磷酸铁锂正极材料的应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磷酸铁锂(LiFePO_4)作为新型锂离子电池正极材料具有高安全性、低成本、高温性能好、环境友好等优点,因而成为目前电池界竞相开发与研究的热点。本文以磷酸铁锂作为研究目标,系统地对其合成工艺、材料改性、结构表征、电化学性能以及电极动力学性能等方面进行了研究。
     利用TG-DSC、XRD、SEM、LSD、CV、EIS以及充放电测试等方法研究了橄榄石型LiFePO_4正极材料的合成工艺。通过单因素实验及正交实验对合成过程中所用原料、焙烧温度、焙烧时间、惰性气氛流量等工艺参数进行了优化,确定了合成磷酸铁锂最佳的工艺条件。
     首次将TG-DTA热分析技术应用于研究LiFePO_4正极材料固相合成的动力学过程。运用Doyle-Ozawa法和Kissinger法计算合成过程中各个反应阶段的表观活化能、反应级数、频率因子等动力学参数,为磷酸铁锂固相合成过程的进一步放大和研究提供了预测依据。
     采用不同类型的碳导电剂前驱物对LiFePO_4正极材料进行表面包覆改性。实验表明,葡萄糖及甘油等有机导电剂前驱物具有较好的改性效果。考虑到适当的掺碳量对于LiFePO_4正极材料容量和密度的综合优化是十分必要的,本文对葡萄糖的加入量进行了筛选。结果表明,当葡萄糖的加入量为10%时,样品具有良好的充放电动力学特性,具有较高的充放电容量及稳定的循环性能。
     本文对磷酸铁锂正极材料的离子掺杂改性进行了系统的研究。从产物的结构和电化学性能方面考察了掺杂离子的改性效果,并尝试从金属离子半径、价态和LiFePO_4晶格内部缺陷等方面分析离子掺杂改性的机制,提出了离子选择的标准,即采用离子半径与Li~+相近,但具有更高价态的金属离子进行Li位掺杂能够取得较好的改性效果。
     尝试对共沉淀法进行改进,利用自制的加料装置通过控制原料的滴加速度从而控制前驱物沉淀的生成速率,最终达到均匀沉淀。并成功利用该法对LiFePO_4进行表面包覆改性,取得了较好的效果。
     测定了锂离子在LiFePO_4中脱嵌的OCV曲线及微分容量曲线。运用EIS技术测定了LiFePO_4正极材料中锂离子的固相扩散系数。对橄榄石型LiFePO_4材料中锂离子的扩散系数随锂离子在材料中嵌入组成的变化规律进行了探讨。
Lithium iron phosphate, LiFePO_4, has recently attracted significant interest because of its low hygroscopicity, low cost and environmentally friendly components. The aim of the present study were to focus on the preparation processes, the modification of materials, the structural characterization, the electrochemical properties, and the kinetics behaviors of the olivine lithium iron phosphate as cathode materials for rechargeable lithium batteries.
     Effects of the preparation conditions, such as precursor material, annealing temperature and time, atmosphere and grinding process et al., on the structure, particle size and electrochemical properties of LiFePO_4 were studied by using TG-DSC, XRD, SEM, LSD, CV, EIS and electrochemical charge-discharge tests to optimize LiFePO_4 production process.
     Attempts were made for the first time to use TG-DTA to study the solid state reaction processes of LiFePO_4. The activation energies of each reaction process, reaction orders and frequency factors were determined by making use Doyle-Ozawa method and Kissinger method. The method provides reliable predication for further scale-up and research of the process.
     The effects of different carbon source on the performance of LiFePO_4 were systematically investigated. The results demonstrate that pyrogenation and glycerin, added as conductive precursor before the formation of the crystalline phase, can optimize the performance of LiFePO_4 effectively. The carbon content was optimized, and the results show that the material obtained by adding 10 wt. % C have much higher discharge capacity. The material also displays a more stable cycle-life than the others.
     The effects of cation doping on the physicochemical structure and electrochemical performance of produced cathode were systematically investigated. at different doping position. The doping mechanism was discussed from the aspects of cation valence, cation radius and the crystal defect of LiFePO_4. And the criterion to choose the cations was proposed, that is the supervalent cations, which have the similar radius with Li+, have good doping effects.
     Attempts were made for the first time to improve the co-precipitation method by designing feed-in device to control the growth speed of the deposit, which could make deposit well-proportioned. The results indicated that the improved co-precipitationmethod was an effective route to improve the electrochemical of LiFePO_4/C material.
     The open circuit voltage and the differential capacitance plot for LiFePO_4 with the change of intercalation compositions have been measured. The lithium ion diffusion coefficients have been obtained by EIS method and the results indicate that its values are change with the change of lithium ion intercalation compositions.
引文
[1] 雷永泉,新能源材料,天津:天津大学出版社,2000,17~22
    [2] 吕鸣祥,黄长保,宋玉瑾,化学电源,天津:天津大学出版社,1992,
    [3] 宋全生,MH-Ni 电池正极活性物质材料氢氧化镍的制备、结构及性能研究:[博士学位论文],天津;天津大学,2000
    [4] Yoshimatsu I, Hirai T and Yamaki J, Lithium electrode morphology during cycling in lithium celles, J. Electrochem. Soc., 1988, 135(10): 2422-2426
    [5] Scrosati B. Lithium rocking chair batteries: and old concept, J. Electrochem. Soc. 1992, 139(10): 2776~2781
    [6] 刘兴泉,锂离子二次电池正极材料研究:[博士学位论文],成都;中国科学院成都有机化学研究所,2000
    [7] 张勇,胡信国,张翠芬,新型化学电源的电极反应原理,电池工业,2004,9(1):33~36
    [8] 钟俊辉,锂离子电池及其材料,电池,1996, 26(2): 91~95
    [9] Thackeray M M. Structure consideration of layered and spinel lithiated oxides for lithium ion batteries, J. Electrochem. Soc., 1995, 142(2): 2558~2563
    [10] Mizushima K, Jones P C, Wiseman P J, et al. LixCoO2 (0    [11] Hahn T, International tables for crystallography, Nertherlands, 1987, A: 504-537
    [12] Hossain S. Rechargeable lithium batteries ambient temperature, Handbool of batteries, 2ndEd, Linden D, New York: Mograw-Hill, 1995, 36~37
    [13] 冯季军,尖晶石锰酸锂正极材料的离子掺杂改性研究:[博士学位论文],天津;天津大学,2004
    [14] 闫时建,田文怀,其鲁,锂离子电池正极材料钴酸锂近期研制进展,兵器材料科学与工程,2005,28(1):56~61
    [15] Yamada S, Oosaki T. Secondary nonqueous batteries with iomproved cathodes, Jpn, Kokai Tokkyo Koho JP 05 36411, 1993
    [16] Masahiro Kamauchi, Hitoshii Soejima, Shuji Kubota. Secondary lithium battery [P] EP Application, EP 0571858, 1993
    [17] Yoshi I, Nonaqueous secondary battery, EP Application, EP 0567149, 1993
    [18] Yamamoto J, Noma T, Furukawa S. Secondary nonaqueous battery with improced cathodes, JP 0582131, 1993
    [19] Gupta R, Manthiram A, Chemical Extraction of Lithium from Layered LiCoO2, J. Solid State Chem., 1996, 121: 483~491
    [20] 吴宇平,方世璧,刘昌炎等,锂离子电池正极材料氧化钴锂的进展,电源技术,1997,21(5):208~209
    [21] Noma T, Yamamoto J, Kruokawa H, et al. Nonaqueous-electrolyte secondary lithium batteries with cycle properties, JP 05290847, 1993
    [22] Ohzuku T, Ueda A, Nagayama M, et al. Comparative study of LiCoO2, LiNi1/2Co1/2O2 and LiNiO2 for 4 volt secondary lithium cells. Electrochimica Acta, 1993, 38(9): 1159~1167
    [23] 杨晓蝉,日本开发出高安全性的高放电容量镍酸锂正极材料,现代材料动态,2005,3:8~8
    [24] Dahn J R, Fuller E W, Obrovac M, et al. Thermal stability of LixCoO2, LixNiO2, and λ-MnO2. Solid State Ionics, 1994, 69: 265~270
    [25] Broussely M, Biensan P, Simon B, Lithium insertion into host materials: the key to success for Li ion batteries, Electrochimica Acta, 1999, 45: 3~22
    [26] Delmas C, Saadoune I,Pougier A,The cycling properties of LiNi1-yCoyO2 electrode,J. Power Sources, 1993, 43: 595~602
    [27] Ohzuku T, Ueda A, Kouguchi M,Synthesis and characterization of LiAl1/4Ni3/4O2 (R3m) for lithium-ion(shuttlecock) batteries,J. Electrochem. Soc., 1995, 142(12): 4033~4039
    [28] Kubo K, Fujiwara M, Yamada S, et al., Synthesis and electrochemical properties for LiNiO2 substituted by other elements, J. Power Sources, 1997, 68: 553~557
    [29] 李建刚,锂离子电池用 LiMxMn2-xO4 正极材料的应用基础研究:[博士学位论文],天津;天津大学,2001
    [30] Gummow R J, Thackeray M M, An investigation of spinel-related and orthombic LiMnO2 cathodes for rechargeable lithium batteries, J. Electrochem. Soc., 1994, 141(5): 1178~1182
    [31] Armstrong A R, Bruce P G, Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries, Nature, 1996, 381: 499~502
    [32] Paulsen J M, C. Thomas L, Dahn J R, Layered Li-Mn-oxide with the O2 sturcture: a cathode material for Li-ion cells which does not convert to spinel, J. Electrochem. Soc., 1999, 146: 3560~3565
    [33] 许名飞,李新海,张云河等,层状锰酸锂的制备及改性,电源技术,2003, 27(4): 366~369
    [34] Ohzuku T, Ueda A, Nagayama M, et al., New route to prepare lithium nickel oxide for 4 volt secondary lithium cells, Chem. Express, 1992, 7: 689~694
    [35] 陈震,陈日耀,改性氧基氯化铁(FeOCl)的电化学可逆性及其在锂二次电池中应用的研究,电源技术,1995,19(2):33~37
    [36] Thackeray M M, Johnson P J, Picciotto L A, et al., Electrochemical Extraction of lithium from LiMn2O4, Mater. Res. Bull. 1984, 19(2): 179~187
    [37] Kumagai N, Fujiwara T, Tanno K, et al., Physical and electrochemical characterization of quaternary Li-Mn-V-O spinel as positive materials for rechargeable lithium batteries, J. Electrochem. Soc., 1996, 143(3): 1007~1013
    [38] Thackeray M M, Structural considerations of layered and spinel lithiated oxides for lithium ion batteries, J. Electrochem. Soc., 1995, 142(8): 2558~2563
    [39] Siapkas D L, Mitsas C, Samaras I, et al., Synthesis and characterization of LiMn2O4 for use in Li-ion batteries, J. Power Sources, 1998, 72(1): 459~465
    [40] Xia Y Y, Takeshige H, Hideyake N, et al., Synthesis and electrochemical behavior of LixMn2O4, J. Power. Sources, 1995, 56(1): 61~67
    [41] Sun Y K, Oh I H, Kim K Y, et al., Synthesis of spinel LiMn2O4 by the sol-gel method for a cathode active material in lithium secondary batteries, Ind. Eng. Chem. Res., 1997, 36: 4839~4846
    [42] Barbox P, Tarason J M, Shokoohi F K, The use of acetates as precursors for the low-temperature synthesis of LiMn2O4 and LiCoO2 intercalation compounds, J. Solid Stste Chem., 1991, 94: 185~196
    [43] Myung S T, Komaba S, Kumaqai N, Enhanced structure stability and cycle ability of Al-doped LiMn2O4 spinel synthesized by the Emulsion drying method, J. Electrochem. Soc., 2001, 148(5): A482~A489
    [44] 唐致远,阮艳莉,锂离子电池容量衰减机理的研究进展,化学进展,2005,17(1):1~8
    [45] Kosova N V, Devyatkina E T, Kozlova S G, Mechanochemical way for preparation of disordered lithiumanaganese spinel compounds, Journal of Power Sources, 2001, 97: 406~411
    [46] Liu Z L, Wang H B, Fang L, et al., Improving the high-temperature performance of LiMn2O4 spinel by micro-emulsion coating of LiCoO2, Journal of Power Sources, 2002, 104(1): 101~107
    [47] Komaba S, Sasaki T, Miki Y, et al. Electrochemical characteristics and managanese dissolution of spinel Li1.05M0.2Mn1.75O4 (M=Al, Co, and Cr) cathode for rechargeable lithium ion batteries, Electrochemistry, 2003, 71(12): 1236~1239
    [48] Picciotto L A, Thackeray M M, Pistotia G, Electrochemical study of the system Li1-xV2O4 and Li1-xVO2 (0≤x≤1), Solid State Ionics, 1988, 28-30: 1364~1370
    [49] Gummow R J, Thackeray M M, David W I F, et al., Structure and electrochemistry of lithium cobalt oxide synthesized at 400℃, Mater. Res. Bull., 1992, 27(3): 327~337
    [50] Gummow R J, Liles D C, Thackeray M M, Spinel versus layered structures for lithium cobalt oxide synthesized at 400℃, Mater. Res. Bull., 1993, 28(11): 1177~1184
    [51] Gummow R J, Thackeray M M, Lithium-cobalt-nickel-oxide cathode materials prepared at 400℃ for rechargeable lithium batteries, Solid State Ionics, 1992, 53-56: 681~687
    [52] Padhi A K, Nanjundaswamy K S, Goodenough J B, Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. 1997, 144(4): 1188~1194
    [53] Padhi A K, Nanjundaswamy K S, Masquelier C, et al., Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphate, J. Electrochem. Soc., 1997, 144(5): 1609~1613
    [54] Padhi A K,Nanjundaswamy K S, Masquelier, C, et al., Mapping of transition metal redox energies in phosphates with NASICON structure by lithium intercalation, J. Electrochem. Soc., 1997, 144(8): 2581~2586
    [55] Thuckeray M,An unexpected conductor, Nature Mater., 2002, 2: 81~82
    [56] 唐致远,阮艳莉,宋全生等,橄榄石 LiFePO4 复合正极材料的合成及其电化学性能研究,高等学校化学学报,2005, 26(10): 1900~1905
    [57] Takahashi M, Tobishima S, Takei K, et al., Characterization of LiFePO4 as the cathode material for rechargeable lithium batteries, J. Power Sources, 2001, 97-98:508~511
    [58] Yamada A,Chung S C,Hinokuma K, Optimized LiFePO4 for Lithium Battery Cathodes, J. Electrochem. Soc., 2001, 148(3): A224~A229
    [59] Franger S, Cras F L, Bourbon C, et al., LiFePO4 synthesis routes for enhanced electrochemical performance, Electrochem. Solid-State Lett., 2002, 5(10): A231~A233
    [60] Franger S, Cras F L, Bourbon C, et al., Comparison between different LiFePO4 synthesis routes and their influence on its physico-chemical properties, J. Power Sources, 2003, 119-121: 252~257
    [61] Yang S F, Song Y N, Whittingham M S, et al., Reactivity, stability and electrochemical behavior of lithium iron phosphates, Electrochem. Commun., 2002, 4(3): 239~244
    [62] Park K S,Son J T, Chung H T, et al., Synthesis of LiFePO4 by co-precipitation and microwave heating, Electrochem. Commun., 2003, 5(10): 839~842
    [63] Arnold G, Garche J, Hemmer R, et al., Fine-particle lithium iron phosphate LiFePO 4synthesized by a new low-cost aqueous precipitation technique, J. Power Sources, 2003, 119-121: 247~251
    [64] Cho T H, Chung H T, Synthesis of olivine-type LiFePO4 by emulsion-drying method, J. Power Sources, 2004, 133:272~276
    [65] Higuchi M, Katayama K, Azuma Y, et al., Synthesis of LiFePO4 cathode material by microwave processing, J. Power Sources, 2003, 119-121: 258~261
    [66] Croce F, Epifanio A D, Hassoun J, et al., A Novel concept for the synthesis of an improved LiFePO4 lithium battery cathode, Electrochem. Solid State Lett., 2002, 5(3): A47~A50
    [67] Prosini P P, Lisi M, Zane D. et al. Determination of the chemical diffusion coefficient of lithium in LiFePO4. Solid State Ionics, 2002, 148: 45~51
    [68] Yang S F, Song Y N, Whittingham M S, et al. Nanocomposite electrodes for advanced lithium batteries: The LiFePO4 cathode [A]. In: Materials Research Society Symposium-Proceedings. Boston, MA, United States:Materials Research Society, 2002, 309~313
    [69] Huang H, Yin S C, Nazar L F. Approaching Theoretical Capacity of LiFePO4 at Room Temperature at High Rates, Electrochem and Solid-State Lett, 2001, 4(10): A170~A172
    [70] Chung S Y, Bloking J T, Chiang Y M, Electronical conductive phosphor-olivines as lithium storage electrodes, Nat Mater, 2002, 2:123~128
    [71] Narukawa S, Takeda Y, Nishijima M, et al., Anti-fluorite type Li6CoO4, Li5FeO4, and Li6MnO4 as the cathode for lithium secondary batteries, Solid State Ionics, 1999, 122(1-4): 59~64
    [72] 林原,蔡润良,Li/α-Sn-(HPO4)2 电池及其反应机理,电化学,1997,3(4):378~382
    [73] Sukeshini A M, Kobayashi H, Tabuchi M, et al, Physicochemical characterization of CuFeO2 and lithium intercalation, Solid State Ionics, 2000, 128(1-4): 33~41
    [74] 陈志国,郑子樵,锂离子电池正负极材料研究,材料导报,2000,14(9):14~16
    [75] Koyama Y, Tanaka I, Adachi H, New fluoride cathodes for rechargeable lithium batteries, J. Electrochem. Soc., 2000, 147(10): 3633~3636
    [76] Atsumi T K, Iwashita N, Sakaebe H, et al., Influence of the graphitic structure on the electrochemical characteristics for the anode of secondary lithium batteries, J. Electrochem. Soc., 1995, 142(3): 716~720
    [77] Zheng T, Mckinnon W R, Dahn J R, Hysteresis during lithium insertion in hydrogen-containing carbons, J. Electrochem. Soc., 1996, 143(7): 2137~2145
    [78] Liu Y H, Xue J S, Zheng T, et al., Mechanism of lithium insertion in hard carbons prepared by pyrolysis of epoxy resins, Carbon, 1996, 34(2): 193~200
    [79] Peled E, Menachem C, Bar-Tow K, et al., Improved guaphite anode for lithium-ion batteries, J. Electrochem. Soc., 1996, 143(1): L4~L7
    [80] Wang S, Kakumoto J, Matsui H, et al, Mechanism of lithium insertion into disordered carbon, Synthetic Metals, 1999, 103(1-3): 2523~2524
    [81] Dahn J R, Sleigh A K, Shi H, et al., Dependence of the electrochemical intercalation of lithium in carbon on the crystal structure of the carbon, Electrochim. Acta, 1993, 38(9): 1179~1191
    [82] Tatsumi K, Iwashita N, Sakaebe H, et al., Influence of the graphitic structure on the electrochemical characteristics for the anode of secondary lithium batteries, J. Electrochem. Soc., 1995, 142(3): 716~720
    [83] 钟俊辉,锂离子蓄电池阳极热解碳材料的研究进展,电源技术,1998,22(1):40~42
    [84] Yang J, Winter M, Bersenhard J O, Small particle size multiphase Li-alloy anodes for lithium-ion-batteries, Solid State Ionics, 1996, 90: 281~287
    [85] 彭久云,曾照强,苗赫濯,锂离子蓄电池负极材料 Li4Ti5O12 的研究进展,电源技术,2002, 26(6): 452~456
    [86] Zaghib K, Simoneau M, Armand M, et al., Electrochemical study of Li4Ti5O12 as negative electrode for Li-ion polymer rechargeable batteries, J. Power Sources, 1999, 81-82: 300~305
    [87] Bach S, Pereira-Ramos J P, Baffier N. Electrochemical proprerties of sol-gol Li4/3Ti5/3O4, J. Power Sources, 1999, 81-82: 273~276
    [88] Ariyoshi K, Yamamoto S, Ohzuku T, Three-volt lithium-ion battery with Li[Ni1/2Mn3/2]O4 and the zero-strain insertion material of Li[Li1/3Ti5/3]O4, J. Power Sources, 2003, 119-121(1): 959~963
    [89] Peramunage D, Abraham K. M. Preparation of micro-sized Li4Ti5O12 and its electrochemistry in polyacrylonitrile electrolyte-based lithium cells, J. Electrochem. Sco., 1998, 145(8): 2609~2615
    [90] 杨建文,钟 晖,钟海云,等. Li4Ti5O12 的溶胶-凝胶法制备及其形成机理[J].化学通报,2004,67:w107~w107
    [91] 华兰,杨晓燕,康石林等,掺杂 Li4Ti5O12 作为锂离子电池负极材料,电池,2001,31(5):218~221
    [92] Ohzuku T, Koji T, Naoki M et al. Electrochemistry and structural chemistry of Li[CrTi]O4 (Fd3m) in nonaqueous lithium cells, J. Electrochem. Soc., 2000, 147(10): 3592~3597
    [93] Chen C H, Vaughey J T, Jansen A N, et al. Studies of mg-substituted Li4–xMgxTi5O12 spinel electrodes (0≤x≤1) for lithium batteries, J. Electrochem. Soc., 2001, 148(1): A102~A104
    [94] Huang S H, Wen Z Y, Zhu X J, et al. Preparation and electrochemical performance of Ag doped Li4Ti5O12. Electrochem. Commun., 2004, 6: 1093~1097
    [95] Andersson A S, Thomas J O. The source of first-cycle capacity lost in LiFePO4, J. Power Sources, 2001, 97-98: 498~502
    [96] Bewlay S L, Konstantinov K, Wang G X, et al. Conductivity improvements to spray-produced LiFePO4 by addition of a carbon source, Mater. Lett., 2004, 58: 1788~1791
    [97] Yang S F, Zavalij P Y, Whittingham M S, Hydrothermal synthesis of lithium iron phosphate cathodes, Electrochem. Commun., 2001, 3(9):505~508
    [98] Andersson A S, Kalska B, Thomas J O,et al., Lithium extraction/insertion in LiFePO4: an X-ray diffraction and M?ssbauer spectroscopy study, Solid State Ionics, 2000, 130: 41~52
    [99] 徐如人,庞文琴,无机合成与制备化学, 北京:高等教育出版社,2001, 37~38
    [100] 廖小珍,马紫峰,周锦鑫,一种锂离子电池正极材料磷酸铁锂的制备方法,中国发明专利,CN 1581537A
    [101] Liao X Z, Ma Z F, Wang L, et al., A novel synthesis route for LiFePO4/C cathode materials for lithium-ion batteries, Electrochem. Solid-State Lett., 2004, 7(12): A522~A525
    [102] 陈兆能,邱泽麟,余经洪. 试验分析与设计,上海:上海交通大学出版社,1991,205~209
    [103] 胡荣祖,史启祯,热分析动力学,北京,科学出版社,2001,1~7
    [104] 赵铭姝,翟玉春,田彦文,锂离子电池正极材料锰酸锂合成的动力学,物理化学学报,2002, 18(2): 188~192
    [105] Takahashi M, Tobishima S, Takei K, et al. Reaction behavior of LiFePO4 as a cathode material for rechargeable lithium batteries, Solid State Ionics, 2002, 148 (3-4): 283~289
    [106] Shim J, Striebel K, Guerfi A, Cycling performance of low-cost lithium ion batteries with natural graphite and LiFePO4, J. Power Sources, 2003, 119-121: 955~958
    [107] Stiebel K, Guerfi A, Shim J, et al., LiFePO4/gel/natural graphite cells for the BATT program, J. Power Sources, 2003, 119-121: 951~954
    [108] Marca M, Doef Y H, Frank M, et al., Efect of surface carbon structure on the electrochemical performance of LiFePO4, Electrochem Solid-state lett., 2003, 6 (10): A207~A209
    [109] Yoshinori A, Masahiro Y, Yasuo O., Non-aqueous electrolyte secondary cell, EP 1180811-A2, 2002
    [110] 彭美勋,沈湘黔,王零森等,Ni(OH)2 电极交流阻抗与放电容量的关系,电池,2004,34(6): 408~410
    [111] Kalaiselvi N, Doh C H, Park C W, et al., A novel approach to exploit LiFePO4 compound as an ambient temperature high apacity anode material for rechargeable lithium batteries, Electrochem. Commun., 2004, 6, 1110~1113
    [112] Zane D, Carewska M, Scaccia S, et al., Factor affecting rate performance of undoped LiFePO4, Electrochim. Acta, 2004, 49(25): 4259~4271
    [113] Wang G X, Bewlay S L, Konstantinov K, et al. Physical and electrochemical properties of doped lithium iron phosphate electrodes, Electrochim. Acta, 2004, 50: 441~445
    [114] Chen Z,Dahn J R. Reducing Carbon in LiFePO4/C Composite Electrodes to Maximize Specific Energy, Volumetric Energy, and Tap Density, J. Electrochem Soc, 2002, 149: A1184~A1189
    [115] Guohua L, Ikuta H, Uchida T, et al., The spinel phases LiMyMn2-yO4 (M=Co, Cr, Ni) as the cathode for rechargeable lithium batteries, J. Electrochem. Soc., 1996, 143(1): 178~182
    [116] Tukamoto H, West A R, Electronic conductivity of LiCoO2 and its enhancement by magnesium doping, J. Electrochem Soc, 1997, 144: 3164~3168
    [117] Arai H, Okada S, Sakurai Y, et al., Electrochemical and thermal behaviour of LiNi1-zMzO2 (M=Co, Mn, Ti), J. Electrochem. Soc., 1997, 144(9): 3117~3125
    [118] Chung S Y , Chiang Y M. Microscale measurements of the electrical conductivity of doped LiFePO4, Electrochem and Solid-State Lett, 2003, 6(12): A278~A281
    [119] Ravet N,Goodenough J B,Besner S,et al. Improved iron based cathode material, Electrochemical Society Fall Meeting,Honolulu, Hawaii,1999
    [120] Herle P S, Ellis B, Coombs N, et al., Nano-network electronic conduction in iron and nickel olivine phosphates, Nature Mater. 2004, 3: 147~152
    [121] 卢俊彪,唐子龙,张中太等,镁离子对 LiFePO4/C 材料电池性能的影响,物理化学学报,2005, 21(3): 319~323
    [122] J A 迪安,兰氏化学手册,北京:科学出版社,1991, A117~A123
    [123] Yamada A, Chung S C. Crystal chemistry of the olivine-type Li(Mn0.6Fe0.4)PO4 and (MnyFe1-y)PO4 as possible 4V cathode materials for lithium batteries, J. Electrochem Soc, 2001, 148(8): A960~A967
    [124] Yamada A, Kudo Y, Lin K Y, Phase diagram of Lix(Mn0.6Fe0.4)PO4(0≤x≤1, 0≤y≤1), J. Electrochem Soc., 2001, 148(10): A1153~A1158
    [125] Yamada A, Kudo Y, Lin K Y. Reaction mechanism of the olivine-type Lix(Mn0.6Fe0.4)PO4 (0≤x≤1), J. Electrochem Soc., 2001, 148(7): A747~A754
    [126] Morcrette M, Barboux P, Perriere J, et al., LiMn2O4 thin films by coprecipitation as cathodes for lithium-ion batteries, Solid State Ionics, 1997, 93(3-4): 335~339
    [127] Kim J, Fulmer P, Manthiram A, Synthesis of LiCoO2 cathode by an oxidation reaction in solution and their electrochemical properties, Materials Research Bulletin, 1999, 34: 571~579
    [128] Bohnke C, Bohnke O, Fourquet J L, Electrochemical intercalation of lithium into LiLaNb2O7, J. Electrochem Soc, 1997, 144(4): 1151~1158
    [129] Uchina T, Marikaua Y, Ikuta H, et al. Chemical diffusion coefficient of lithium in carbon fiber, J. Electrochem Soc, 1996, 143(8): 2606~2610
    [130] Hodjean R B, Farcy J, Ramos J P P, A kinetic study of lithium transport in a new lithium intercalation material Al0.11V2O5.15 synthesized via a Sol-Gel process, J. Electrochem Soc, 1996, 143(7): 2083~2088
    [131] Johnson B J, Doughty, D H, Voigt J A, et al. Electrochemical impedance spectroscopy studies of lithium diffudion in doped manganese oxide, J. Power Sources, 1997, 68: 634~636
    [132] Yang W S, Zhang G, Lu S G, et al., Electrochemical studies of Li/LixMn2O4 by using powder microelectrode, Solid State Ionics, 1999, 121: 85~89
    [133] Mohamedi M, TakahashD i, Uchiyama T, et al. Explicit analysis of impedance spectra related to thin films of spinel LiMn2O4, J. Power Sources, 2001, 93: 93~103
    [134] 曹楚南,张鉴清,电化学阻抗谱导论,北京,科学出版社,2002,78~89
    [135] Ho C, Raistrick I D, Huggins R A, Application of A-C techniques to study of lithium diffusion in tungsten trioxide thin films, J. Electrochem. Soc., 1980, 127(2): 343~350
    [136] Mckinnon W R, Haering R R, Modern aspect in electrochemistry, vol.15, Plenum, New York, 1987
    [137] Levi M D, Salitra G, Maekovsky B, et al. Solid-State electrochemical kinetics of Li-ion intercalation into Li1–xCoO2: simultaneous application of electroanalytical techniques SSCV, PITT, and EIS, J. Electrochem. Soc., 1999, 146: 1279~1289
    [138] Sato Y, Asada T, Tokugawa H, et al. Observation of structure change due to discharge/charge process of V2O5 prepared by ozone oxidation method, using in situ X-ray diffraction technique, J. Power Source, 1997, 68: 674~679
    [139] Funabili A, Inaba M, Ogumi Z, et al., Impedance study on the electrochemical lithium intercalation into natural graphite powder, J. Electrochem. Soc. 1998, 145(1): 172~178
    [140] 吕东生,李伟善,刘熙等,锂离子脱嵌的交流阻抗模型,电池,2003, 33(5): 326~327
    [141] 薛建军,锂离子电池正极材料制备及相关电极过程机理研究:[博士学位论文],天津;天津大学,2001
    [142] 陈方, 梁海潮, 李仁贵等, 负极活性材料 Li4Ti5O12 的研究进展,无机材料学报, 2005, 20(3): 537~543
    [143] Garnier S, Bohnke C, Bohnke O, et al., Electrochemical intercalation of lithium into the ramsdellite-type structure of Li2Ti3O7, Solid State Ionics, 1996, 83: 323~332
    [144] Ohzuku T, Ueda A, Yamamoto N. Zero-strain insertion material of Li[Li1/3Ti5/3]O4 for rechargeable lithium cells J. Electrochem. Sco., 1995, 142(5): 1431~1435
    [145] Mastatodhi M, Staoshi U, Eriko Y, et al. Development of long life lithium ion battery for power storage, J. Power Sources, 2001, 101: 53~59
    [146] Aurelien D P, Alexis L, Patrice S, et al., Li_4Ti_5O_(12)/poly(methyl)thiophene asymmetric hybrid electrochemical device, J. Power Sources, 2004, 125(1): 95~102
    [147] 苏岳峰,吴 峰,陈朝峰,纳米微晶 TiO2 合成 Li4Ti5O12 及其嵌锂行为,物理化学学报,2004, 20(7): 707~711
    [148] Robertson A D, Tukamoto H, Irvine J T S, Li1+xFe1–3xTi1+2xO4 (0.0≤x≤0.33) based spinels: possible negative electrode materials for future Li-ion batteries, J. Electrochem. Soc., 1999, 146: 3958~3962
    [149] Kubiak P, Garcia A, Womes M, et al. Phase transition in the spinel Li4Ti5O12 induced by lithium insertion, J. Power Sources, 2003, 119-121: 626~630
    [150] 唐致远,阮艳莉. 不同碳源对 LiFePO4/C 复合正极材料性能的影响,化学学报,2005, 63(16): 1500~1504

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700