2薄膜的最佳制备工艺。对电沉积法制备纳米SnO_2薄膜的电化学性能进行了研究。经400℃热处理2h得到的SnO_2薄膜电极0.1C、1.0C和2.0C放电时的可逆容量分别达到798mAh/g、630 mAh/g和550 mAh/g,0.1C放电时50次循环后的容量保持在773mAh/g以上,容量保持率达到为97%。这些数据表明电沉积法制备的纳米SnO_2薄膜具有较高的电化学容量、良好的循环寿命和倍率性能。
     首次采用机械化学法和流变相法制备了SnO_2基复合氧化物材料,并对其结构、形貌和电化学性能进行了比较研究。采用机械化学法制备的复合材料可逆容
On the basis of reviewing the developments of lithium ion battery and relative materials in detail, with tin oxide-based anode materials as objects of the research, focusing studies on the specific capacity, cyclability and rate capability of materials, the tin oxide-based materials were prepared using different methods such as sol-gel, electrochemical deposition, mechanochemical, rheological phase reaction and homogeneous precipitation method, and characterized by various electrochemical methods in combination with powder X-ray diffraction (XRD), Scanning Electron Microscope (SEM), Infrared (IR) spectroscopy, Brunauer-Emmer-Teller (BET) surface area measurement, Electron Spin Resonance (ESR), inductively coupled plasma (ICP) spectroscopy, particle size analysis, and so on.Nanosized SnO_2 powders were successfully prepared by non-hydrolytic sol-gel approach combined with heat treatments using tin tetrachloride as starting material and ethylene glycol as solvent. The reaction mechanisms of the sol-gel process are proposed. Results indicate that the -OHCH_2CH_2OH- prevent Cl~- ion from access to tin Sn~4+due to steric effect and hence increase the stability of the sol solution. Enthylene glycol functions not only as a complextion agent to form a polymer network but also as a "spacer" to modulate the distance between metal ions, preventing metal oxide particles from aggregation during desiccation of the sol. The effects of heat treatments on the evolution of structure and morphology of nanosized SnO_2 powders were studied. The powders with uniform size around 15-20 nm can be obtained at 500℃ for 4 hours.Results on the electrochemical properties nanosized SnO_2 powders show that heat treatment temperature, voltage windows, current density for charge and discharge, and particle size effect on their specific capacities, cyclability and rate capability. The powders obtained at 500℃ for 4 hours shows the best electrochemical peoperties: a reversible capacity of more than 868mAh/g was obtained and the rate of capacity fading was only 0.56% after 30 cycles at 0.1C rate in the potential range
    of 0-2.0V; and the reversible capacity was 498 mAh/g with a rate of capacity fading of 0.075% after 30 cycles at 0.5C rate in the potential range of 0-1.0V. The interface processes of lithium insertion into nanosized SnO2 electrode was studied by A.C. impedance and three equivalent circuits were obtained according to different A.C. impedance spectrum at different discharge states.The optimal elctrochemical deposition parameters to prepare nanosized SnO2 thin films were obtained. Electrochemical tests show that the sample heat-treated at 400 °C for 2 h can deliver a reversible capacity of 798mAh/g, 630mAh/g and 550mAh/g at 0.1C,1.0C and 2.0C rate respectively, and 97% of reversible capacity of 773mAh/g can be retained after 50 cycles at 0.1C rate. These results indicate that electrochemical deposition technique is a promising method to produce SnO2 films with high specific capacity, good cyclability and rate capability.The preparation and characterization of SnO2-based comopsite oxides derived by mechanochemical method and rheological phase reaction were carried out and comparatively studied. The reversible capacity was more than 570mAh/g and the capacity loss was only 0.22% per cycle after being cycled 20 times for the sample derived by rheological phase reaction, while that of the sample derived by mechanochemical method was 578 mAh/g and 0.31% respectively. These results show that SnO2-based comopsite oxides prepared by rheological phase reaction possess better elctrochemical properties due to their smaller particle size and more uniform distribution of particle size.In order to interpret the reason of the improvement of cyclability of SnO2 by doping with element of Al, P, B, from the point of view of the ratio of spectator atoms to tin atom (X:Sn), a model for the aggregation of tin in SnO2-based materials was proposed on the basis of a series of assumptions. We show that the ratio of X:Sn is close correlative to the cyclability of SnO2-based materials,i.e.,the larger the ratio of X:Sn is, the smaller the Sn cluster is formed during cycling, the less the capacity of the electrode materials is lost and the better cyclability of electrode materials have.SnO2-graphite composites were prepared by homogeneous precipitation method and the composition, structure and morphology as
    well as the electrochemical properties were studied. Stuides suggest that SnO2 is uniformly distributed over the surface of graphite, which is because that the oxide anions in SnO2 could have bridged with carbon surface species to result in good spreading between SnC>2 and the graphite. The composites of 30%SnO2-70%graphite heat-treated at 600 °C for 4h have a reversible capacity of 520mAh/g and 88% of the reversible capacity can be retained after 20 cycles. 92.1% and 83.2% of the capacity discharged at 0.1 C can be obtained when diachrge at 1.0 C and 2.0 C respectively. SnO2-graphite composites have good reversible capacities, rate capability and cycle life. These results show that SnO2-graphite composites have good reversible capacities, rate capability and cyclability. The observation of specific capacities that are larger than the weighted sums of the capacities of SnO2 and graphite suggests the presence of synergistic interaction between the two constituents.A mechanism of Li storage in SnO2-graphite composite was proposed. Because the presence of SnO2 on the surface of graphite, a new active surface site is created, the activation energy of the Li-ion transport process is significantly reduced, so the transport process of Li-ion across the interface is accelerated, which lead to the improvement of cyclability and rate capability of SnO2-graphite composite.The kinetics behaviors of SnO2-based electrode are studied by means of linear sweep voltammetry and chronoamperometry measurements. It is found that the exchange current density (i0) and diffusion coefficient of lithium (Dy) increase with Li intercalation into SnO2-based electrode. Nanosized SnO2 films and powders have the largest DLi and i0, respectively. SnO2-based composite oxides derived by mechanochemical method have the least DLi and i0. Compared to the micron-sized SnO2 powders, the i0 and Dy of nanosized SnO2 powders or films and the SnO2-graphite composites increase significantly; and that of the SnO2-based composite oxides decrease obviously. The discharge capacities of SnO2-based electrodes decrease with the increase of current
    rate, and the nanosized SnC>2 powders and SnCVbased composite oxides derived by mechanochemical method have the best and worst fast discharge capability, respectively at same current rate.
引文
[1] 雷永泉,万群,石永康.新能源材料[M].天津:天津大学出版社,2000:1-143
    [2] 赵健,杨维芝,赵佳明.锂离子电池的应用开发[J].电池工业,2000,1:31-36
    [3] 毕道治.电动车电池的开发现状及展望[J].电池工业,2000,2:56-63
    [4] 金明钢.我国固态锂离子电池工业发展近况[J].电池工业,2000,2:88-92
    [5] 吕鸣祥,黄长保,宋玉谨.化学电源[M],天津:天津大学出版社,1992:306-307
    [6] 蔡克群.次世代.二次电池-锂金属二次电池开发展望[J].工业材料,1999.146:127-133
    [7] D.W.Murphy, J.Broodhead,B.C.Steel.Materials for advanced batteries [M]. NewYork:Plenum Press, 1980;P145
    [8] J.Lipkowski,P.N.Ross.The electrochemistry of novel materials [M]. New York: VCH Publisher Inc., 1994,P116-117
    [9]刘建睿,王猛,尹大川,等.锂离子蓄电池正极材料锂钒氧化物研究进展[J].电源技术,2001,25(3):308-311
    [10] Masataka Wakihara. Recent developments in lithium ion batteries[J]. Materials Science and Engineering,2001,R33:109-134
    [11] K.Miura,A.Yamada,M.Tanaka.Electric states of spinelLi_xNi_2O_4 as a cathode of the rechargeable battery[J].Electrochimica Acta, 1996,41: 249-256
    [12] 周恒辉,慈云祥,刘昌炎.锂离子电池电极材料研究进展[J],化学进展,1998,10(1):85-94
    [13] Xia Ongyao,Sakai Tetsuo,Fujieda Takuya,et al.Correlating capacity fading and structural changes in Li_(1+y)Mn_(2-y)O_(4-δ) spinel sathode materials[J].J. Electrochem.Soc., 2001, 148 (9):723-729
    [14] C.H.Lu, S.W.Lin.Influence of the particle size on the electrochemical properties of lithium manganese oxide[J].Journal of Power Sources,2001, 97-98:458-460
    [15] Y.S.Han,H.G.Kim.Synthesis of LiMn_2O_4 by modified Pechini method and characterization as a cathode for rechargeable Li/LiMn_2O_4 cells[J]. J.Power Sources, 2000, 88:61-168
    [16] 郑洪河,徐仲榆.影响LiMn_2O_4正极材料容量衰退的主要因素[J].电池,2001,31(3):119-122
    [17] 陈彦彬,刘庆国.高温下LiMn_2O_4的容量衰减及对策[J].电池,2001,31(4):198-201
    [18] A.D.Pasquier, A.Blyr, P.Courjal,et al. Mechanism for Limited 55℃ Storage Performance of Li_(1.05)Mn_(1.95)O_4 Electroces[J].J.Electrochem. Soc.,1999, 146(2):428-436
    [19] Z.L.Liu, A.S.Yu, J.Y.Lee.Cycle life improvement of LiMn_2O_4 cathode in rechargeable lithium batteries[J].J.Power Sources, 1998,74(2):228-233
    [20] M.Y.Song,D.S.Ahn. On the capacity deterioration of spinel phase LiMn_2O_4 with cycling around 4 V[J]. Solid State Ionics, 1998, 112 (1-2):21-24
    [21] X.P.Qiu, X.G.Sun, W.C.Shen, et al. Spinel Li_(1+x)Mn_2O_4 synthesized by coprecipitation as cathodes for lithium-ion batteries[J]. Solid State Ionics, 1997,93:335-339
    [22] Basu Rajiv, Seshadri Ram.Suppressing the charge-ordering transition in LiMn_2O_4 through substitution of Li by Mg[J].J.Mater.Chem.,2000,10: 507-510
    [23] G.G.Amatucci, N.Pereira, T.Zheng. Enhancement of the electrochemical properties of LiMn_2O_4 through chemical substitution[J]. J. Power Sources, 1999,81-82:39-43
    [24] M.R.Lim, W.I.Cho, K.B.Kim. Preparation and characterization of gold-codeposited LiMn_2O_4 electrodes[J]. J. Power Sources,2001,92:168-176
    [25] D.H.Jang,M.O.Seung.Electrolyte effects on spinel dissolution and cathodic capacity losses in 4 V Li/LixMn_2O_4 rechargeable cells[J]. J. Electrochem. Soc., 1997,144(10):3342-3348
    [26] 杨书廷,贾俊华,郑立庆,等.稀土掺杂对锂离子电池正极材料LiMn_2O_4结构及电性能的影响[J].中国稀土学报,2003,21(4):413-416
    [27] 傅强,陈彬,黄小文,等.锂离子电池正极材料LiMn_(2-x)Cr_xO_4电化学性能的研究[J].高等学校化学学报,2004,25(1):128-130
    [28] 王要武,蔡砚,何向明,等.尖晶石LiMn_2O_4作为锂离子正极材料的研究与开发[J].无机材料学报,2004,19(1):1-8
    [29] 陈彬,傅强,黄小文,等.锂离子电池正极材料LiMn_2O_4的制备及其电化学性能的研究[J].高等学校化学学报,2003,24(12):2260-2262
    [30] 苏玉长,禹萍,邹启凡,等.尖晶石LiMn_2O_4的结构性能与嵌脱锂动力学探讨[J].电源技术,2003,27(5):431-434
    [31] 金超,吕东生,李伟善.尖晶石LiMn_2O_4的表面修饰改性[J].中国锰业,2003,21(3):21-25
    [32] 唐致远,冯季军,徐国祥.尖晶石LiMn_2O_4的多元掺杂改性研究[J].化学学报,2003,61(8):1316-1318
    [33] 冯传启,张克立,孙聚堂.锂锰尖晶石红外光谱的研究[J].光谱学与光谱分析,2003,23(2):279-281
    [34] 唐新村,何莉萍,陈宗璋,等.尖晶石LiMn_2O_4前驱体的低热固相反应法合成机理及其结构与热分解过程研究[J].高等学校化学学报,2003,24(4):576-579
    [35] 汤吴,冯传启,刘浩文,等.掺杂Y~(3+)的锂锰尖晶石的合成及其电化学性能研究[J].化学学报,2003,61(1):47-50
    [36] M.N.Obrovac, O.Mao, J.R.Dahn, et al. Structure and electrochemical characterization of LiMO_2(M=Ti,Mn,Fe,Co,Ni) prepared by mechanochemical synthesis[J]. Solis State Ionics, 1998,112:9-19
    [37] I.J.Davidson, R.S.McMillan, J.J.Murray, et al. Lithium-ion cell based on orthorhombic LiMnO_2[J]. J. Power Sources, 1995,54(2):232-235
    [38] G.Vitins,K.West. Lithium insertion into layered LiMnO_2[J].J. Electrochem. Soc. 1997,144(8):2587-2592
    [39] 钟辉,周燕芳,许惠.层状LiMnO_2正极材料的研究进展[J].化学通报,2003,66(7):449-453
    [40] 刘锦平,葛艳丽.锂离子蓄电池正极材料层状锰酸锂的制备研究[J].无机盐工业.2003,35(5).31-33
    [41] G.Pistoia, A.Antonini,D.Zane.Synthesis of LiMnO_2 and its characterization as a cathode for rechargeable Li cells[J].Solid State Ionics, 1995,78:115-122
    [42] Shi-xi ZHAO, Han-xing LIU, Shi-xi OU YANG, et al. Synthesis and performance of LiMnO_2 as cathodes for Li-ion batteries[J]. Journal of Wuhan University of Technology:Materials Science Edition.2003,18(3):5-8
    [43] V.Manev, A.Momchilov, A.Nassalevska, et al. New approach to the improvement of Li_(1+x)V_3O_8 performance in rechargeable lithium batteries[J]. J. Power Sources, 1995,54 (2):501-507
    [44] Kawakita Jin, Majima Masatoshi, Miura Takashi, et al. Preparation and lithium insertion behavior of oxygen-deficient Li_(1+x)V_3O_(8-δ)[J]. J. Power Sources, 1997,66:135-139
    [45] 刘建睿,王猛,尹大川,等.锂离子电池正极材料LiV_3O_8的低温合成研究[J].无机材料学报,2002,17(3):617-620.
    [46] 赖琼钰,卢集政,吉晓洋,等.LiNiVO_4的络合沉淀凝胶法合成机理及镍钒混合价态研究[J].科学通报,2001,46(20):1684-1687
    [47] 锂离子电池正极材料球形五氧化二钒和钒酸锂的制备方法[J].化工科技市场,2002,25(11):64-68
    [48] 刘景,温兆银,吴梅梅,等.锂离子电池正极材料的研究进展[J].无机材料学报,2002,17(1):1-9
    [49] 刘国强,曾潮流,杨柯.钒酸锂化合物的制备和性能[J].无机材料学报,2002,17(6):1163-1166
    [50] 郭丽,吴益华,鲁宇浩.锂蓄电池正极材料V_2O_5干凝胶的研究进展[J].电源技术,2003,27(6):558-562
    [51] A.K.Padhi,K.S.Nanjundaswamy, J.B.Goodenough.Phospho-olivines as positive electrode materials for rechargeable lithium batteries[J].J.Electrochem.Soc., 1997,144:1188-1194
    [52] 施志聪,李晨,杨勇.LiFePO_4新型正极材料电化学性能的研究[J].电化学,2003,9(1):9-14
    [53] 仇卫华,赵海雷.Mn掺杂对LiFePO_4材料电化学性能的影响[J].电池,2003,33(3):134-135
    [54] 白莹,吴锋,吴川.新型锂离子电池正极材料LIMPO_4(M=Fe,Mn)的谱学和电化学研究[J].光散射学报,2003,15(4):231-236
    [55] Masaya Takahashi, Shin-ichi Tobishima, Koji Takei, et al. Reaction behavior of LiFePO_4 as a cathode material for rechargeable lithium batteries[J]. Solid State Ionics, 2002,148:283-289
    [56] A.S. Andersson, B. Kalska,L. Haggstrom, et al. Lithium extraction/insertion in LiFePO_4:an X-ray diffraction and Mossbauer spectroscopy study[J]. Solid State Ionics,2000,130:41-52
    [57] A.S.Anderson, J.O.Tomas. The source of first-cycle capacity loss in LiFePO_4[J]. Journal of Power Sources,2001,97-98:498-502
    [58] P. P.Prosini, D. Zane, M. Pasquali. Improved electrochemical performance of a LiFePO_4-based composite cathode[J]. Electrochimica Acta, 2001, 46 3517-3523
    [59] M.Takahashi, S.Tobishima, K.Takei, et al. Characterization of LiFePO_4 as the cathode material for rechargeable lithium batteries[J]. Journal of Power Sources, 2001,97-98:508-511
    [60] Shoufeng Yang, Yanning Song, Peter Y. Zavalij, et al. Reactivity, stability and electrochemical behavior of lithium iron phosphates[J]. Electrochemistry Communications, 2002, 4:239-244
    [61] A.Yamada, S.C.Chung,and K.Hinokuma. Optimized LiFePO_4 for lithium battery cathodes[J]. J.Electrochem.Soc.,2001,148(3):A224-A229
    [62] P.P.Prosini, M.Carewska, S.Scaccia, P.Wisniewski, S.Passerini and M.Pasquali. A new synthetic route for preparing LiFePO4 with enhanced electrochemical performance[J]. J.Electrochem.Soc., 2002,149(7):A886-A890
    [63] G.H.Li, H.Azuma, and M.Tohda. LiMnPO_4 as the cathode for lithium batteries [J]. Electrochemical and Solid-State Letters, 2002,5(6):A135-A137
    [64] S.Okada, S.Sawa, M.Egashira, et al. Cathode properties of phospho-olivine LiMPO_4 for lithium secondary batteries[J]. J.Power Sources, 2001,97-98: 430-432
    [65] 森北孝志,山本隆一.聚合物二次电池用导电性高分子的合成与物性[J],工业材料,1999,47(2):35-39
    [66] 马文石,龚克成.聚有机二硫化物储能材料的研究进展[J].材料导报,1996,10(1):51-55
    [67] 于雷,王献红,李季等.新型有机二硫化物电池正极材料的研究进展功能[J].高分子学报,1998,11(3):425-430
    [68] 苏育志,马文石.聚有机二硫化物正极材料的研究现状[J].高技术通讯.1999,9(6):58-62
    [69] 苑克国,王安邦,曹高萍,等.新型锂电池正极材料多硫代聚苯胺的制备[J].防化研究.2003,1:46-49
    [70] E.M.Genies,S.Picart. Is the use of polyaniline associated with sulfur compounds of interest for battery electrodes? [J] Synthetic Metals, 1995,69:165-166
    [71] A.Kitani, K.Satoguchi, K.Iwai, et al. Electrochemical behaviors of polyaniline/polyaniline-sulfonic acid composites[J]. Synthetic Metals, 1999,102: 1171-1172
    [72] M.Morita, S.Miyazaki,M.Ishikawa, et al. Charge/discharge characteristics of polyaniline-based polymer composite positives for recharge -able lithium batteries[J].Journal of Power Sources, 1995,54:214-217
    [73] 唐致远,徐国祥.部分二硫代聚苯胺电极材料在锂电池中的应用[J].高分子材料科学与工程.2003,19(3):175-178
    [74] 唐晓辉,李永舫.二硫二磺酸掺杂聚苯胺电化学性能的研究[J].物理化学学报.1998,14(3):214-218
    [75] M.Lira-Cantu, P.Gomez-Romero.The polyaniline-V_2O_5 system:improvement as insertion electrode in lithium batteries[J].International Journal of Inorganic Materials, 1999, 1:111-116
    [76] F.Huguenin, E.A.Ticianelli,R.M. Torresi. XANES study of polyaniline-V_2O_5 and sulfonated polyaniline-V_2O_5 nanocomposites[J]. Electrochimica Acta, 2002,47:3179-3186
    [77] 雷永泉,万群,石永康.新能源材料[M],天津,天津大学出版社,2000:143-145
    [78] G.E.Blomgren. Electrolytes for advanced batteries[J]. Journal of Power Sources, 1999, 81-82:112-118
    [79] 庄全超,武山,刘文元,等.锂离子电池有机电解液研究[J].电化学,2001,7(4):403-412
    [80] 廖红英,程宝英,郝志强.锂离子电池电解液[J].新材料产业.2003,9:34-37
    [81] 庄全超,武山.锂离子电池有机电解液成膜添加剂研究进展[J].化学通报.2003,66(11):743-747
    [82] C.-Y.Wang, S.L.Zhao, G.M.Zhu,et al. Recent developments in the electrolyte for LiC_6/electrolyte/cathode battery[J]. Electrochemistry, 2002,8(2): 125-133
    [83] K.Murata, S.Izuchi,Y.Yoshihisa. An overview of the research and development of solid polymer electrolyte batteries[J].Electrochimica Acta, 2000,45: 1501-1508
    [84] 刘建睿,王猛,尹大川,黄卫东.高能锂离子电池的研究进展[J].材料导报,2001,15(7):32-35
    [85] 杨书廷,张焰峰,刘立君,等.锂离子电池正负极材料研究进展[J].河南师范大 学学报(自然科学版),2000,28(4):52-59
    [86] 任旭梅,吴川,何国蓉,等.锂离子电池正负极材料研究进展[J].化学研究与应用,2000,12(4):360-364
    [87] J.L.Tirado. Inorganic materials for the negative electrode of lithium-ion btteries:state-of-the-art and future prospects[J]. Materials Science and Engineering, 2003,R40:103-136
    [88] R.Schollhorn,A.Payer. c-TiS_2, a New Modification of Titanium Disulfide with Cubic Structure [J]. Angew.Chem.Int.Ed,1985,24(1):67-68
    [89] 郭华军.锂离子电池炭负极材料的制备与性能及应用研究[D]:[博士学位论文].长沙:中南大学,2001
    [90] M.Endo,C.Kim,K.Nishimura, et al. Recent development of carbon materials for Li ion batteries[J]. Carbon,2000,38:183-197
    [91] M.Hara, A.Satch, N.Takami, et al. Surface structures and charge-discharge characteristics of mesocarbon microbeads as the anodes for secondary lithium-ion batteries[J]. Transo, 1994,165:261-267
    [92] 吴宇平,万春荣,姜长印,等.锂离子电池负极材料的制备—用气相氧化法改性天然石墨[J].电池,2000,30(4):143-146
    [93] 曹高萍.锂离子电池碳负极材料及其改性研究[D]:[博士学位论文].天津:天津大学,1998
    [94] E.Peled, C.Menachem,D.Bar-Tow, et al. Improved graphite anode for lithium ion batteries[J]. J.Electrochem.Soc., 1996,143(1):L4-L7
    [95] Y.Ein-Eli, V.R.Koch. Chemical oxidation: a route to enhanced capacity in Lithium-ion graphite anodes[J]. J.Electrochem.Soc., 1997,149(9):2968-2973
    [96] C.Menachem, Y.Wang, E.Peled, et al. Characterization of lithiated natural graphite before and after mild oxidation [J]. Journal of Power Sources, 1998,76:180-185
    [97] I.Kuribayashi, M.Yokoyama, M.Yamashita. Battery characteristics with various carbonaceous materials [J]. Journal of Power Sources, 1995,54:1-5
    [98] E.Buiel, J.R.Dahn. Reduction of the reversible capacity in hard-carbon anode materials prepared from sucrose for lithium-ion batteries[J]. J.Electrochem. Soc., 1998,145(6):1977-1981
    [99] 吴国良,杨新河,阚素荣,等.锂离子电池及其材料的研制[J].电池, 1998,28(6):258-262
    [100] 仇卫华,张刚,卢世刚,等.锂离子电池负极材料—树脂包覆石墨的性能[J].电源技术,1999,23(1):7-9
    [101] 杨瑞芝,徐仲榆,余迪华.以酚醛树脂热解碳包覆天然鳞片石墨的复合材料作为锂离子二次电池负极材料的研究[J].碳素,1999,1:43-48
    [102] 马树华,国汉举,李季,等.锂离子电池负极碳材料的表面改性与修饰Ⅱ.具有核壳结构的碳及其对电池性能的影响[J].电化学,1997,3(1):86-91
    [103] P.Yu,J.A.Ritter, R.E.White, et al. Ni-composite microencapulated graphite as the negative electrode in lithium-ion batteries-Ⅰ:Initial irreversible capacity study[J]. J.Electrochem.Soc., 2000,147(4):1280-1285
    [104] P.Yu,J.A.Ritter, R.E.White, et al. Ni-composite microencapulated graphite as the negative electrode in lithium-ion batteries-Ⅱ: Electrochemical impedance and self-discharge studies[J]. J.Electrochem.Soc., 2000,147(6):2081-2085
    [105] H.Sagisaka, H.Nakura. Secondary lithium batteries with improved anodes[P]. JP 10144295,1998
    [106] T.Takamura, K.Sumiya, Y.Nishijima, et al. A novel method for obtaining a high performance carbon anode for Li-ion secondary batteries[C]. In:Mater.Res.Soc.Symp.Proc., Materials Research Society,1998,557-562
    [107] K.Igawa, Y.Komatsu,S.Tsuruoka, et al. Batteries with carbon anodes capable of plural and reversible charging-discharging [P]. JP 10021913 A2,1998
    [108] C.Kim,T.Fujino,K.Miyashita, et al. Microstructure and electrochemicla properties of boron-doped misocarbon microbeads[J].J.Electrochem.Soc., 2000,147(4): 1257-1264
    [109] C.Kim,T.Fujino,T.Hayashi, et al. Structural and electrochemical properties of pristine and B-doped materials for the anode of Li-ion secondary batteries[J]. J.Electrochem.Soc., 2000,147(4): 1265-1270
    [110] B.M.Way, J.R.Dahn. The effect of Boron substitution in carbon on the intercalation of lithium in Li_x(B_xC_(1-x))_6[J]. J.Electrochem.Soc., 1994,141 (4): 907-912
    [111] A.M.Wilson,J.R.Dahn.Lithium insertion in carbon-silicon composite materials produced by mechanical milling[J]. J.Electrochem.Soc., 1998,145(8): 2751-2758
    [112] W.J.Weydahz, B.M.Way, T.van Buuren, et al. Behavior of Nitrogensubstituted carbon (N_xC_(1-x)) in Li/Li(N_xC_(1-x))_6 cells[J]. J.Electrochem. Soc., 1994,141(4): 900-907
    [113] H.Herbert, K.Kenshin,N.Hiroshi, et al. Nanostrueture criteria for lithium intercalation in non-doped and phosphorus-doped hard carbons[J].Journal of Power Sources, 1997,68(2):258-262
    [114] F.Salver-Disma, C.Lenain, B.Beaudoin, et al. Unique effect of mechanical milling on the lithium intercalation properties of different carbons[J].Solid State Ionics,1997,98:145-158
    [115] 陈继涛,周恒辉,常文保,等.粒度对石墨负极材料嵌理性能的影响[J].物理化学学报,2003,19(3):278-282
    [116] Yuichi Sato, Takeshi Nakano, Koichi Kobayakawa. Particle-size effect of carbon powders on the discharge capacity of lithium ion batteries[J]. Journal of Power Sources, 1998,75:271-277
    [117] 张泽波,王伯良.MCMB颗粒度分布对锂离子电池性能的影响[J].新型炭材料,1999,14(4):68-71
    [118] F.Disma, L.Aymard, L.Dupont, et al. Effect of mechanical grinding on the lithium intercalation process in graphites and soft carbons[J]. J.Electrochem.Soc., 1996,143(12):3959-3972
    [119] W.Xing,R.A.Dunlap,J.R.Dahn.Studies of lithium insertion in ball-milled sugar carbons[J]. J.Electrochem.Soc., 1998,145(1):62-70
    [120] T.Zheng,Antoni S.Goxdz,G.G.Amatucci. Reactivity of the solid electrolyte interface on carbon electrodes at elevated temperatures[J]. J.Electrochem. Soc., 1999,146(11):4014-4018
    [121] C. Natarajan, H. Fujimoto, A. Mabuchi,et al. Effect of mechanical milling of graphite powder on lithium intercalation properties[J]. Journal of Power Sources, 2001,92:187-192
    [122] 范壮军,李建刚,翟更太等.球磨时间对硼掺杂石墨材料抗氧化行为的影响[J].新型炭材料,2003,18(1):60-64
    [123] 杨杭生,张孝彬.机械球磨对石墨结构的影响[J].物理学报,2000,29(3):522-526
    [124] R,Fong,U.V.Saken,J.R.Dahn. Studies of lithium intercalation into carbons using nonaqueous electrochemical cells[J]. J.Electrochem.Soc., 1990,137(7): 2009-2013
    [125] F.Kong, R.Kostecki,G.Nadeau,et al. In situ studies of SEI formation[J]. Journal of Power Sources,2001,97-98:58-66
    [126] Geun-Chang Chung. Reconsideration of SEI stability:reversible lithium intercalation into graphite electrodesin trans-2,3-butylene carbonate[J]. Journal of Power Sources,2002,104:7-12
    [127] D.Zane, A.Antonini, M.Pasquali. A morphological study of SEI film on graphite electrodes[J]. Journal of Power Sources,2001,97-98:146-150
    [128] B.V.Ratnakumar, M.C.Smart, S.Surampudi. Effects of SEI on the kinetics of lithium intercalation[J]. Journal of Power Sources,2001,97-98:137-139
    [129] 刘宇,王保峰,解晶莹,等.二次锂电池中SEI膜的电化学性能表征[J].无机材料学报,2003,18(2):307-312
    [130] C.Bondra,V.A.Nalimova,D.E.Sklovsky, et al. Super dense LiC_2 as a high capacity Li intercalation anode[J]. J.Electrochem.Soc., 1998,145(7): 2377-2380
    [131] T.Ohzuku, Y.Iwakoshi, K.Sawai. Formation of lithium-graphite intercalation compounds in nonaqueous electrolytes and their application as a negative electrode for lithium ion(shuttlecock) cell[J]. J.Electrochem.Soc., 1993,140(9): 2490-2498
    [132] P.A.Derosa, P.B.Balbuena. A lattice-gas model study of lithium intercalation in graphite[J]. J.Electrochem.Soc., 1999,146(10):3630-3638
    [133] A.Mabuchi,K.Tokumitsu,H.Fujimoto, et al.Charge-discharge characteristics of the mesocarbonmicrobeads heat-treated at different temperatures[J]. J.Electrochem.Soc., 1995,142(4): 1041-1046
    [134] N.Takami,A.Satoh,T.Ohsaki,et al. Large hystersis during lithium insertion into and extraction from high-capacity disordered carbon[J]. J.Electrochem.Soc., 1998,145(2):478-482
    [135] N. Takami,A.Satoh,T.Ohsaki,et al. Lithium insertion and extraction for high-capacity disordered carbons with large hystersis. Electrochim.Acta, 1997,42(16):2537-2543
    [136] J.R.Dahn,T.Zheng,Y.Liu,et al. Mechanisms for lithium insertion in carbonaceous materials [J]. Science,1995,270(27):590-593
    [137] S.Wang,T.Kakumoto,H.Matsui, et al. Mechanism of lithium insertion into disordered carbon[J]. Synthetic Metals, 1999,103:2523-2524
    [138] 相红旗,方世璧.锂在低温热解碳材料中的插入机理[J].科学通报,1999,44(3):235-242
    [139] 吴宇平,方世璧.锂离子电池用无定形碳材料容量衰减机理[J].电池,1999,29(1):10-12
    [140] Martin Winter, Jurgen O.Besenhard.Electrochemical lithiation of tin and tin-based intermetallics and composites[J].Electrochemica Acta, 1999,45(1): 31-50
    [141] Bruno Scrosati. Recent advances in lithium ion battery materials[J]. Electrochemica Acta,2000,45(8):2461-2466
    [142] J.Q.Wang,I.D.Raistrick and R.A.Huggins.Behavior of some binary lithium alloys as negative electrodes in Organic solvent-based electrolytes[J]. J.Electrochem.Soc., 1986,133(3):457-460
    [143] A.Anani,S.Crouch-Baker and R.A.Huggins.Kinetic and thermodynamic parameters of several binary lithium alloy negative electrodes materials at ambient temperature[J]. J.Electrochem.Soc., 1987,134(12):3098-3102
    [144] R.A.Huggins.Lithium alloy negative electrodes[J].J.Power Sources, 1999, 81-82:13-19
    [145] S.Machill, D.Rahner. In situ electrochemical characterization of lithium alloying materials for rechargeable anodes in lithium batteries[J].Journal of Power Sources, 1995,54(2):428-432
    [146] Xiang-Wu Zhang,Chunsheng Wang,A.John.Appleby. Improving low temperature performance of Li-alloy anodes by optimization of electrolyte-electrode interface[J]. Journal of Power Sources,2003,114: 121-126
    [147] R.A.Huggins.Lithium alloy negative electrodes formed from convertible oxides[J]. Solid State Ionics,1998, 113-115:57-67
    [148] 师丽红.锂离子电池纳米合金/碳复合型负极材料研究[D]:[博士学位论文].北京:中国科学院物理研究所,2001
    [149] J.O.Besenhard, M.Wachtler, M.Winter, et al. Small particle size Li-alloy anodes for lithium ion batteries[C]. The First Hawaii Battery Conference, Big Island of Hawaii, January5-7,1998
    [150] J.Yang,M.Wachtler, M.Winters, et al. Sub-microcrystalline Sn and Sn-SnSb powder as lithium storage materials for lithium-ion batteries[J].Electrochem. and Solid-State Lett., 1999,2:161-163
    [151] A.Anani,S.Crouch-Baker and R.A.Huggins. Investigation of a ternary lithium alloy mixed-conducting matrix electrode at ambient temperature[J]. J.Electrochem.Soc., 1988, 135:2103-2104
    [152] I.A.Courtney and J.R.Dahn,Electrochemical and in situ X-ray diffraction studies of the reaction of lithium with tin oxide composites[J]. J.Electrochem. Soc., 1997,144(6):2045-2052
    [153] R.A.Huggins.Mixed-conducting host structures into which either cations or anions can be inserted[J].Solid State Ionics, 1998,113-115:533-544
    [154] D.Rahner, S.Machill, H.Schlorb, et al. Intercalation materials for lithium rechargeable batteries[J]. Solid State Ionics,1996,86-88:891-896
    [155] M.Maxfield, T.R.Jaw, S.Gould,et al. Composite electrodes containing conducting polymers and li alloys[J]. J.Electrochem.Soc.,1988,135(2):299-304
    [156] J.O.Besenhard,M.Hess,P.Komenda. Dimensionally stable Li-alloy electrodes for secondary batteries[J]. Solid State Ionics, 1990,40-41:525-529
    [157] J. Yang, M.Winter, J.O. Besenhard. Small particle size multiphase Li-alloy anodes for lithium-ion-batteries[J]. Solid State Ionics,1996,90(4):281-287
    [158] J.Yang, Y.Takeda, Q.Li, et al. Lithium insertion into Sn- and SnSb_x-based composite electrodes in solid polymer electrolytes[J]. Journal of Power Sources, 2000,90:64-69
    [159] Wei Xiang Chen, Jim Yang Lee, Zhaolin Liu. The nanocomposites of carbon nanotube with Sb and SnSb_(0.5) as Li-ion battery anodes[J]. Carbon, 2003,41: 959-966
    [160] O.Mao and J.R.Dahn. Mechanically alloyed Sn-Fe(-C) powders as anode materials for Li-ion batteries Ⅱ.The Sn-Fe system[J]. J.Electrochem.Soc., 1999,146(2): 414-422
    [161] O.Mao and J.R.Dahn. Mechanically alloyed Sn-Fe(-C) powders as anode materials for Li-ion batteries Ⅲ.Sn_2Fe:SnFe_3C active/inactive composites[J]. J.Electrochem.Soc., 1999,146(2):423-427
    [162] 刘字,解晶莹,杨军,等.锂离子电池中SnCux/CMS复合材料的制备[J].电化学,2003,9(1):87-92
    [163] Noriyuki Tamura, Ryuji Ohshita, Masahisa Fujimoto,et al. Study on the anode behavior of Sn and Sn-Cu alloy thin-film electrodes[J]. Journal of Power Sources,2002,107:48-55
    [164] D.G.Kim,H.Kim,H.-J.Sohn, et al. Nanosized Sn-Cu-B alloy anode prepared by chemical reduction foe secondary lithium batteries[J].Journal of Power Sources,2002,104:221-225
    [165] Z.S. Wen, J. Yang, B.F. Wang,et al. High capacity silicon/carbon composite anode materials for lithium ion batteries[J]. Electrochemistry Communications, 2003,5:165-168
    [166] N. Dimov, S. Kugino, M.Yoshio. Carbon-coated silicon as anode material for lithium ion batteries:advantages and limitations[J]. Electrochimica Acta,2003, 48:1579-1587
    [167] Nikolay Dimov, Kenji Fukuda, Tatsuo Umeno, et al. Characterization of carbon coated silicon structural evolution and possible limitations[J].Journal of Power Sources,2003,114:88-95
    [168] X.W.Zhang, P.K.Patil, CWang, et al. Electrochemical performance of lithium ion battery, nano-silicon-based, disordered carbon composite anodes with different microstructures[J]. Journal of Power Sources,2004,125:206-213
    [169] S.B. Ng, Jim Y.Lee, Z.L.Liu. Si-O network encapsulated graphite-silicon mixtures as negative electrodes for lithium-ion batteries[J]. Journal of Power Sources,2001,94:63-67
    [170] L.Fang,B.V.R.Chowdari.Sn-Ca amorphous alloy as anode for lithium battery[J].J.Power Sources, 2001,97-98:181-184
    [171] J.-H.Ahn, G.X.Wang,H.K.Liu, et al.Mechanically milled nanocrystalline Ni_3Sn_4 and FeSi_2 alloys as an anode material for Li-Ion batteries[J]. Materials Science Forum,2001,360-362:595-602
    [172] G.X.Wang, L.Sun, D.H.Bradhurst,et al.Nanocrystalline NiSi alloy as an anode material for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2000, 306:249-252
    [173] H.Kim, Y.-J.Kim, D.G.Kim,et al.Mechanochemical synthesis and electrochemical characteristics of Mg_2Sn as an anode material for Li-ion batteries[J]. Solid State Ionics,2001,144(1-2):41-49
    [174] Y.Idota, T.Kubota, A.Matsufuji,Y.Maekawa, T.Miyasaka.Tin-based amorphous oxide:A high-capacity lithium-ion-storage material[J].Science, 1997,276: 1395-1397
    [175] I.A.Courtney and J.R.Dahn, Key factors controlling the reversibility of the reaction of lithium with SnO_2 and Sn_2BPO_6 Glass[J].J.Electrochem.Soc., 1997, 144(9):2943-2948
    [176] S.C.Nam,Y.S.Yoon,W.I.Cho,et al.Reduction of irreversibility in the first charge of tin oxide thin film negative electrodes[J]. J.Electrochem.Soc., 2001,148(3):A220-A223
    [177] W.F.Liu,X.J.Huang,Z.X.Wang,et al.Studies ofstannic oxide as an anode material for lithium-ion batteries[J].J.Electrochem.Soc., 1998, 145 (1):59-62
    [178] F.Belliard,P.A.Connor,J.T.S.Irvine.Novel tin oxide-based anodes for Li-ion batteries[J].Solid State Ionics,2000,135:163-167
    [179] T.Brousse,R.Retoux,U.Herterich and M.Schleich.Thin-film crystalline SnO_2-Lithium electrodes [J]. J.Electrochem.Soc., 1998,145 (1): 1-4
    [180] H.Li,X.J.Huang,L.Q.Chen.Structure and electrochemical properties of anodes consisting of modified SnO[J]. J.Power Sources,1999,81-82:335-339
    [181] H.Li,X.Huang,L.Chen.Direct imaging of the passivating film and microstructure of nanometer-scale SnO anodes in lithium rechargeable batteries[J]. Electrochemical and Solid-State Letters, 1998,1(6):241-243
    [182] S.C.Nam,Y.H. Kim,W.I.Cho, et al.Charge-discharge performance of electronbeam-deposited tin oxide thin-film electrodes[J].Electrochemical and Solid-State Letters, 1999,2(1): 9-11
    [183] H.Li,X.J.Huang,L.Q.Chen, et al.Anodes based on oxide materials for lithium rechargeable batteries[J]. Solid State Ionics, 1999,123:189-197
    [184] J.Z.Li,H.Li,Z.X.Wang,et al.The interaction between SnO and electrolytes[J]. Journal of Power Sources,1999,81-82:346-351
    [185] 吴宇平,万春荣,姜长印等.锂离子二次电池锡的氧化物负极材料的研究[J].化学通报,1998,(10):24-26
    [186] 井户口义雄,峰尾泰,松藤明博.复合酸化物负极[J].电气化学工业物理化学,1997,65:717-722
    [187] U.Krasovec, B.Orel, S.Hocevar,et al.Electrochemical and spectroelectrochemical properties of SnO_2 and SnO_2/Mo transparent electrodes with high ion-storage capacity[J].J.Electrochem.Soc., 1997,144:3398-3409
    [188] H.Li,X.J.Huang,L.Q.Chen. Electrochemical impedance spectroscopy study of SnO and nano-SnO anodes in lithium rechargeable batteries[J].J.Power Sources, 1999,81-82:340-345
    [189] I.A.Courtney,W.R.Mckinnon,and J.R.Dahn.On the aggregation of tin in SnO composite glasses caused by the reversible reaction with lithium[J]. J.Electrochem.Soc.,1999,146(1):59-68
    [190] H.Morimoto,M.Nakai,M.Tatsumisago,et al.Mechanochemical synthesis and anode properties of SnO-based amorphous materials[J].J.Electrochem.Soc., 1999,146:3970-3973
    [191] F.Belliard,J.T.S.Irvine.Electrochemical performance of ball-milled ZnO-SnO_2 systems as anodes in lithium-ion battery[J]. J.Power Sources,2001,97-98: 219-222
    [192] Naichao Li,Charles R.Martin and Bruno Scrosati.Nanomaterial-based Li-ion battery electrodes[J].J.Power Sources,2001,97-98:240-243
    [193] R.Ayouchi,F.Martin,J.R.Ramos Barrado,et al.Use of amorphous tin-oxide films obtained by spray pyrolysis as electrodes in lithium batteries[J].J.Power Sources,2000,(87): 106-111
    [194] J.Morales,L.Sanchez. Improving the electrochemical performance of SnO_2 cathodes in lithium secondary batteries by doping with Mo[J]. J.Electrochem. Soc., 1999,146:1640-1642
    [195] F.Ding,Z.W.Fu,M.F,Zhou,et al.Tin-based composite oxide thin-film electrodes prepared by pulsed laser deposition[J].J.Electrochem.Soc., 1999,146:3554-3559
    [196] S.Machill,T.Shodai,Y.Sakurai,et al.Electrochemical characterization of tin based composite oxides as negative electrodes for lithium batteries[J]. Journal of Power Sources, 1998,73(2):216-223
    [197] J.Y.Lee,Ruifen Zhang and Zhaolin Liu.Dispersion of Sn and SnO on carbon anodes[J]. J.Power Sources,2000,90:70-75
    [198] H.Huang, E.M.Kelder, L.Chen,J.Schoonman.Electrochemical characteristics of Sn_(1-x)Si_xO_2 as anode for lithium-ion batteries[J].Journal of Power Sources, 1999,81:362-367
    [199] J.O.Besenhard,J.Yang,M.Winter.Will advanced lithium-alloy anodes have a chance in lithium-ion batteries?[J]. Journal of Power Sources, 1997,68(1):87-90
    [200] 陈敬波,胡国荣,彭忠东,等.锂离子电池氧化物负极材科研究进展[J].电池,2003,33(3):183-186
    [201] T.Ohzuku, A. Ueda, N. Yamamoto. Zero-Strain Insertion Material of Li[Li_(1/3)Ti_(5/3)]O_4 for Rechargeable Lithium Cells [J].J. Electrochem. Soc., 1995, 142:1431-1435
    [202] 杨晓燕,华寿南,张树水.锂钛复合氧化物锂离于电池负极材料的研究[J].电化学,2000,6:350-356
    [203] D. Peramunage, K. M. Abraham. The Li_4Ti_5O_(12)//PAN Electrolyte//LiMn_2O_4 Rechargeable Battery with Passivation-Free Electrodes[J]. J. Electrochem. Soc., 1998,145:2615-2621
    [204] 华寿南,杨晓燕,康石林,等.掺杂Sn的Li_4Ti_5O_(12)作为锂离子电池负极研究[C].第二十四届中国化学与物理电源学术年会论文集,哈尔滨:2000,P304-305
    [205] Y.-K. Sun, D.-J. Jung, Y.S. Lee, et al. Synthesis and electrochemical characterization of spinel Li[Li_((1-x)/3)Cr_xTi_((5_2x)/3)]O_4 anode materials[J]. Journal of Power Sources,2004,125:242-245
    [206] K. Zaghib, M. Simoneau, M. Armand,et al. Electrochemical study of Li_4Ti_5O_(12) as negative electrode for Li-ion polymer rechargeable batteries[J]. J. Power Sources, 1999, 81-82:300-305
    [207] P.P. Prosini R. Mancini, L. Petrucci, et al. Li_4Ti_5O_(12) as anode in all-solid-state, plastic, lithium-ion batteries for low-power applications. Solid State Ionic, 2001,144:185-192
    [208] 陈立泉.锂离于电池最新动态和进展[J].电池,1998,28(6):255-257
    [209] Alvarado F.Carca,M.E.Y.Arroyo.New electrode materials for lithium rechargeable batteries[J]. Journal of Power Sources, 1999,81-82:85-89
    [210] P.Poizot, S. Laruelle, S. Grugeon, et al. Nanosized transition-metal oxides as negative-electrode materials for lithium-ion batteries[J].Nature,2000,407: 496-499
    [211] M.N.Obrovac,R.A.Dunlap,R.J.Sanderson, et al. The electrochemical displacement reaction of lithium with metal oxides[J]. J.Electrochem.Soc., 2001,148(6):A576-588
    [212] P.Poizot,S.Laruelle,S.Grugeon, et al. Rationalization of the low-potential reactivity of 3d-metal-based inorganic compounds toward Li[J]. J.Electrochem. Soc.,2002,149(9):A1212-1217
    [213] G.X.Wang,Y.Chen,K.Konstantinov,et al. Investigation of cobalt oxides as anode materials for Li-ion batteries[J].Journal of Power Sources, 2002,109:142-147
    [214] Zhengyong Yuan, Feng Huang, Chuanqi Feng,et al. Synthesis and electrochemical performance of nanosized Co304[J]. Materials Chemistry and Physics,2003,79:1-4
    [215] G.X.Wang,Y.Chen,K.Konstantinov,et al. Nanosize cobalt oxides as anode materials for lithium-ion batteries[J].Journal of Alloys and Compounds,2002, 340:L5-10
    [216] F.Huang,H.Zhan, Y-H.Zhou. Studies of nanosized Co_3O_4 as anode materials for lithium-ion batteries[J]. Chinese Journal of Chemistry,2003,21:1275-1279
    [217] 蔡振平,张向军,金维华,等.过渡金属氧化物Co_3O_4的嵌锂性能及其改性[J].稀有金属,2003,27(5):592-595
    [218] 黄峰,袁正勇,周运鸿,等.纳米钴基氧化物锂离子电池负极材料的研究[J].电化学,2002,8(4):397-403
    [219] M.Dolle,P.Poizot,J.M.Tarascon,et al.Experimental evidence for electrolyte involvment in the reversible reactivity of CoO toward compounds at low potential[J].Electrochemical and Solid-State Letters,2002,5(1):A18-A21
    [220] S.S. Kim, H.Ikuta, M.Wakihara.Synthesis and characterization of MnV_2O_6 as a high capacity anode material for a lithium secondary battery[J].Solid State Ionics, 2001,139:57-65
    [221] 余晴春,朱沁伟,苗国祥,等.新型锂离子聚合物电解质体系的研究[J].电源技术,1999,23(1):5-6
    [222] Z.L.Liu,J.Y.Lee.Electrochemical performance of Pb_3(PO_4)_2 anodes in rechargeable lithium batteries[J].Journal of Power Sources,2001,97-98: 247-250
    [223] P.Brike,S.Scharner,R.A.Huggins.Electolytic stability limit and rap lithium insertion in the fast-ion conducting Li_(0.29)La_(0.27)TiO_3 perovskite-type compound [J].J.Electrochem.Soc.,1997,144(6):L167-169
    [224] 华寿南,曹高萍,杨晓燕等.铁钠复合氧化物作锂离子电池负极材料的研究[J].电源技术,1999,23(1):2-4
    [225] K.M.Abraham,D.M.Pasquarill,E.B.Preparation and characterization of some lithium insertion anodes for lithium batteries[J].J.Electrochem.Soc., 1990, 137 (3):743-749
    [226] P.Poizot,S.Lauruelle,S.Grugeon,et al. Searching for new anode materials for the Li-ion technology:time to deviate from the usual path[J]. Journal of Power Sources,2001,97-98:235-239
    [227] 张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001,P301-305
    [228] A.Odani, A.Nimberger, B.Markovsky, et al. Development and testing of nanomaterials for rechargeable lithium batteries[J]. Journal of Power Sources, 2003,119-121:517-521
    [229] 尤金跨,杨勇,舒东,等.锂离子电池纳米电极材料研究[J].电化学,1998,4(1):94-100
    [230] J.Schoonman. Nanostructured materials in solid state ionics. Solid State Ionics, 2000,135:5-19
    [231] L.F.Nazar,G.Goward, F.Leroux,et al. Nanostructured materials for energy storage[J]. International Journal of Inorganic Materials, 2001,3:191-200
    [232] 胡庆元,万春荣,姜长印.锂离子电池纳米合金负极材料的研究进展[J].材料导报,2001,15(3):13-15
    [233] 黄学杰,李泓,王庆,等.纳米储锂材料和锂离子电池[J].物理,2002,31(7):444-449
    [234] 夏熙,努丽燕娜,郭再萍.低热固相反应法制备纳米LiCoO_2的研究[J].高等学校化学学报,1999,20(12):1847-1849
    [235] 夏熙,努丽燕娜,郭再萍.溶胶凝胶法制备纳米LiCoO_2[J].应用化学,1999,16(4):66-69
    [236] Nishizawa, K.Mukai,S.Kuwabata, etal. Template synthesis of polypyrrolecoated spinel LiMn_2O_4 nanotubules and their properties as cathode active materials for lithium batteries [J]. J.Electrochem. Soc., 1997,144(6): 1923-1927
    [237] H.P.Wong,B.C.Dave,F.Leroux,et al. Synthesis and characterization of polypyrrole/vanadium pentoxide nanocomposite aerogels [J].J.Mater.Chem., 1998;8(4):1019-1027
    [238] 尤金跨,吴晖,杨勇,等.第九届全国电化学会议暨全国锂离子蓄电池研讨会,山东泰安,1997,P169
    [239] A. M. Wilson, J. R. Dahn. Lithium Insertion in Carbons Containing Nanodispersed Silicon[J]. J. Electrochem. Soc., 1995,142(2):326-332
    [240] 储炜,吴晖,尤金跨,等.纳米科学技术在化学电源领域的新进展[J].电源技术,1998,22(6):256-260
    [241] 李泓,李晶泽,师丽红,等.锂离子电池纳米材料研究[J].电化学,2000,6(2):131-145
    [242] Hong Li, Lihong Shi, Qing Wang,et al. Nano-alloy anode for lithium ion batteries. Solid State Ionics 2002,148:247-258
    [243] P.G.Bruce, M.Y.Saidi. A two-step model of intercalation[J]. Solid State Ionics, 1992,51(3-4):187-190
    [244] I.D.Raistrick, R.A.Huggins. The transient electrical response of electrochemical systems containing insertion reaction electrodes[J]. Solid State Ionics, 1982,7:213-218
    [245] D.W.Murphy, F.J.Disalvo, J.N.Carides, et al. Topochemical reactions of rutile related structures with lithium [J].Mat.Res.Bull, 1978,13:1395-1402
    [246] J.O.Besenhard, H.P.Fritz. The Electrochemistry of Black Carbons[J]. Angrew.Chem.Int.Ed.Engl., 1983,22:950-975
    [247] J.B.Goodenough. Design considerations[J]. Solid State Ionics,1994,69(3-4): 184-189
    [248] W.P.Gomes,D.Vanmaekelbergh. Impedance spectroscopy at semiconductor electrodes: Review and recent developments[J].Electrochimica Acta, 1996,41: 967-973
    [249] G.A.Niklasson. Fractal aspects of the dielectric response of charge carriers in disordered materials[J]. J.Appl.Phys., 1987,62:R1-14
    [250] M.Thomas,P.Bruce,J.Goodenough. Ac impedance analysis of polycrystalline insertion electrodes: Application to Li_(1-x)CoO_2[J]. J.Electrochem.Soc., 1985, 132:1521-1528
    [251] J.R.Macdonald. Impedance spectroscopy[M].John Wiley&Sons eds.New York, 1987,P69
    [252] R.Alkire,M.Verhoff. The bridge from nanoscale phenomena to macroscopic processes[J]. Electrochimica Acta, 1998,43:2733-2741
    [253] M.G.S.R.Thomas,P.G.Bruce,J.Goodenough. AC impedance of the Li_(1-x)CoO_2 electrode[J]. Solid State Ionics, 1986,18-19:794-798
    [254] P.G.Bruce,A.Lisokowa-Oleksiak,M.Y.Saidi,et al. Vacancy diffusion in the intercalation electrode Li_(1-x)NiO_2[J]. Solid State Ionics,1992,57:353-358
    [255] D.Guyomard,J.M.Tarascon. Li Metal-Free Rechargeable LiMn_2O_4/Carbon Cells: Their Understanding and Optimization[J]. J.Electrochem.Soc., 1992, 139: 937-947
    [256] N.Takimi,A.Satoh,M.Hara, et al. Structural and Kinetic Characterization of Lithium Intercalation into Carbon Anodes for Secondary Lithium Batteries [J].J. Electrochem. Soc., 1995,142:371-378
    [257] W.Weppner,R.A.Huggins.Armual Review of Materials Science[J],Ed. R.A.Huggins,Annual Reviews Inc., 1978,P269
    [258] W.Weppner,R.A.Huggins.Determination of the kinetic parameters of mixed conducting electrodes and application to the system Li_3Sb[J]. J.Electrochem. Soc.,1977,124(7):1569-1578
    [259] C.Ho,I.D.Raistrick, R,A,Huggins. Application of Ac techniques to the study of lithium diffusion in tungsten trioxide thin films[J].J.Electrochem.Soc., 1980,12 7(2):343-349
    [260] 张建荣,高廉.纳米晶氧化锡的水热合成与表征[J].化学学报,2003,61(12):1965-1968
    [261] Idota, Yoshio,Mishima, et al.Noaqueous secondary battery[P].Europen patent,0,651,450,A1(1995)
    [262] 陈晓阳,孙雅茹,董海清,等.溶胶.凝胶法制备纳米SnO_2材料[J].传感器世界,1998,10:10-3
    [263] R.C.Mehrotra. Chemistry of alkoxide precursors[J]. J.Non-Cryst.Solids, 1990, 121(1-3): 1-6
    [264] M.J.Hampden-Smith, T.A.Wark. The solid state and solution structures of tin (Ⅳ) alkoxide compounds and their use as precursors to form tin oxide ceramics via sol-gel-type hydrolysis and condensation[J]. Coord.Chem.Rev., 1998,112:81-116
    [265] R.S.Hiratsuka, S.H.Pulcinelli and C.V.Santilli. Formation of SnO_2 gels from dispersed sol in aqueous colloidal solutions. J.Non-Cryst. Solids, 1990,121:76-83
    [266] J.P. Chatelon, C. Terrier, E. Bernstein,et al. Morphology of SnO_2 thin films obtaibed by the sol-gel technique[J].Thin Solid Films,1994,247(2): 162-168
    [267] O.Yamamoto,T.Sasamoto, M.Inagaki. Indium tin oxide thin films prepared by thermal decomposition of ethylene glycol solution [J].J.Mater.Res.,1992,7(9): 2488-2491
    [268] B.Orel, U.Lavrencic-stankgar, Z. Crnjak-Orel,et al. Structural and FTIR spectroscopic studies of gel-xerogel-oxide transitions of SnO_2 and SnO_2: Sb powders and dip-coated films prepared via inorganic sol-gel route[J]. J.Non-Cryst. Solids,1994,167(3):272-288
    [269] R.S.Hiratsuka, C.V.Snatilli,D.V.Silva, et al. Effect of electrolyte on the gelation and aggregation of SnO_2 colloidal suspensions [J].J.Non-Cryst. Solids,1992,147-148:67-73
    [270] J.C.Giuntini,W.Granier,T.V.Zanchetta,et al.J.Mater.Sci.Lett., 1990,9:1383
    [271] Q.Li,X.D.Yuan,G.F.Zeng,et al. Study on the microstructure and properties of nanosized stannic oxide powders[J]. Mater.Chem.Phys.,1997,47:239-245
    [272] Sophie de Monredon,Antoine Cellot, Francois ribot, et al. Synthesis and characterization of crystalline tin oxide nanoparticles [J].J.Mater.Chem., 2002,12:2396-2400
    [273] 钱逸泰.结晶化学[M].北京:中国科学技术大学出版社.1988,P140
    [274] Powder Diffraction File, Card5-0467
    [275] 李泉,曾广赋.非化学计量比SnO_(2-x)纳米微晶材料的XRD,XPS和ESR研究[J].化学学报,1995,53(4):381-385
    [276] J.Morales, L.Sanchez.Electrochemical behaviour of SnO_2 doped with boron and indium in anodes for lithium secondary batteries[J]. Solid State Ionics, 1999,126:219-226
    [277] I.A.Courtney,J.R.Dahn.Electrochemical and In Situ X-ray Diffraction Studies of the Reaction of Lithium with Tin Oxide Composites[J]. J.Electrochem.Soc., 1997, 144(6): 2043-2052
    [278] J.Yang,Y.Takeda,N.Imanishi,et al.Ultrafine Sn and SnSb_(0.14) powder for lithium storage matrices in lithium-ion batteries[J]. J.Electrochem.Soc., 1999,146(11):4009-4013
    [279] J.S. Sakamoto, C.K. Huang, S.Surampudi, et al. Effects of particle size on SnO electrode performance in lithium-ion cells [J].Materials Letters, 1998, 33(5-6): 327-329
    [280] O.Mao,R.A.Dunlap, J.R.Dahn.Mechanically alloyed Sn-Fe(-C) powders as anode materials for Li-ion batteries Ⅰ.The Sn_2Fe-C system[J]. J.Electrochem. Soc., 1999,146(2):405-413
    [281] W.Weppner,R.A.Huggins. Ionic conductivity of solid and liquid LiAICl_4[J]. J.Electrochem. Soc.,1977,124:35-38
    [282] G.Paasch,K.Micka,P.Gersdorf. Theory of the electrochemical impedance of macrohomogeneous porous electrodes [J].Electrochimica Acta, 1993,38(18): 2653-2662
    [283] D.Aurbach, Y.Ein-Eli,O.Chusid,et al. The Correlation Between the Surface Chemistry and the Performance of Li-Carbon Intercalation Anodes for Rechargeable "Rocking Chair" Type Batteries[J]. J.Electrochem.Soc., 1994,141(3):603-610
    [284] Izaki M and Omi T. Electrolyte Optimization for Cathodic Growth of Zinc Oxide Films [J].J Electrochem Soc, 1996,143(3):L53-L54
    [285] Th.Pauporte,D.Lincot.Hydrogen peroxide oxygen precursor for zinc oxide electrodeposition Ⅱ—Mechanistic aspects[J]. J Electroanal Chem,2001,517: 54-62
    [286] Bohannan E W, Jaynes C C, Shumsky M G, et al. Low-temperature electrodeposition of the high-temperature cubic polymorph of bismuth(Ⅲ) oxide[J]. Solid State Ioncis, 2000,131 (1-2):97-107
    [287] Pauporte Th and Lincot D. Electrodeposition of semiconductors for optoelectronic devices: results on zinc oxide [J].Electrochim.Acta. 2000, 45(20): 3345-3353
    [288] 张谢群,余家国,赵修建,等.二氧化锡薄膜的制备和应用研究进展[J].化学试剂,2003,25(4):203-206
    [289] 刘庆业,蒙冕武,邓希敏,等.射频溅射法研究SnO_2纳米薄膜[J].广西师范大学学报自然科学版[J],2001,19(4):64-67
    [290] 林殷英,汤庭螯,姚熹.二氧化锡薄膜的MOD法制备和表征[J].功能材料,2001,32(3):277-279
    [291] D.L.Perry,S.L. Philips. Handbook of inorganic compounds[M]. New York: CRC Press, 1995,P4170
    [292] F.Berger, M.Formm, A.Chambaudet,et al.Tin dioxide-based gas sensors for SO_2 detection: a chemical interpretation of the increase in sensitivity obtained after a primary detection[J]. Sensors and Actuators B, 1997,45(3): 175-181
    [293] G.Helen, A.Therese, P.V.Kamath. Electrochemical Synthesis of Metal Oxides and Hydroxides[J]. Chem.Mater., 2000,12:1195-1204
    [294] J.Yang, Y.Takeda, N.Imanishi, et al. Morphology modification and irreverisibility compensation for SnO anodes [J]. Journal of Power Sources, 2001,97-98:216-218
    [295] J.Y.Kim, D.E.King, P.N.Kumta et al. Chemical synthesis of tin oxide-based materials for Li-ion battery anodes: Influence of process parameters on the electrochemical behavior [J]. J.Electrochem. Soc.,2000,147(12):4411-4420
    [296] J.Yang,Y.Takeda, N.Imanishi et al. Tin-containing anode materials in combination with Li_(2.6)Co_(0.4)N for irreversibility compensation[J]. 2000,147(5): 1671-1676
    [297] M. Mohamedi, Seo-Jae Lee, D. Takahashi, et al. Amorphous tin oxide films: preparation and characterization as an anode active material for lithium ion batteries [J]. Electrochimica Acta, 2001, 46: 1161-1168
    [298] Y.N.Nuli,S.L.Zhao,Q.Z.Qin. Nanocrystalline tin oxides and nickel oxide film anodes for Li-ion batteries [J]. Journal of Power Sources, 2003,114:113-120
    [299] Y.I.Kim, C.S.Yoon, J.W.Park. Microstrucmral evolution of electrochemically cycled Si-doped SnO_2-lithium thin-film battery [J]. J.Solid State Chem., 2001, 160(2):388-393
    [300] J.Santos-Pena, T.Brousse,L.Sanchez,et al.Antimony doping effect on the electrochemical behavior of SnO_2 thin film electrodes[J]. J.Power Sources, 2001, 97-98:232-234
    [301] M. Nishizawa, R. Hashitani, T. Itoh, et al. Measurements of chemical diffusion coefficient of lithium ion in graphitized mesocarbon microbeads using a microelectrode[J]. Electrochem. Solid-State Lett., 1998,1 (1): 10-12
    [302] R.Hsu, J.Y. Kim, P.N. Kumta. Modified oxide sol-precipitation (MOSP) approach for synthesizing borophosphosilicate glasses and glass-ceramics [J]. Chem.Mater., 1996, 8:107-112
    [303] J.Y. Kim, P.N. Kumta. Modified sol-gel based approaches for synthesizing borophosphosilicate glasses and glass-ceramics[J]. J. Phys. Chem. B, 1998, 102(30):5744-5753
    [304] 中华人民共和国国家技术监督局.GB1475-79.中华人民共和国国家标准—铁粉松装密度测定方法[P].北京:中国标准出版社,1979
    [305] 中华人民共和国国家技术监督局.GB5162-85.中华人民共和国国家标准—金属粉末振实密度测定[P].北京:中国标准出版社,1985
    [306] H. Morimoto, H.Yamashita, M.Tatsumisago,et al. Mechanochemical Synthesis of New Amorphous Materials of 60Li_2S_(40)SiS_2 with High Lithium Ion Conductivity [J].J.Am.Ceram.Soc., 1999,82(5):1352-1406
    [307] 李希明,陈家镛.机械化学在资源和材料化工及环保中的应用[J].化工冶金,2000,21(4):443-448
    [308] 严东生.纳米材料的合成与制备[J].无机材料学报,1995,10(1):1-6
    [309] Jutang Sun, Liangjie Yuan,Keli Zhang. The thermal decomposition mechanism of zinc monosalicylates [J]. Thermochimica Acta,1999,333(2): 141-145
    [310] A.Momchilov, V.Manev and A.Nassalevska. Rechargeable lithium battery with spinel-related MnO_2 Ⅱ. Optimization of the LiMn_2O_4 synthesis conditions [J]. J.Power Source, 1993,41(3): 305-314
    [311] G.X.Wang,Jun-Ho Ahn,M.J.Lindsay,et al. Graphite-tin composites as anode materials for lithium-ion batteries[J]. J.Power Sources, 2001,97-98:211-215
    [312] G.M.Ehrlich, C.Durand,X.T.Chen,et al. Metallic negative electrode materials for rechargeable nonaqueous batteries[J]. J.Electrochem.Soc., 2000,147 (3): 886-891
    [313] 陆九芳,李总成,包铁竹.分离过程化学[M].北京:清华大学出版社,1993
    [314] 张明月,廖列文.均匀沉淀法制备纳米氧化物研究进展[J].化工装备技术,2002,23(4):18-20
    [315] B.Djuricic,D.Kolar,M.Memic. Synthesis and properties of Y_2O_3 powder obtained by different methods[J].J.Eur.Ceram.Soc.,1992,9:75-82
    [316] B. Djudcic,S.Pickering,D.McGarry,et al. Properties of zirconia powders produced by homogeneous precipitation [J].Ceram.Int., 1995,21 (3):195-206
    [317] K.S.Song,Y.Kang. Preparation of high surface area tin oxide powders by a homogeneous precipitation method [J].Mater.Lett.,2000,42(5):283-289
    [318] 顾燕芳,胡黎明,秦大志,等.均匀沉淀法合成单分散SnO_2超微粒子[J].华东化工学院学报,1992,18(4):520-525
    [319] Willam H.Rshaw,John J.Bordeaux. J.Am.Chem.Soc.,1955,77:4729-4733
    [320] 周延吉,周萍华.江西化工,1991,1:10-12
    [321] 卫志贤,刘荣杰,郑岚,等.均匀沉淀法制备纳米氧化物工艺分析[J].西北大学学报(自然科学版),1998,28(5):407-411
    [322] J.H.Fendler. Self-Assembled Nanostructured Materials [J].Chem.Mater., 1996,8:1616-1624
    [323] H.Hirai,Y.Nakao,N.Toshima. Preparation of colloidal rhodium in poly(vinyl alcohol) by reduction with methanol[J]. J.Macromol.Sci.Chem.A, 1978, 12: 1117-1141
    [324] T.Teranishi,M.Hosoe,T.Tanaka, et al. Size Control of Monodispersed Pt Nanoparticles and Their 2D Organization by Electrophoretic Deposition [J].J.Phys.Chem.B, 1999,103:3818-3827
    [325] T.O.Ely,C.Amiens, B.Chandret. Synthesis of Nickel Nanoparticles. Influence of Aggregation Induced by Modification of Poly(vinylpyrrolidone) Chain Length on Their Magnetic Properties[J]. Chem.Mater., 1999,11:526-529
    [326] M.Verelst,T.O.Ely,C.Amiens,et al. Synthesis and Characterization of CoO, Co_3O_4, and Mixed Co/CoO Nanoparticules[J]. Chem.Mater.,1999,11: 2702-2708
    [327] I.P.Santos,L.M.L.Marzan. Formation of PVP-Protected Metal Nanoparticles in DMF[J].Langrnuir,2002,18(7):2888-2894
    [328] Z.Zhang,Y.Mastai,Y.Koltypin,et al. Sonochemical Coating of Nanosized Nickel on Alumina Submicrospheres and the Interaction between the Nickel and Nickel Oxide with the Substrate [J].Chem.Mater.,1999,11:2350-2359
    [329] J. Wei, J.Y. Lee, in: S. Surampudi, R.A. Marsh Eds., Lithium Batteries, The Electrochemical Society Proceedings Series, Permington, NJ, 1999, p.51, PV98-16
    [330] J.Y.Lee,R.F.Zhang,Z.L.Liu.Lithium intercalation and deintercalation reactions in synthetic graphite containing a high dispersion of SnO[J].Electrochemical and Solid-State Letters,2000,3(4): 167-170
    [331] H.Li,L.H.Shi,W.Lu,X.J.Huang and L.Q.Chen.Studies on capacity loss and capacity fading ofnanosized SnSb alloy anode for Li-ion batteries. J.Electrochem.Soc.,2001,148(8):A915-A922
    [332] H.Li,X.J.Huang,L.Q.Chen, et al. A High Capacity Nano-Si Composite Anode Material for Lithium Rechargeable Batteries[J].Electrochemical and Solid-State Letters, 1999,2:547-549
    [333] Y.Wang,J.Y.Lee,B.H.Chen. Microemulsion synthesis of tin oxide-graphite nanocomposites as negative electrode materials for lithium-ion batteries[J]. Electrochemical and Solid-State Letters,2003,6(1):A19-A22
    [334] W.Xing,J.S.Xue,T.Zheng,et al. Optimizing Pyrolysis of Sugar Carbons for Use as Anode Materials in Lithium-Ion Batteries[J].J.Electrochem.Soc., 1996, 143:3046-3052
    [335] J.Read,D.Foster,J.Wolfenstine,W.Behl.SnO_2-carbon composites for lithiumion battery anodes[J]. J.Power Sources,2001,96:277-281
    [336] H.Huang,E.M.Kelder,J.Schoonman.Graphite-metal oxide composites as anode for Li-ion batteries[J].Journal of Power Sources,2001, 97-98:114-117,
    [337] H.Arai,S.Okada, Y.Sakurai,et al. Electrochemical and structural study of Li_2CuO_2, LiCuO_2 and NaCuO_2[J].Solid State Ionics,1998,106:45-53
    [338] 曹高萍.锂离子电池炭负极材料及其改性研究[D].天津:天津大学,1998
    [339] 查全性.电极过程动力学导论[M].北京:科学出版社,1987:150-162
    [340] 龚竹青.理论电化学导论[M].长沙:中南工业大学出版社,1988:272-290
    [341] 舒余德,陈白珍.冶金电化学研究方法[M].长沙:中南工业大学出版社,1990:73-94
    [342] 田昭武.电化学研究方法[M],北京:科学出版社,1986:4-27
    [343] 谷林瑛,吕鸣详,宋诗哲.电化学原理及应用[M],北京:化学工业出版社,1986:168-170
    [344] A. Chandra Bosea, D. Kalpanab, P Thangaduraia, et al. Synthesis and characterization of nanocrystalline SnO_2 and fabrication of lithium cell using nano-SnO_2[J]. Journal of Power Sources, 2002, 107:138-141
    [345] J.Y.Lee,Y.W.Xiao,Z.L.Liu.Amorphous Sn_2P_2O_7,Sn_2B_2O_5 and Sn_2BPO_6 anodes for lithium ion batteries[J].Solid State Ionics,2000,133:25-35

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700