新型锂离子电池正极材料LiFePO_4的合成及改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
LiFePO_4是一种极有发展前景的锂离子电池正极材料,因具有合成原料价格低廉、环境相容性好、循环性能和安全性能优良等优点。提高LiFePO_4的电子导电率和锂离子扩散系数是商业化的关键。在优化LiFePO_4的合成条件,探讨LiFePO_4充放电过程中结构变化及电极反应动力学过程的基础上,通过稀土元素选择性掺杂、制备LiFePO_4/导电聚合物及LiFe_(1-x)Y_xPO_4/C复合材料等途径改善LiFePO_4的电化学性能。
     采用正交实验法分别对LiFePO_4的预分解和合成制度进行优化,以获得最佳的工艺条件。合成温度是影响LiFePO_4的结构和性能的关键因素。当合成温度为650℃时,试样中的微晶结构完整、晶粒尺寸适中、结晶度高;试样的粒度分布均匀;试样具有最佳的电化学性能,首次放电容量D1=127.44 mAh/g,充放电效率η1=94.50 %,平台容量和平台率分别为114.87 mAh/g,90.11 %,同时,具有最优的倍率性能和循环性能。
     采用XRD法分析了充放电过程中Li_(1-x)FePO_4的结构变化。充电过程中随x的增大,LiFePO_4的含量逐渐减小,FePO_4含量逐渐增大,当x=0.88时,充电过程结束,LiFePO_4的含量最小,FePO_4含量最大。放电过程中,则正好相反。采用EIS方法研究了充放电时LiFePO_4电极反应动力学过程。充电初期中,交换电流i 0和锂离子扩散系数DLi迅速增大。当x=0.29时, i 0和DLi增加到最大,电化学脱锂反应最容易进行。当x>0.29时,DLi稍有减小, i 0基本不变。在充电后期(x>0.71),DLi增稍有减小, i 0迅速减小,当x=0.88时,充电过程结束。放电过程中, i 0和DLi的变化正好相反。
     通过原位聚合的方法制备了LiFePO_4/PAn、LiFePO_4/PPy和LiFePO_4/PTh复合材料。采用TEM和SEM对LiFePO_4与导电聚合物的结合形式进行了较系统地考察,当使用6.75 %的PAn或10.56 %的PTh时,在LiFePO_4颗粒表面形成薄且较均匀的导电聚合物包覆层,它们具有良好的电化学性能及粘结性。而PPy则以颗粒的形式附在LiFePO_4颗粒表面或颗粒之间,LiFePO_4/PPy复合材料的电化学性能比LiFePO_4/PAn、LiFePO_4/PTh差,特别是倍率放电性能。
     采用不同的稀土金属离子Re~(3+)(Re=La、Nd、Y、Er)对LiFePO_4的Li位和Fe位进行掺杂,对Li_(1-x)Re_xFePO_4和LiFe_(1-x)Re_xPO_4微观结构及性能进行了对比。结果表明:稀土金属离子掺杂Li位时,掺杂离子相同时,随掺杂量的增加晶格参数和晶胞体积均增大;掺杂量相同时,随离子半径的增大晶格参数和晶胞体积均增大。稀土金属离子掺杂Fe位时,La和Nd使晶格参数及晶胞体积均增大;Y几乎不改变晶格参数和晶胞体积;Er则使晶格参数和晶胞体积减小。当掺杂离子和掺杂量均相同时,Li_(1-x)Re_xFePO_4试样的晶格参数、晶胞体积均大于LiFe_(1-x)Re_xPO_4试样;但LiFe_(1-x)Re_xPO_4试样的电子导电率高很多、锂离子扩散系数较小、电化学性能较好。Li_(1-x)Re_xFePO_4和LiFe_(1-x)Re_xPO_4微观结构和宏观性能变化规律能很好地对应,因此,采用微观结构和宏观性能变化共同确定Re~(3+)选择性掺杂Li位或Fe位是可行和可靠的。
     采用酚醛树脂和环氧树脂为碳前驱体,通过固化、预分解及合成制备出网状结构的LiFe_(1-x)Y_xPO_4/C复合材料。采用TEM、EDS及XPS等手段对网状结构进行分析,发现网状结构是以碳为骨架,LiFe_(1-x)Y_xPO_4颗粒附着在碳骨架上这种结构与碳包覆颗粒结构完全不同,从而其电子导电及锂离子扩散机制也明显不同。网状结构为锂离子的扩散提供了多维通道,加速了锂离子的扩散,极大地改善了LiFePO_4的倍率放电性能。碳含量是网状结构的形成的关键因素,掺杂量对网状结构的形成影响较小,当碳含量为5 %时,FY2C5、EY1C5试样具有最佳网状结构。与LiFePO_4相比,FY2C5、EY1C5试样电子导电率和锂离子扩散系数分别提高了8和3个数量级,且具有最佳的电化学性能,在C/12时,首次放电容量分别为160.71、165.71 mAh/g;在1C时,首次放电容量分别为131.43、143.96 mAh/g。
Lithium iron phosphate (LiFePO_4) is a promising candidate cathode material for lithium ion batteries, due to low cost, environment amity, excellent cycling stability and safety. The key for commercializing LiFePO_4 is to improve its electronic conductivity and lithium-ion diffusion coefficient. On the basis of optimizing the synthesis conditions and investigating the structural change and the kinetic process of the electrode reaction in the charge and discharge process, some improvements for the electrochemical performances of LiFePO_4 were made by selective doping of rare earth elements, preparing LiFePO_4 conductive polymer composites and LiFe_(1-x)Y_xPO_4/C composites.
     The predecomposition and synthesis system were optimized by the orthogonal method to obtain the optimized technologcial conditions. The synthesis temperature is the key influence factor on the microstructures and performances of LiFePO_4. The crystallites in the sample synthesized at 650℃possesse perfect crystal structure, high crystalline degree and few defects. The granularity distribution is uniform. The sample has the best electrochemical performance, its initial discharge capcity (D1) is 127.44 mAh/g, its initial charge and discharge efficiency isη1=94.50 %. The plateau capacity and plateau ratio is 114.87 mAh/g and 90.11 %, respectively; it displays the best rate and cycling capability.
     The structural change of Li1-xFePO_4 was analyzed by XRD method in the charge and discharge process. In the charge process, the content of LiFePO_4 decreases, that of FePO_4 increases gradually with increasing the x value. When x is 0.88, the charge process is over. Meanwhile the content of LiFePO_4 is lowest, that of FePO_4 is highest. The content of LiFePO_4 and FePO_4 changes reversely in the discharge process. The electrode kinetic process in the charge and discharge process was investigated by EIS method. At the beginning of charge, the exchange current ( i 0) and lithium-ion diffusion coefficient (DLi) increases rapidly. When x is 0.29, i 0 and lithium-ion diffusion coefficient reach the maximum, the electrochemical delithium reaction occurs most. At the end of charge (x>0.71), DLi decreases slightly and i 0 decreases abruptly. When x is 0.88, the charge process is over. DLi and i 0 change reversely in the discharge process.
     LiFePO_4/PAn, LiFePO_4/PPy and LiFePO_4/PTh composites were prepared by in-situ polymerization method. The combining form between LiFePO_4 and the conductive polymer was investigated systematically by TEM and SEM method when 6.75 % PAn or 10.56 % PTh was applied, the thin and uniform polymer coating is covered on the surface of LiFePO_4 particles. And they display excellent electrochemical performace and strong adhesion. PPy grains are distributed on the surface of LiFePO_4 particles or among LiFePO_4 particles. The electrochemical performaces of LiFePO_4/PPy composites is worse than that of LiFePO_4/PAn and LiFePO_4/PTh composites, especially in the aspect of rate capability.
     LiFePO_4 was doped on Li site or Fe site by using various rare earth ions Re3+ (Re= La, Nd, Y, Er). The microstructures and performaces of Li_(1-x)Re_xFePO_4 and LiFe_(1-x)Re_xPO_4 were comparatively investigated. The results show that when the same Re3+ is doped on Li site, the crystal lattice parameters and cell volume increase with increasing the doping amount; when the same doping amount is applied, the crystal lattice parameters and cell volume increase with increasing the radius of doping ion. When Re3+ is doped on Fe site, La3+, Nd3+ make the crystal lattice parameters and cell volume increasing and the Y3+ makes crystal lattice parameters and cell volume nearly no changing, the crystal lattice parameters and cell volume decrease with applying Er3+. When the doping ion and doping amount are the same, the crystal lattice parameters and cell volume of Li_(1-x)Re_xFePO_4 are larger than those of LiFe_(1-x)Re_xPO_4. Compared with Li_(1-x)Re_xFePO_4,,LiFe_(1-x)Re_xPO_4 displays higher electronic conductivity, good lithium-ion diffusion coefficient and more excellent electrochemical performance. The rules of the microstructure changes for Li_(1-x)Re_xFePO_4 and LiFe_(1-x)Re_xPO_4 correspond with that of the macro-performance changes. Therefore it is feasible and reliable using the change of microstructures and macro-performance to determine the selective doping of Re3+ on Li and Fe site of LiFePO_4.
     Using phenolic resin and epoxy resin as carbon precursor, LiFe_(1-x)Y_xPO_4/C composites with network structure were prepared by curing, predecomposition and synthesis. The network structure was analyzed systematically by TEM, XPS and EDS methods. It was discovered that carbon is used as framework and LiFe_(1-x)Y_xPO_4 particles were adhered on the carbon framework. This structure is entirely different from carbon coating, the conduct mechanism of electron and the diffusion mechanism of lithium-ion in network structural composite are evidently different from carbon coating composite. The network structure provides mult-channels for lithium-ion diffusion, accelerates the diffussion of lithium-ion, improves the rate capability of LiFePO_4. The experimental results show that carbon content is the key of factor forming network structure, the doping amount has few influence on the formation of network structure. When 5% polymeric carbon was applied, FY2C5、EY1C5 samples posses the most perfect network structure. Comparing with LiFePO_4, the electronic conductivities and lithium-ion diffusion coefficient of FY2C5 and EY1C5 samples increase 8 and 3 orders, respectively. FY2C5 and EY1C5 samples exhibit the most excellent electrochemical performance, their initial discharge capacities are 160.71 mAh/g and 165.71mAh/g at C/12 rate, 131.43 mAh/g and 143.96 mAh/g at 1 C rate.
引文
[1] M.Broussely. Lithium batteries R&D activities in Europe[J]. J. Power Sources,1999, 81-82:137-139
    [2] B.B.Owens, W.H.Sm yrl, J.J.Xu. R&D on lithium batteries in the USA: high-energy electrode materials [J]. J. Power Sources,1999,81-82:150-155
    [3] J.J.Auborn, Y.L.Barberio. Lithium intercalation cells without metallic lithium MoO2/LiCoO2 and WO2/ LiCoO2[J], J.Electrochem.Soc, 1987 134(3) :638-641
    [4] 杨林.中、日韩三国锂离子蓄电池发展概况[J].电源技术,2004,28(2):101-103
    [5] 文力,罗秋珍,李胜.中国股市与电池业(一)[J].电池快讯,2003,8:2-20
    [6] 文力,罗秋珍,李胜.中国股市与电池业(二)[J].电池快讯,2003,10:2-15
    [7] T.Tanaka, K.Ohta, N.Arai. Year 2000 R&D status of large-scale lithium ion secondary batteries in the national project of Japan[J]. J Power sources, 2001, 97-98: 2-6
    [8] T.Iwahori, I.Mitsuishi, S.Shirage, et al. Development of lithium ion and lithium polymer batteries for electric vehicle and home-use load leveling system application[J]. Electrochim Acta, 2000, 45: 1509-1512
    [9] M.Wakihara. Recent developments in lithium ion batteries[J]. Materials Science and Engineering, 2001, R33: 109-134
    [10] A.G.Ritchie. Recent developments and future prospects for lithium rechargeable batteries[J]. J Powre Sources, 2001, 96: 1-4
    [11] I.B.Weinstock. Recent advances in the US Department of Energy’s energy storage technology research and development programs for hybrid electric and electric vehicles[J]. J Powers Sources, 2002, 110: 471-474
    [12] M.Majima, T.Tada, S.Ujiie, et al. Design and characteristics of large-scale lithium ion battery[J]. J Power Sources, 1999, 81-82: 877-881
    [13] M.Majima, S.Ujiie, E.Yagasaki, et al. Development of 1 kW h class lithium ion battery for power storage[J]. J Power Sources, 2001, 92: 108-119
    [14] 陈立泉.混合电动汽车及其电源[J].电池,2000,30(3):98-100
    [15] 雷惊雷,张占军,吴立人,等.电动车,电动车用电源及发展战略[J].电源技术,2001,25(1):40-46
    [16] 程夕明,孙逢春.电动汽车能量存贮技术概况[J].电源技术,2001,25(1): 47-52
    [17] 郝德利,冯熙康,王伯良等.电动汽车用锂离子蓄电池的研究[J].电源技术,2003,27(增):160-162
    [18] 胡广侠,解晶莹,李春香等.锂离子蓄电池高倍率放电研究[J].电源技术,2003,27(增):201-204
    [19] K.Mizushima; P.C.Jones, P.J.Wiseman, et al. LixCoO2 (0 less than x less than equivalent to 1): a new cathode material for batteries of high energy density [J]. Materials Research Bulletin, 1980, 15(6): 783-789
    [20] C.Y.Yao, T.H.Kao, C.H.Cheng, et al. Studies of electrochemical properties of lithium cobalt oxide[J], J.Power Source, 1995,54(2):491~493
    [21] J.Barker, R.Pynenburg, R.Koksbang, et al. An electrochemical investingation into the lithium insertion properties of LixCoO2[J]. Electrochim Acta, 1996, 41(15): 2481-2488
    [22] H.F.Wang, Y.I.Jang, B.Y.Huang, et al. TEM study of electrochemical cycling-induced damage and disorder in LiCoO2 cathodes for rechargeable lithium batteries[J]. J Electrochem Society, 1992, 146(2): 473-480
    [23] 李晓干,仇卫华,赫广明等.锂离子电池正极材料LiCoO2抗过充性能[J].电池,2002,32(1):19-21
    [24] M.Mladenov, R.Stoyanova, E.Zhecheva, et al. Effect of Mg doping and MaO-surface modification on the cycling stability of LiCoO2 electrodes[J]. Electrochemistry Communications, 2001,3: 410-416
    [25] Y.Iriyama, H.Kurita, I.Yamada, et al. Effects of surface modification by MgO on interfacial reactions of lithium cobalt oxide thin film electrode[J]. J Power Sources, 2004, 137: 111-116
    [26] H.Zhao, L.Gao, W.Qiu, et al. Improvement of electrochemical stability of LiCoO2 cathode by a nano-crystalline coating[J]. J Power Sources, 2004, 132: 195-200
    [27] M.Broussely, P.Biensan, B.Simon. Lithium insertion into host materials: the key to success for Li ion batteries[J]. Electrochim Acta, 1999, 45: 3-22
    [28] A.Lecerrf, M.Broussely, J.P.Gabano, Eur.Patent, No.0345707, US Patent, No.4982280, Doc,12,1989
    [29] H.Arai, S.Okada, Y.Sakurai, et al. Reversibility of LiNiO2 cathode[J]. Solid State Ionics, 1997, 95: 275-282
    [30] W.Li, J.C.Currie, J.Wolstenholme. Influence of morphology on the stability of LiNiO2[J]. J Power Sources, 1997, 68: 565-569
    [31] J.Molenda, P.Wilk, J.Marzec. Structural, electrical and electrochemical properties of LiNiO2[J]. Solid State Ionics, 2002, 146: 73-79
    [32] D.N.Shi, B.L.Wang. The phase diagram and susceptibility of LiNiO2[J]. Physica B, 2005, 355: 83-89
    [33] S.yamada, M.Fujiwara, M.Kanda. Synthesis and properties of LiNiO2 as cathode material for secondary batteries[J]. J Power Sources, 1995, 54: 209-213
    [34] G.X.Wang, S.Zhong, D.H.Bradhurst, et al. Synthesis and characterization of LiNiO2 compounds as cathodes for rechargeable lithium batteries[J]. J Power Sources, 1998, 76: 141-146
    [35] Z.H.Lu, X.J.Huang, H.Huang, et al. The phase transition and optimal synthesis temperature of LiNiO2[J]. Solid State Ionics, 1999, 120: 103-107
    [36] T. Amriou, A.Sayede, B.Khelifa, et al.Effect of Al-doping on lithium nickel oxides. J. Power Sources, 2004, 130(1-2): 213-220.
    [37] G.X.Wang, S.Bewlay, J.Yao, et al.Multiple-ion-doped lithium nickel oxides as cathode materials for lithium-ion batteries. J. Power Sources, 2003, 119-121: 189-194.
    [38] S.H.Park, Y.K.Sun, K.S.Park, et al.Synthesis and electrochemical properties of lithium nickel oxysulfide (LiNiSyO2-y) material for lithium secondary batteries. Electrochim. Acta, 2002, 47(11): 1721-1726.
    [39] A.G.Ritchie, C.O.Giwa, J.C.Lee, et al. Future cathode materials for lithium rechargeable batteries[J]. J Power Sources, 1999, 80: 98-102
    [40] 吴宇平,戴晓兵,马军旗等.锂离子电池—应用与实践[M].北京:化学工业出版社,2004,163-164
    [41] 吴智远,杨汉西,石中等.锂电化学嵌入尖晶石型二氧化锰研究[J].电池,1992,22(1):13-15
    [42] N.kumagai, T.Fukiwara, K.Tamno. Physical and eledtrochemical characterization of quaternary Li-Mn-V-O spimel as positive materials for rechargeable lithiumbatteries[J]. J Electrochem Soc, 1996,142(3):1007-1013
    [43] Y.Liu, T.Fujiwara, H.Yukawa, et al. Electronic structures of lithium manganese oxides for rechargeable lithium battery electrodes[J]. Solid State Ionics, 1999, 126: 209-218
    [44] Y.Gao, J.R.Dahn. The high temperature phase diagram of Li1+xMn2-xO4 and its implications[J]. J Electrochem Soc, 1996, 143(6): 1783-1788
    [45] 王要武. 尖晶石锂锰氧材料作为锂离子二次电池正极材料的研究:[博士学位论文]. 长沙:湖南大学,1999
    [46] T.Ohzuku, M.Kitagawa, T.Hirai. Electrochemistry of manganese dioxide in lithium nonaqueous cell[J]. J Electrochem Soc, 1990, 137(3): 769-775
    [47] Y.Gao, J.R.Dahn. Synthesis and characterization of Li1+xMn2-xO4 for Li-ion battery applications[J]. J Electrochem Soc, 1996, 143(1): 100-114
    [48] A.D.Robertson, S.H.Lu, W.F.Averill, et al. M3+-modified LiMn2O4 spinel intercalation cathodes[J]. J Electrochem Soc, 1997, 144(10): 3500-3505
    [49] G.G.Amatucci, A.Blyr, C.Sigala, et al. Surface treatments of Li1+xMn2-xO4 spinels for improved elevated temperature performance[J]. Solid State Ionics, 1997, 104: 13-25
    [50] Z.S.Zheng, Z.L.Tang, Z.T.Zhang, et al. Surface modification of Li1.03Mn1.97O4 spinels for improved capacity retention[J]. Solid State Ionics, 2002, 148: 317-321
    [51] S.Patoux, M.Marca. Doeff.Direct synthesis of LiNi1/3Co1/3Mn1/3O2 from nitrate precursors. Electrochem. Commun., 2004, 6(8): 767-772.
    [52] J.Jiang, J.R.Dahn.ARC studies of the thermal stability of three different cathode materials: LiCoO2; Li[Ni0.1Co0.8Mn0.1]O2; and LiFePO4, in LiPF6 and LiBOB EC/DEC electrolytes. Electrochem. Commun., 2004, 6(1): 39-43.
    [53] Z.L.Liu, A.Yu, J.Y.Lee.Synthesis and characterization of LiNi1?x?yCoxMnyO2 as the cathode materials of secondary lithium batteries. J. Power Sources, 1999, 81-82: 416-419.
    [54] B.J.Hwang, Y.W.Tsai, D.Carlier, et al.A Combined Computational/ Experimental Study on LiNi1/3Co1/3Mn1/3O2. Chem. Mater., 2003, 15(19): 3676-3682.
    [55] N.Yabuuchi, T.Ohzuku.Electrochemical behaviors of LiCo1/3Ni1/3Mn1/3O2 in lithium batteries at elevated temperatures. J. Power Sources, 2005, 146(1-2): 636-639.
    [56] Y.M.Todorov, K.Numata.Effects of the Li: (Mn + Co + Ni) molar ratio on the electrochemical properties of LiMn1/3Co1/3Ni1/3O2 cathode material. Electrochim. Acta, 2004, 50(2-3): 495-499.
    [57] A.K.Padhi, K.S.Nanjundaswamy, J.B.Goodenough. Phospho-olivnes as Positive-Electrode Materials for Rechargeable Lithium batteries[J]. J Electrochem Soc, 1997, 144(4): 1188-1194
    [58] A.K.Padhi, K.S.Nanjundaswamy, C.Masquelier, et al. Effect of Structure on the Fe3+/Fe2+ Redox Couple in Iron Phosphates[J]. J Electrochem Soc, 1997, 144(5): 1609-1613
    [59] K.S.Nanjundaswamy, A.K.Padhi, J.B.Goodenough, et al.Synthesis, redox potential evaluation and electrochemical characteristics of NASICON-related-3D framework compounds. Solid State Ionics, 1996, 92(1-2): 1-10.
    [60] M.V Kishore, U.V.Varadaraju. Synthesis, characterization and electrochemicalstudies on LiCoAsO4. Mater. Res. Bull., 2006, 41(3): 601-607.
    [61] B.M.Azmi, H.S.Munirah, T.Ishihara, et al.Optimized LiVOPO4 for cathodes in Li-ion rechargeable batteries. Ionics, 2005, 11(5-6): 402-405.
    [62] R.Dominko, M.Bele, M.Gaber??ek, et al.Structure and electrochemical performance of Li2MnSiO4 and Li2FeSiO4 as potential Li-battery cathode materials. Electrochem. Commun., 2006, 8(2): 217-222.
    [63] 施志聪,杨勇.聚阴离子型锂离子电池正极材料研究进展.化学进展,2005,17(4):604-613.
    [64] J.M.Tarascon, M.Armand.Issues and challenges facing rechargeable lithium batteries. Nature, 2001, 414(6861): 359-367.
    [65] A.S.Andersson, B.Kalska, L.H?ggstrm, et al. Lithium extraction/insertion in LiFePO4:an X-ray diffraction and M?ssbauer Spectroscopy study[J]. Solid State Ionics, 2000, 130: 41-52
    [66] A.Yamada, S.C.Chung, K.Hinokuma, et al. Optimized LiFePO4 for Lithium Battery Cathodes[J]. J Electrochem Soc, 2001, 148(3): A224-A229
    [67] C.Y.Ouyang, S.Q.Shi, Z.X.Wang, et al. First-principles study of Li ion diffusion in LiFePO4[J]. Physical Review B, 2004,69: 104303
    [68] N.Ravet, Y.Chouinard, J.F.Magnan, et al.Electroactivity of natural and synthetic triphylite. J. Power Sources, 2001, 97-98: 503-507.
    [69] 孙玉恒,何泽珍,刘兴泉.锂离子二次电池新型正极材料LiMPO4(M=Fe、Co、Ni等)的研究进展[J].化工科技,2005, 13(2): 49-56
    [70] A.S.Andersson, J.O.Thomas, B.Kalska, et al.Thermal stability of LiFePO4-based cathodes.Electrochem. Solid-State Lett., 2000, 3(2): 66-68.
    [71] D.Zane, M.Carewska, S.Scaccia, et al.Factor affecting rate performance of undoped LiFePO4. Electrochim. Acta, 2004, 49(25): 4259-4271.
    [72] M.Li, K.Xie, D.Li, et al.Synthesis of LiFePO4 by one-step annealing under the vacuum condition. J. Mater. Sci., 2005, 10(9-10): 2639-2641.
    [73] H.S.Kim, B.W.Cho, W.I.Cho. Cycling performance of LiFePO4 cathode material for lithium secondary batteries[J]. J Power Sources, 2004, 132: 235-239
    [74] S.S.Zhang, J.L.Allen, K.Xu, et al. Optimization of reaction condition for solid-state synthesis of LiFePO4-C composite cathodes[J]. J Power Sources, 2005, 147: 234-240
    [75] C.W.Kim, M.H.Lee, W.T.Jeong, et al. Synthesis of olivine LiFePO4 cathode materials by mechanical alloying using iron(III) raw material[J]. J Power Sources, 2005, 146: 534-538
    [76] F.Croce, A.D.Epifanio, J.Hassoun, et al. A Novel Concept for the Synthesis of an improved LiFePO4 Lithium Battery Cathode[J]. Electrochemical and Solid-State Letters, 2002, 5(3): A47-A50
    [77] M.A.E.Scanchez, G.E.S.Brito, M.C.A.Fantini, et al. Synthesis and characterization of LiFePO4 prepared by sol–gel technique[J]. Solid State Ionics, 2006, 177: 497-500
    [78] S.Yang, Y.Song, P.Y.Zavalij, et al. Reactivity,stability and electrochemical behavior of lithium iron phosphates[J]. Electrochemistry Communications, 2002, 4: 239-244
    [79] K.Shiraishi, K.Dokko, K.Kanamura. Formation of impurities on phospho-olivine LiFePO4 during hydrothermal synthesis[J]. J Power Sources, 2005, 146: 555-558
    [80] G.Arnold, J.Garche, R.Hemmer, et al. Fine-particle lithium iron phosphate LiFePO4 Synthesized by a new low-cost aqueous precipitation technique[J]. J Power Sources, 2003, 119-121: 247-251
    [81] M.R.Yang, W.H.Ke, S.H.Wu. Preparation of LiFePO4 powders by co-precipitation [J]. J Power Sources, 2005, 146: 539-543
    [82] S.L.Bewlay, K.Konstantinov, G.X.Wang, et al. Conductivity improvements to spray-produced LiFePO4 by addition of a carbon source[J]. Materials Letters, 2004, 58: 1788-1791
    [83] T.H.Cho, H.T.Chung. Synthesis of olivine-type LiFePO4 by emulsion-drying method[J]. J Power Sources, 2004, 133: 272-276
    [84] C.Yada, Y.Iriyama, S.K.Jeong. Electrochemical properties of LiFePO4 thin films prepared by pulsed laser deposition[J]. J Power Sources, 2005, 146: 559-564
    [85] 薛明拮,傅正文.脉冲激光沉积LiFePO4阴极薄膜材料及其电化学性能[J].物理化学学报,2005, 21(7): 707-710
    [86] S.Y.Chung, J.T.Bloking, Y.M.Chiang. Electronically conductive phosphor-olivines as lithium storage electrodes[J]. Nature Mater, 2002, 1: 123-128
    [87] P.S.Herle, B.Ellis, N.Coombs, et al. Nano-network electronic conduction in iron and nickel olivine phosphates[J]. Nature Mater, 2004, 3: 147-152
    [88] 罗文斌,李新海,张宝等.锂离子蓄电池正极材料LiFePO4的合成研究[J].电源技术,2004,28(12):748-750
    [89] M.Takahashi, S.Tobishima, K.Takei, et al. Characterization of LiFePO4 as the cathode material for rechargeable lithium batteries[J]. J Power Sources, 2001, 97-98: 508-511
    [90] S.Franger, F.L.Cras, C.Bourbon, et al. Comparison between different LiFePO4 synthesis routes and their influence on its physico-chemical properties[J]. J PowerSources, 2003, 119-121: 252-257
    [91] P.P.Prosini, M.Carewska, S.Scaccia, et al. Long-term cyclability of nanostructured LiFePO4[J]. Electrochim Acta, 2003, 48: 4205-4211
    [92] S.Yang, Y.Song, K.Ngala, et al. Performance of LiFePO4 as lithium battery cathode and comparison with manganese and vanadium oxides[J]. J Power Sources, 2003, 119-121: 239-246
    [93] Y.N.Xu, S.Y.Chung, J.T.Bloking, et al. Electronic Structure and Electrical Conductivity of Undoped LiFePO4[J]. Electrochemical and Solid-State Letters, 2004; 7(6): A131-A134
    [94] N.Iltchev, Y.Chen, S.Okada, et al. LiFePO4 storage at room and elevated temperatures[J]. J Power Sources, 2003, 119-121: 749-754
    [95] 陈亦可.锂离子蓄电池正极材料 LiFePO4 的研究进展[J].电源技术,2003,27(5):487-490
    [96] 薄红志,陈晗,范长岭等.LiFePO4 用作锂离子电池正极材料的储存性能研究.见:第十三次全国电化学会议论文摘要.广州.2005,276-277
    [97] W.Kong, H.Li, X.J.Huang, et al. Gas evolution behaviors for several cathode materials in lithium-ion batteries[J]. J Power Sources, 2005,142: 285-291
    [98] A.S.Andersson, J.O.Thomas. The source of first-cycle capacity loss in LiFePO4[J]. J Power Sources, 2001, 97-98: 498-502
    [99] 刘立君.锂离子电池正极材料研究[中国科学院物理所博士论文].北京:中国科学院物理所,2003.
    [100] D.Y.Wang, X.D.Wu, Z.X.Wang, et al. Cracking causing cyclic instability of LiFePO4 cathode material[J]. J Power Sources, 2005, 140: 125-128
    [101] P.P.Prosini, D.Zane, M.Pasquali. Improved electrochemical performance of a LiFePO4-based composite cathode[J]. Electrochim Acta, 2001, 46: 3517-3523
    [102] P.P.Prosini, M.Lisi, D.Zane, et al. Determination of the chemical diffusion coefficient of lithium in LiFePO4[J]. Solid State Ionics, 2002, 148: 45-51
    [103] 吕正中,周震涛.LiFePO4/C 复合正极材料的结构与性能[J].电池,2003,33(5):267-271
    [104] M.Gaberscek, R.Dominko, M.Bele, et al.Porous, carbon-decorated LiFePO4 prepared by sol-gel method based on citric acid. Solid State Ionics, 2005, 176(19-22): 1801-1805.
    [105] C.H.Mi, G.S.Cao, X.B.Zhao. Low-cost, one-step process for synthesis of carbon-coated LiFePO4 cathode[J]. Materials Letters, 2005, 59: 127-130
    [106] T.Takeuchi, M.Tabuchi, A.Nakashima, et al. Preparation of dense LiFePO4/Ccomposite positive electrodes using spark-plasma-sintering process[J]. J Power Sources, 2005, 146: 575-579
    [107] M.Gaberseek, R.Dominko, M.Bele, et al. Porous, carbon-decorated LiFePO4 prepared by sol–gel method based on citric acid[J]. Solid State Ionics, 2005, 176: 1801-1805
    [108] I.Belharouak, C.Johnson, K.Amine. Synthesis and electrochemical analysis of vapor-deposited carbon-coated LiFePO4[J]. Electrochemistry Communications, 2005, 7: 983-988
    [109] K.S.Park, J.T.Son, H.T.Chung, et al. Surface modification by silver coating for improving electrochemical properties of LiFePO4[J]. Solid State Communications, 2004, 129: 311-314
    [110] S.Panero, B.Scrosati, M.Wachtler, et al. Nanotechnology for the progress of lithium batteries R&D[J]. J Power Sources, 2004, 129: 90-95
    [111] S.T.Yang, N.H.Zhao, H.Y.Dong, et al. Synthesis and characterization of LiFePO4 cathode material dispersed with nano-structured carbon[J]. Electrochim Acta, 2005, 51: 166-171
    [112] 胡环宇,仇卫华,李发喜等.Mg 掺杂对 LiFePO4 材料电化学性能的影响.电源技术,2006,30(1):18-20.
    [113] D.Y.Wang, H.Li, S.Q.Shi, et al.Improving the rate performance of LiFePO4 by Fe-site doping. Electrochim. Acta, 2005, 50(14): 2955-2958.
    [114] 文衍宣,郑绵平,童张法等.镍离子掺杂对 LiFePO4 结构和性能的影响.中国有色金属学报,2005,15(9):1436-1440.
    [115] J.F.Ni, H.H.Zhou, J.T.Chen, et al.LiFePO4 doped with ions prepared by co-precipitation method. Mater. Lett., 2005, 59(18): 2361-2365.
    [116] H.Liu, Q.Cao, L.J.Fu, et al.Doping effects of zinc on LiFePO4 cathode material for lithium ion batteries. Electrochem. Commun., 2006, 8(10): 1553-1557.
    [117] 文衍宣,郑绵平,童张法等.掺杂元素对锂离子电池正极材料 LiFePO4 的影响.无机盐工业,2005,37(4):12-14.
    [118] 倪江锋,周恒辉,陈继涛等.铬离子掺杂对 LiFePO4 电化学性能的影响.物理化学学报,2004,20(6):582-586.
    [119] 文衍宣,郑绵平,童张法.锂离子蓄电池正极材料 LiVxFe1-xPO4 的制备和性能.电源技术,2005,29(11):713-715.
    [120] 倪江锋,周恒辉,陈继涛等.金属氧化物掺杂改善 LiFePO4 电化学性能.无机化学学报,2005,21(4):472-476.
    [121] 施思齐.锂离子电池正极材料的第一性原理研究[中国科学院物理所博士论文].北京:中国科学院物理所,2004.
    [122] G.H.Li, H.Azuma, M.Tohda. Optimized LiMnyFe1-yPO4 as the Cathode for Lithium Batteries[J]. J Electrochem Soc, 2002, 149(6): A743-A747
    [123] A.Yamada, M.Hosoya, S.C.Chung, et al. Olivine-type cathodes achievements and problems[J]. J Power Sources, 2003, 119-121: 23-238
    [124] A.Yamada, Y.Kudo, K.Y.Liu. Reaction Mechanism of the Olivine-Type Lix(Mn0.6Fe0.4)PO4(0≤x≤1)[J]. J Electrochem Soc, 2001, 148(7): A747-A754
    [125] A.Yamada, Y.Kudo, K.Y.Liu. Phase Diagram of Lix(MnyFe1-y)PO4(0≤x≤1)[J]. J Electrochem Soc, 2001, 148(10): A1153-A1158
    [126] S.Q.Shi, L.Liu, C.Y.Ouyang, et al.Enhancement of electronic conductivity of LiFePO4 by Cr doping and its identification by first-principles calculations. Phys. Rev. B, 2003,68(19): No.195108.
    [127] C.Y.Ouyang, D.Y.Wang, S.Q.Shi, et al.First Principles Study on NaxLi1-xFePO4 As Cathode Material for Rechargeable Lithium Batteries. Chinese Phys. Lett., 2006, 23(1): 61-64.
    [128] H.Kawai, M.Nagata, H.Kageyama, et al. 5V lithium cathodes based on spinel solid solutions Li2Co1+xMn3-xO8: -1≤x≤1[J]. Electrochim Acta, 1999, 45: 315-327
    [129] Y.Shimakawa, T.Numata, J.Tabuchi. Verwey-Type Transition and Magnetic Properties of the LiMn2O4 Spinels[J]. J Solid State Chem, 1997, 131: 138-143
    [130] C.Delacourt, C.Wurm, L.Laffont, et al. Electrochemical and electrical properties of Nb- and/or C-containing LiFePO4 composites[J]. Solid State Ionics, 2006, 177: 333-341
    [131] S.Yang, Y.Song, P.Y.Zavalij, et al. Nanocomposite electrodes for advanced lithium batteries: the LiFePO4 cathode[J]. Chemical Abstracts, 2002, 137(21): 1087
    [132] A.Singhal, G.Skandan, G.Amatucci, et al. Nanostructured electrodes for next generation rechargeable electrochemical devices[J]. J Power Sources, 2004, 129: 38-44
    [133] C.R.Sides, F.Croce, V.Y.Young, et al.A high-rate nanocomposite LiFePO4/carbon cathode. Electrochem. Solid-State Lett., 2005, 8(9): A484-A487.
    [134] 雷敏,应皆荣,姜长印等.高密度球形 LiFePO4 的合成及性能[J].2006,30(1):11-13
    [135] 杨南如.无机非金属材料测试方法[M].武汉:武汉工业大学出版社,2000
    [136] 王建祺,吴文辉,冯大明.电子能谱学引论[M].北京:国防工业出版社,1992
    [137] 冯光熙,黄祥玉,申泮文等.无机化学丛书(第一卷)[M].北京:科学出版社,1984,328
    [138] 刘振海,畠山,立子.分析化学手册(第二版)[M].北京:化学工业出版社,2000,457
    [139] 迪安 JA.兰氏化学手册[M].北京:科学出版社,1997,3:12
    [140] 李冀辉,黎梅,张志宏等.常用化学反应速查手册[M].河北:河北科学出版社,1995,408-412
    [141] 何灿芝.应用统计[M] .长沙:湖南科技出版社,1997: 223
    [142] 白莹,吴锋,吴川.新型锂离子电池正极材料 LiMPO4(M=Fe, Mn)的谱学和电化学研究[J] .光散射学报,2004,15(4):231-235.
    [143] T.Piao, S.M.Park, C.H.Doh, et al.Intercalation of lithium ions into graphite electrodes studies by AC impedance measurements. J. Electrochem. Soc., 1999, 146(8): 2794-2798.
    [144] 吕东生,李伟善,刘煦,等.锂离子嵌脱的交流阻抗模型.电池,2003,33(5):326-327.
    [145] M.Itagaki, N.Kobari, S.Yotsuda, et al.LiCoO2 electrode/ electrolyte interface of Li-ion rechargeablebatteries investigated by in situelectrochemical impedance spectroscopy. J. Power Sources, 2005, 148:78-84.
    [146] E.Barsoukov, J.R.Macdonald.Impedance Spectroscopy theory, experiment, and applications (second edition). New York: Wiley-Interscience, 2005.
    [147] 李泓.锂离子电池负极材料及电极过程的研究[中科院物理所博士论文].北京:中科院物理所,1999.
    [148] 史美伦.交流阻抗谱原理及应用.北京:国防工业出版社,2001.
    [149] 舒余德,陈白珍.冶金电化学研究方法.长沙:中南工业大学出版社,1990.
    [150] 曹楚南,张鉴清.电化学阻抗谱导论.北京:科学出版社,2002.
    [151] 查全性.电极过程动力学导论[M] .北京:科学出版社,1976:119-137
    [152] 田昭武.电化学研究方法[M] .北京:科学出版社,1986:4-27
    [153] 吴浩青,李永舫.电化学动力学[M] .北京:高等教育出版社,2002:133-143
    [154] 曹楚南.腐蚀电化学原理(第二版).北京:化学工业出版社,2004.
    [155] 高玲,赵海雷,仇卫华,等.镁掺杂对锂钛复合氧化物电化学性能的影响.见: 2004 年材料科学与工程新进展.北京:冶金工业出版社,2005,140-143.
    [156] 殷华茹,姜继森.γ-2Fe2O3/聚噻吩纳米复合材料的制备及其导电性能研究[J] .功能材料,2005,36(10):1524-1527
    [157] 耿丽娜,王淑荣,李鹏等.聚吡咯/二氧化锡杂化材料的制备及气敏性研究[J] .无机化学学报,2005,21(7):977-981
    [158] 生 瑜, 陈建定, 朱德钦.导电聚苯胺/二氧化锰复合材料原位化学合成制备及表征[J] .复合材料学报,2004,21(4):1-7
    [159] X.W.Li, G.C.Wang, X.X.Li, et al. Surface properties of polyaniline/nano-TiO2 composites[J]. Applied Surface Science 2004,229: 395–401
    [160] R.Farias, C.Airoldi. Synthesis and characterization of an VOPO4–polyaniline lamellar hybrid compound[J]. Solid State Sciences 2003 (5): 611–613
    [161] S.Kuwabata, S.Masui, H.Yoneyama. Charge-discharge properties of composites of LiMn2O4 andpolypyrrole as positive electrode materials for 4 V class of rechargeable Li batteries[J]. Electrochimica Acta, 1999 ,44:4593-4600
    [162] G.J.F.Demets, F.J.Anaissi, H.E.Toma. Electrochemical properties of assembled polypyrrole:V2O5 xerogel films[J]. Electrochimica Acta, 2000,46 :547–554
    [163] N.Hebestreit, J.Hofmann, U.Rammelt, et al. Physical and electrochemical characterization of nanocomposites formed from polythiophene and titaniumdioxide[J]. Electrochimica Acta, 2003,48:1779-1788
    [164] J.X.Zhang, F.E.Chen, M.X.Fu, et al. Aligned polythiophene coated gold nanowires[J]. Synthetic Metals, 2003,135–136:217–218
    [165] 陈贻炽,王红山,吴锦屏等.聚噻吩导电材料的合成[M].化工新型材料,1997,8:15-18
    [166] 张清华,王献红,景遐斌.聚苯胺的合成及其光谱特性[J] .化学世界,2001,5:242-244
    [167] 井新利, 王杨勇, 张东华.二氧化硅/聚苯胺复合粒子的制备与性能[J] .材料工程,2004,1:20-24
    [168] 张玉泉,于跃华,丁雪佳等.聚吡咯/ 纳米氧化钇复合材料的结构与性能研究[J] .现代化工,2004,24(1):37-39
    [169] 朱立平,胡学清,陆 云.等离子体改性聚吡咯膜共价固定乳酸脱氢酶[J] .功能材料,2004,35(5):641-643
    [170] 石家华,杨春和,高青雨等.聚噻吩在离子液体中的电化学合成研究[J] .化学物理学报,2004,17(4):503-507
    [171] G.X.Wang, L.Yang, Y.Chen, et al.An investigation of polypyrrole-LiFePO4 composite cathode materials for lithium-ion batteries[J]. Electrochim. Acta, 2005, 50(24): 4649-4654.
    [172] Y.H.Huang, K.S.Park, J.B.Goodenough.Improving lithium batteries by tethering carbon-coated LiFePO4 to polypyrrole[J]. J. Electrochem. Soc., 2006, 153(12): A2282-A2286.
    [173] 张永安.无机化学[M] .北京:北京师范大学出版社,1998
    [174] 大连工学院无机化学教研室.无机化学[M] .北京:高等教育出版社,1982
    [175] 黄昆.固体物理学[M] .北京:高等教育出版社,1985
    [176] 陈曙光,黄述熙,郑采星等.大学物理[M] .长沙:湖南大学出版社,1999
    [177] 周亚栋.无机材料物理化学[M] .武汉:武汉理工大学出版社,1994
    [178] 陈平,王德中.环氧树脂及其应用[M] .北京:化学工业出版社,2004
    [179] H.Chen, S.C.Han, W.Z.Yu, et al. Preparation and electrochemical properties of LiFePO4/C composite cathodes for lithium-ion batteries [J]. Bull. Mater. Sci., 29 (7):689-692
    [180] D.Robert, G.Miran, D.Jernej. Influence of carbon black distribution on performance of oxide cathodes for Li ion batteries [J]. Electrochimica Acta, 2003, 48: 3709-3716.
    [181] 谢辉,周震涛.碳掺杂方式对磷酸铁锂电化学性能的影响[J] .电源技术,2006,30(11):908-910

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700