新型二次锂电池正负极材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
单质硫的理论比容量高,是新一代高能二次锂电池中有应用潜力的正极材料。但由于其电子和离子的绝缘性以及溶剂可溶性,锂/硫电池的活性物质利用率低,容量衰减快。因此硫单质硫正极材料必须和导电剂有很好地接触。本论文设计并制备了活性炭一硫,导电聚合物-硫,氧化物-硫三类复合材料作为锂电池正极用电化学活性物质,借助X-射线衍射和扫描电镜对样品的结构形貌进行表征,通过恒电流充放电、循环伏安、电化学交流阻抗等电化学测试研究了复合材料的电化学性能。
     通过热处理方法制备单质硫-活性炭复合材料,当单质硫含量为78.2%时,首次放电比容量高达1057.8mAh·g~(-1),30次循环后仍可保持在400mAh·g~(-1)左右。
     氧化物-硫复合材料包括二氧化钛-硫,五氧化二矾-硫和二氧化铈-硫三种材料:采用五氧化二钒改性的硫材料,首次放电比容量达844.68mAh·g~(-1),样品循环容量衰减明显改善,30次后比容量保持在696.71 mAh·g~(-1);而物理混合法制备的二氧化钛-单质硫复合材料,初始放电比容量为600.83mAh·g~(-1),30次循环后比容量为419.34mAh·g~(-1);化学沉积法二氧化铈-单质硫复合材料中CeO_2在硫颗粒表面形成了一层膜,复合材料在电流密度为0.2 mA·cm~(-2)的条件下充放电,首次放电容量达到731.25mAh·g~(-1),经过30次充放电循环后,容量保持在468.39 mAh·g~(-1),电化学阻抗谱表明,CeO_2的包覆使得电化学反应阻抗减小了。
     导电聚合物-硫复合材料包括聚苯胺-硫和聚氧化乙烯-硫两种材料。原位聚合法制备的聚苯胺包覆硫复合材料,以0.2mA·cm~(-2)电流密度充放电,含聚苯胺为15%的聚苯胺/硫复合材料的首次放电容量为1134.01mAh·g~(-1),比未改性硫电极增加了82.42%;充放电循环30次后放电电容量为526.89 mAh·g~(-1),容量衰减仅为明显减少。当充放电电流密度提高到0.3mA·cm~(-2),0.4mA·cm~(-2)时,聚苯胺-硫复合材料的放电容量分别为704.81mAh·g~(-1),194.77mAh·g~(-1)。改性后的聚苯胺-硫复合材料的电化学性能得到了较大的改善。聚氧化乙烯-单质硫复合材料是通过热处理的方法制备的,PEO与单质硫质量比为1:3时,首次放电比容量为843.45mAh·g~(-1),到第30次放电时,比容量为438.64 mAh·g~(-1),大于已经商业化的锂离子正极材料LiMn_2O_4和LiCoO_2的理论比容量。结果表明,PEO不仅能够起到导电剂的作用,而且其网络结构对再生硫的团聚起到抑制的作用。
     锂离子蓄电池负极材料锂钛复合氧化物Li_4Ti_5O_(12)是一种“零应变”材料。具有应用在电动汽车、储能电池等方面的优良前景。本文选用Li_2CO_3作为锂源,与活性较高的无定型TiO_2固相法合成了锂钛复合氧化物Li_4Ti_5O_(12),研究了考察温度,时间,比例关系等合成条件对其结构及电化学性能的影响。Li_2CO_3过量8%,在800℃的煅烧温度下保温24h制备的Li_4Ti_5O_(12)首次放电比容量163mAh·g~(-1),60次充放电循环后为156.0mAh·g~(-1),容量保持为95.6%。
     固相法制备了C改性的Li_4Ti_5O_(12),以LiCoO_2为正极组装为全电池,当电流密度为0.1mA·cm~(-2),电池的初始放电比容量为122.9mAh·g~(-1),100次后比容量衰减仅为3.43%。当电流密度增大时,容量呈下降趋势,但是容量衰减率逐渐减小了。
     物理混合法和化学沉积法制备SnO_2改性Li_4Ti_5O_(12)复合材料,并将这两中方法与未改性的Li_4Ti_5O_(12)进行了对比,物理混合法能有效地抑止Sn体积的膨胀,表现出更好的循环性能,15次循环后,比容量为207.7mAh·g~(-1)。
     Sb_2O_3掺杂改性Li_4Ti_5O_(12)得到复合材料Li_4Ti_(5-x)Sb_xO_(12)进行测试,提出了可能的反应机理。结果显示,掺杂后x=1材料的首次放电容量高达595·84mAh·g~(-1),首次充放电效率为45.7%,存在首次不可逆容量损失,经过20次充放电循环后,比容量保持在249.57 mAh·g~(-1),具有较好的循环性能,是一种较好的锂离子电池负极材料。
Elemental sulfur has been proposed as promising cathode materials for the next generation of high-performance rechargeable lithium batteries due to their high theoretical capacity. However, they exhibit low utilization and fast capacity fades in lithium batteries due to their electrically and ionically insulated nature as well as solvent-solubility. Therefore, the cathode material must be well combined with a conductive agent when prepared as an electrode.
     In this study, three types of sulfur composite materials were prepared, that is: active carbon-sulfur composites, conductive polymer-sulfur composites and oxide-sulfur composites, which can be used as advanced cathode materials for rechargeable lithium batteries. The structure of the prepared cathode material was characterized by XRD.The electrochemical performance of sulfur composite electrodes was investigated by galvanostatic charge/discharge, cycling voltammetry methods and AC impedance.
     Sulfur-carbon composites were prepared by thermal treatment. The composites with favorable sulfur contents exhibited high specific capacity up to 1057.8 mAh/g in the initial cycle and a stable reversible capacity approximately 400 mAh/g.
     Oxide-sulfur cathode materials have been synthesized by mechanical milling or chemical aggradation, using mixture of oxides (V_2O_5, TiO_2, and CeO_2) and elemental sulfur. Combined with gel polymer electrolyte, the V_2O_5-S composites exhibited high specific capacity up to 844.68 mAh·g!(-1) in the initial cycle and a stable reversible capacity approximately 696.71 mAh·g~(-1) after 30 cycle numbers. The discharge capacity of TiO_2-S is 600.83 mAh·g~(-1) in the first cycle and 419.34 mAh·g~(-1) in the 30th cycle. CeO_2-sulfur composites were prepared by depositing CeO_2 on the surface of sulfur power. The results indicated that the appending of CeO_2 formed a thin layer over sulfur particles. The initial capacity of CeO_2-sulfur composite was as high as 731.25 mAh·g~(-1). The capacity was still 468.39 mAh·g~(-1) after 30 charge-discharge cycles. EIS results showed that CeO_2-coating could suppress the electrochemical reaction resistant.
     Conductive polymer-sulfur composites were containing polyaniline-sulfur composites and poly ethylene oxide-sulfur composites.A novel conducting sulfur-polyaniline composite material was prepared by the chemical polymerization method .When the cathode materials are cycled at 0.2mA·cm~(-2), the polyaniline/sulfur composites containing 15% polyaniline can delivered 1134.01mAh·g~(-1) at the first discharge which is 82.42% higher than that of bare sulfur, the capacity was still 526.89 mAh·g~(-1) after 30 charge-discharge cycles. When the discharge current density reaches up to 0.3mA·cm~(-2), 0.4mA·cm~(-2), the capacity of polyaniline/sulfur composites are 704.81mAh·g~(-1),194.77mAh·g~(-1) respectively. Poly (ethylene oxide) -sulfur composite was prepared by the thermal treatment method. The cathode with poly (ethylene oxide)-sulfur composite material shows the improvement of not only the charge-discharge capacity but also cycle durability.When the ratio of poly (ethylene oxide) and sulfur is 1:3, the cmposites can delivered 843.45mAh·g~(-1) at the first discharge,after 30 cycles, the discharge capacity was 438.64 mAh·g~(-1).
     The lithium titanium oxide Li_4Ti_5O_(12) as anode material for lithium ion battery is regarded as a"zero strain"material. The lithium ion battery using Li_4Ti_5O_(12) material as anode material is suitable for electric vehicle (EV) and power storage battery.In this paper, Li_4Ti_5O_(12) was synthesized by amorphous titanium dioxide TiO_2 and Li_2CO_3 as lithium sources. Influential factors such as temperature, materials, time and proportion of reactants were researched. Pure spinel Li_4Ti_5O_(12) can be synthesized by solid phase reaction at 800℃for about 24h, with excessive 8% Li_2CO_3. investigated. The results showed that the initial discharge capacity was 163mAh·g~(-1), after 60 cycles, the specific capacity was 156.0mAh·g~(-1), Its cycle retention rate after 60 cycles was 95.6%.
     Li_4Ti_5O_(12) modified by C was obtained by solid state reaction. The system used LiCoO_2 as cathode was characterized. The results showed that, the battery's initial discharge specific energy was 122.9mAh·g~(-1) with the current density 0. 1 mA·cm~(-2), and decreased only by 3.43% after 100 cycles. The capacity was decreased as current density increased. But the rate of decrease was declined.
     Spinel Li_4Ti_5O_(12) was modified by SnO_2 by physical and chemical procedures respectively. Both of the two procedures were compared with pure Li_4Ti_5O_(12) to find the favorable way that could improve the performance.The experiments demonstrate that the physical procedure could restrain the bulk swell of Sn effectively and delivered promising electrochemical performance. After 15 cycles, its capacity is 207.7 mAh·g~(-1)。
     Li_4Ti_5O_(12) was modified by doped Sb_2O_3. The composites materials Li_4Ti_(5-x)Sb_xO_(12) were characterized by constant current charge-discharge, cyclic voltammetry and electrochemical impedance spectrum. And the possible principle of reaction was proposed. The results showed that, when x=1, the initial discharge specific energy was 595.84mAh·g~(-1) and the initial charge-discharge efficiency was only 45.7%.. After 20 cycles, the specific energy was still 249.57mAh·g~(-1) which showed better cyclicity and can be a kind of preferable lithium ion battery.
引文
[1] Nagaura T, Tozawa K, Lithium ion rechargeable battery [J]. Prog. Batteries Solar Cells, 1990, 9: 209-217P
    [2] 唐致远,刘春燕,徐国强.锂离子电池的产品现状及其发展前景[J].河北化工,2001,1:6-8页
    [3] 吕鸣祥,黄长保,宋玉谨.化学电源[M].天津:天津大学出版社,1992:306-307页
    [4] 吴宇平,戴晓兵,马军旗等.锂离子电池-应用与实践[M].化学工业出版社,2004:1-13页
    [5] M. Wakihara. Recent developments in lithium ion batteries [J]. Mater Sci Eng, 2001, 33: 109-134P
    [6] Whittingham M S. Insertion electrodes as SMART materials the first 25 years and future promises [J]. Solid state Ionics. 2000.134:169-178P
    [7] B. Scrosati. Challenge of portable power [J]. Nature, 1996, 381: 499-500P
    [8] J.M. Tarascon, M. Armand.Issues and challenges facing rechargeable lithium batteries [J]. Nature, 2001, 414: 359-367P
    [9] 郭炳琨,徐徽,王先友,肖立新.锂离子电池[M].第一版.2002,长沙:中南大学出版社.1-17页
    [10] 吴宇平,戴晓兵,马军旗等.锂离子电池一应用与实践[M].第一版,2004,北京:化学工业出版社.1-35页
    [11] A Galtayries, J Grimblot. Formation and electronic properties of oxide and sulphide films of Co, Ni and Mo studied by XPS [J]. Journal of Electron Spectroscopy and Related Phenomena, 1999, 98-99: 267-275P
    [12] 周恒辉,慈云样,刘昌炎.锂离子电池正极材料的研究进展[J].化学进展,1998,10(1):85-94页
    [13] 陈昌国,陈佳,唐燕秋等.锂离子电池炭负极材料结构的研究进展[J]. 无机材料学报,2003,18(6):1153-1157页
    [14] 孙颢,蒲薇华,何向明等.锂离子电池硬碳负极材料研究进展[J].化工新型材料,2005,33(11):7-10页
    [15] M. Yoshio, H. Y. Wang, K. Fukuda, et al. Effect of carbon coating on electrochemical performance of treated natural graphite as lithium-ion battery anode material [J]. J. Electrochem. Soc. 2000,147:1245-1250P
    [16] H.Y. Wang, M. Yoshio, T. Abe, et al. Characterization of carbon-coated natural graphite as a lithium-ion battery anode material [J]. J. Electrochem. Soc, 2002, 149: A499P-A503P
    [17] T. Tsumura, A. Katanosaka, I. Souma, et al. Surface modification of natural graphite particles for lithium ion batteries [J]. Solid State Ionics, 2000, 135:209-212R
    [18] 尹鸽平,程新群,高云智等.掺磷对硬碳及软碳嵌锂性能的影响研究[J],材料科学与工艺,2003,11(2):159-163页
    [19] A. Mabuchi, K. Tokumitsu, H. Fujimoto, et al. Charge-discharge characteristics of the mesocarbon miocrobeads heat-treated at different temperatures [J]. J. Electrochem. Soc, 1995,142:1041-1046P
    [20] T. Zheng, W. R. Mckinnon, J. R. Dahn. Hysteresis during lithium insertion in hydrogen-containing carbons [J].J. Electrochem. Soc, 1996, 143: 2137-2145P.
    [21] H.Q. Xiang, S. B. Fang, Y. Y. Jiang. Carbonaceous anodes for lithium-ion batteries prepared from phenolic resins with different cross-linking densities [J].J. Electrochem. Soc., 1997, 144:L187-L190P
    [22] K. Tokumitsu, H. Fujimoto, A. Mabuchi, et al. Structural characterization and electrochemical properties of non-graphitizable carbons for a lithium ion battery [J]. J. Power Sources,2000,90:206-213P
    [23] Y. M. Kang, S. C. Park, Y. S. Kang, et al. The improvement of the cycle life of Li_(2.6)Co_(0.4)N as an anode of Li-ion secondary battery [J].Solid State Ionics, 2003,156:263-273P
    [24] E. E. Ferapontova, J.G. Terry, A. J. Walton, et al. Electrochemical deposition of Zn on TiN microelectrode arrays for microanodes[J]. Electrochemistry Communications, 2007, 9:303-309P
    [25] Y. M. Kang, M. S. Song, J. H.Kim, et al. A study on the charge-discharge mechanism of Co_3O_4 as an anode for the Li ion secondary battery [J]. Electrochimica Acta, 2005, 50:3667-3673P
    [26] F. Belliaard, J. T. S. Irvine. Electrochemical performance of ball-milled ZnO-SnO_2 systems as anodes in lithium-ion battery [J]. Journal of Power Source, 2001, 97-98:219-222P
    [27] Y. X. Li, C. R. Wan, Y. P. Wu, et al. Synthesis and characterization of ultrafine LiCoO_2 powders by a spray-drying method. Journal of Power Sources, 2000, 85:294-298P
    [28] H. L. Chen, X. P. Qiu, W. T. Zhu, et al. Synthesis and high rate properties of nanoparticled lithium cobalt oxides as the cathode material for lithium-ion battery[J]. Electrochem. Commun, 2002,4:488-491P
    [29] S. T. Myung, S.Komaba, N. Hirosaki, et al. Preparation of layered LiMn_xCr_(1-x)O_2 solid solution by emulsion drying method as lithium intercalation compounds [J].Electrochem. Commun., 2002,4:397-401P
    [30] G. Kumar, H. Schlorb, D. Rahner. Synthesis and electrochemical characterization of 4 V LiR_xMn_(2-x)O_4 spinels for rechargeable lithium batteries [J]. Materials Chemistry and Physics, 2001,117:123-128P
    [31] Y. S. Hong, C. H. Han, K. Kim, et al. Structural and electrochemical properties of the spinel Li(Mn_(2-x)Li_(x/4)Co_(3x/4))O_4 [J]. Solid State Ionics, 2001, 139:75-81P
    [32] D. Capsoni, M. Bini, G. Chiodelli, et al. Jahn-Teller transition in Al~(3+) doped LiMn_2O_4 spinel [J]. Solid State Commun. 2003, 126: 169-174P
    [33] C. Julien, S. Ziolkiewicz, M. Lemal, et al. Synthesis, structure and electrochemistry of LiMn_(2-y)Al_yO_4 prepared by a wet-chemistry method [J]. J. Mater. Chem., 2001, 11:1837-1842P
    [34] A. Eftekhari. Aluminum oxide as a multi-function agent for improving battery performance of LiMn_2O_4 cathode [J]. Solid State Ionics, 2004, 167: 237-242P
    [35] 雷永泉,万群,石永康.新能源材料[M].天津大学出版社,2000,12月第一版:124-143页
    [36] Z. S. Peng, C. R. Wan, C. Y. Jiang. Synthesis by sol-gel process and characerization of LiCoO_2 cathode material [J].Journal of Power Sources, 1998, 72: 215-220P
    [37] 张露露,游敏.锂离子正极材料LiCoO_2的研究进展[J].云南化工,2006,33(6):64-67页
    [38] P. Kalyani, N. Kalaiselvi. Various aspects of LiNiO_2 chemistry: A review[J]. Science and Technology of Advanced Materials, 2005, 6: 689-703P
    [39] S.P. Sheu, I. C. Shih, C.Y. Yao, et al. Studies of LiNiO2 in lithium-ion batteries [J]. Journal of Power Sources, 1997, 68(2): 558-560P
    [40] G. X. Wang, S. Zhong, D. H. Bradhurst,et al. Synthesis and characterization of LiNiO_2 compounds as cathodes for rechargeable lithium batteries[J]. Journal of Power Sources, 1998, 76(2): 141-146P
    [41] M.J. Wang, A. Navrotsky. Enthalpy of formation of LiNiO_2, LiCoO_2 and their solid solution, LiNi_(1-x)Co_xO_2 [J]. Solid State Ionics, 2004, 166(1-2): 167-173P
    [42] C. Julian, G. A. Nazri, A. Rougier. Electrochemical performances of layered LiM_(1-y)M_y'O_2(M=Ni, Co; M'=Mg, Al, B) oxides in lithium batteries [J]. Solid State Ionics, 2000, 135(1-4): 121-130P
    [43] R. Sathiyamoorthi, T. Vasudevan. Synthesis and electrochemical behavior of nanosized LiNi_(1-x)Ca_xO_2 cathode materials for high voltage secondary lithium-ion cells [J]. Mater. Res. Bull, 2006, doi:10.1016/j.materresbull. 200611.003
    [44] B.V.R. Chowdari, G. V. S. R, S. Y. Chow. Cathodic behavior of (Co, Ti, Mg)-doped LiNiO_2[J]. Solid State Ionics, 2001, 140(1-2):55-62P
    [45] 刘静静,仇卫华,赵海雷等.锂离子电池用层状LiMnO_2基正极材料的研究进展[J].硅酸盐学报,2005,33(9):1128-1132页
    [46] C. Storey, I. Kargina, Y. Grincourt, et al. Electrochemical characterization of a new high capacity cathode [J]. Journal of Power Sources, 2001, 97 98: 541-544R
    [47] Y. Grincourt, C. Storey, I. J. Davidson. Lithium ion cells using a new high capacity cathode [J]. Journal of Power Sources, 2001, 97-98: 711-713P.
    [48] S.T. Myung, S. Komaba, K. Hirosa, et al. Emulsion drying preparation of layered LiMn_xCr_(1-x)O_2 solid solution and its application to Li ion battery cathode material [J].Journal of Power Sources, 2003, 119-121:211-215P
    [49] Y. S. Meng, Y. W. Wu, B. J. Hwang, et al. Combining Ab initio computation with experiments for designing new electrode materials for advanced lit hium batteries: LiNi_(1/3) Fe_(1/6)Co_(1/6)Mn_(1/3_O_2[J]. J Elect rochem Soc, 2003, 151(8): A1134-A1140P
    [50] 戴曦,唐红辉,杨平等.LiFePO_4正极材料的研究进展[J].材料导报,2005,19(8):69-71页
    [51] 胡环宇,仇卫华,李发喜等.Mg掺杂对LiFePO_4材料电化学性能的影响[J].电源技术,2006,30(1):18-20页
    [52] G. X. Wang, L. Yang, Y. Chen, et al. An investigation of polypyrrole-LiFePO_4 composite cathode materials for lithium-ion batteries [J]. Electrochimica Acta, 2005, 50:4649-4654P
    [53] S.S. Zhang, J. L. Allen, K. Xu, et al.Optimization of reaction condition for solid-state synthesis of LiFePO_4-C composite cathodes [J]. Journal of Power Sources, 2005, 147: 234-240P
    [54] H. Liu, Q. Cao, L.J. Fu, et al. Doping effects of zinc on LiFePO_4 cathode material for lithium ion batteries [J]. Electrochemistry Communications, 2006, 8:1553-1557P
    [55] 陈慧兰.高等无机化学[M],高等教育出版社.2005,6:216-218页
    [56] 郑伟.二次锂电池单质硫复合正极材料的制备及电化学性能研究[D].哈尔滨工业大学博士学位论文,2006,6:40-42页
    [57] K.M. Abraham, R. D. Rauh, S. H. Brummer. A low temperature Na-S battery incorporating a soluble s cathode [J]. Electrochim. Acta, 1978, 23: 501-507P
    [58] P.L. Ridgway, F. R. Mclarnon, E. J. Cairns. Sodium/phosphorus-sulfur cells [J]. J. Electrochem. Soc., 1996, 143(2): 406-417P
    [59] E. Peled, Y. Stemberg, A. Gorenstein et al. Lithium-sulfur battery: evaluation of dioxolane-based electrolytes [J]. J. Electrochem. Soc., 1989, 136: 1621-1625P
    [60] 王维坤,王安邦,曹高萍等.锂电池用正极材料多硫代聚苯撑的制备及电化学性能[A],第十二届中国固态离子学学术会议论文集[C].第十二届中国固态离子学学术会议.中国苏州,2004:440页
    [61] 王维坤,王安邦,曹高萍等.锂电池用正极材料多硫代苯的电化学性能[J].物理化学学报,2004,20(12):1440-1444页
    [62] 王维坤,王安邦,曹高萍等.锂电池正极材料多硫化碳炔的制备及电化学性能[J].应用化学,2005,22(4):367-371页
    [63] 徐国祥,其鲁,闻雷.硫化聚氯乙烯正极材料的研究[J].电池,2005,35(3):178-179页
    [64] 徐国祥,其鲁,闻雷等.新型正极材料三硫代环磷氮烯无机聚合物的合成.无机化学学报,2005,21(11):1609-1613页
    [65] X. G. Yu, J. Y. Xie, Y. Li, et al. Stable-cycle and high-capacity conductive sulfur-containing cathode materials for rechargeable lithium batteries [J]. Journal of Power Sources, 2005, 146: 335-339P
    [66] 李朝晖,苏光耀,王霞瑜等.2,5-二巯基-1,3,4-噻二唑/聚邻甲基苯胺复合电极的电化学性能[J].应用化学,2003,20(6):542-546页
    [67] W. Zheng, Y. W. Liu, X. G. Hua, et al. Novel nanosized adsorbing sulfur composite cathode materials for the advanced secondary lithium batteries [J]. Electrochimica Acta, 2006, 51:1330-1335P
    [68] S. C. Han, M. S. Song, H. Lee, et al. Effect of multiwalled carbon nanotubes on electrochemical properties of lithium/sulfur rechargeable batteries [J]. J. Electrochem. Soc., 2003, 150(7): A889-A893P
    [69] J.L. Wang, L. Liu, Z. J. Ling,et al. Polymer lithium cells with sulfur composites as cathode materials [J]. Electrochimica Acta, 2003, 48: 1861-1867P
    [70] J. Tu, X. B. Zhao, G. S. Cao, et al. Enhanced cycling stability of LiMn_2O_4 by surface modification with melting impregnation method [J]. Electrochimica Acta, 2006, 51:6456-6462P
    [71] Y. K. Sun, K. J. Hong, J. Prakash. The effect of ZnO coating on electrochemical cycling behavior of spinel LiMn_2O_4 cathode materials at elevated temperature [J]. J. Electrochem. Soc., 2003, 150:A970-A972P
    [72] Y.K. Sun, Y. S. Lee, M. Yoshio, et al. Synthesis and electrochemical properties of ZnO-coated LiNi_(0.5)Mn_(1.5)O_4 spinel as 5 V cathode material for Lithium Secondary Batteries [J]. Electrochem. Solid-State Lett., 2002, 5:A99-A102P.
    [73] S. T. Myung, K. Izumi, S. Komaba, et al. Role of Alumina coating on Li-Ni-Co-Mn-O particles as positive electrode material for lithium-ion batteries [J]. Chem. Mater., 2005, 17: 3695-3704P.
    [74] J. Tu, X. B. Zhao, G.S. Cao, et al. Enhanced cycling stability of LiMn_2O_4 by surface modification with melting impregnation method [J]. Electrochimica Acta, 2006, 51:6456-6462P
    [75] A. M. Kannan, A. Manthiram. Electrochem surface/chemically modified LiMn_2O_4 cathodes for lithium-ion batteries [J]. Solid-State Lett., 200, 5:A167-A169P
    [76] H. Kweon, S. J. Kim, D. G. Park. Modification of Li_xNi_(1-y)Co_yO_2 by applying a surface coating of MgO [J]. Journal of Power Sources, 2000,88:255-261P
    [77] Z. Chen, J. R. Dahn. Effect of a ZrO_2 coating on the structure and electrochemistry of Li_xCoO_2 when cycled to 4.5 V [J]. Electrochem. Solid-State Lett, 2002, 5:A213-A216P
    [78] Z. H. Chen, J. R. Dahn. Methods to obtain excellent capacity retention in LiCoO_2 cycled to 4.5 V[J]. Electrochimica Acta, 2004,49:1079-1090P
    [79] B. J. Hwang, R. Santhanam, C. P. Huang,et al. LiMn_2O_4 core surrounded by LiCo_xMn_(2-x)O_4 shell material for rechargeable lithium batteries [J]. J. Electrochem.Soc, 2002, 149:A694-A698P
    [80] A. M. Kannan, A. Manthiram. Electrochem. Surface/chemically modified LiMn_2O_4 cathodes for lithium-ion batteries [J]. Solid-State Lett, 2002, 5:A167-A169P
    [81] J. Cho, G. B. Kim, H. S. Lim, et al. Improvement of structural stability of LiMn_2O_4 cathode material on 55℃ Cycling by sol-gel coating of LiCoO_2 [J]. Electrochem. Solid-State Lett, 1999, 2:607-609P
    [82] Z. Liu, H. Wang, L. Fang, et al. Improving the high-temperature performance of LiMn_2O_4 spinel by micro-emulsion coating of LiCoO_2[J]. Journal of Power Sources, 2002, 104:101-107P
    [83] J. Wang, J. Chen, K. Konstantinov, et al. Sulphur-polypyrrole composite positive electrode materials for rechargeable lithium batteries [J]. Electrochimica Acta, 2006,51(22): 4634-4638P
    [84] M.S. Song, S. C. Hart, H. S. Kim, et al. Effects of nanosized adsorbing material on electrochemical properties of sulfur cathodes for Li/S secondary batteries [J]. J. Electrochem. Soc., 2004, 151(6):A791-A795P
    [85] A. Hayashi, T. Ohtomo, F. Mizuno,et al. All-solid-state Li/S batteries with highly conductive glass-ceramic electrolytes [J]. Electrochemistry Communications, 2003, 5: 701-705P
    [86] 余仲宝,王维坤,王安邦等.电解液对硫电极电化学性能的影响[J].电池,2006,36(1):3-4页
    [87] H.S. Ryu, H. J. Ahna, K. W. Kim, et al. Discharge process of Li/PVdF/S cells at room temperature [J]. Journal of Power Sources, 2006, 153: 360-364P
    [88] L. Kavan, R Novák, F. P. Dousek. Electrochemistry of sulphur adsorbed on carbon [J]. Electrochimica Acta, 1988, 33(11): 1605-1612
    [89] Z. Takehara, Z. Ogumi, Y. Uchimoto, et al. Modification of lithium/electrolyte interface by plasma polymerization of 1,1-difluoroethene [J]. Journal of Power Sources, 1993, 44:377-383P
    [90] T. Osaka, T. Momma, Y. Matsumoto, et al. Surface Characterization of electrodeposited lithium anode with enhanced cycleability obtained by CO_2 addition [J]. J. Electrochem. Soc., 1997, 144(5): 1709-1713P
    [91] S.J. Visco.Power 2000 presentation of PolyPlus Battery Company.
    [92] Y.M. Lee, N. S. Choi, J. H. Park, et al. Electrochemical performance of lithium/sulfur batterie with protected Li anodes [J]. Journal of Power Sources, 2003,129-121:964-972P
    [93] 杨建文,钟晖,钟海云等.Li_4Ti_5P_(12)的合成及其影响因素[J],中南大学学报(自然科学版),2005,36(1):55-59页
    [94] D. Peramunage, K. M. Abraham. Preparation of micron-sized Li_4Ti_5O_(12) and its electrochemistry in polyacrylonitrile electrolyte-based lithium cells [J]. J. Electrochem. Soc., 1998, 145(4):2609-2615P
    [95] A. Guerfi, S. Sevigny, M. Lagace,et al. Nano-partide Li4Ti5O12 spinel as dectrode for electrochemical generators[J].Journal of Power Sources, 2003, 119-121: 88-94P
    [96] K. Zaghib, M. Simonean, M. Armand, et al. Electrachemieal study of Li_4Ti_5O_(12) as negative electrode for Li-ion polymer recbargeable battcries [J]. Journal of Power Sources, 1999, 81-82:300-305P
    [97] 高玲,仇卫华,赵海雷.合成温度对Li_4Ti_5O_(12)电化学性能的影响[J].电池,2004,34(5):351-352页.
    [98] A.D. Robertson, L. Trevino, H. Tukamoto, et al. New inorganic spinel oxides for use as negative electrode materials in future lithium ion batteries[J]. Journal of Power Sources, 1999, 81-82:352-357P
    [99] P. P. Presini, R. Mancini, L. Petrucci, et al. Li_4Ti_5O_(12) as anode in all solid-state, plastic, lithium-ion batteries for low-power applications [J]. Solid State Ionics, 2001, 144(1-2): 185-192P
    [100] K. Zaghib, M. Simonean, M. Armand, et al. Electrachemieal study of Li_4Ti_5O_(12) as negative electrode for Li-ion pdymer rechargeable batteries[J]. Journal of Power Sources, 1999, 81-82:300-305P
    [101] 唐致远,高飞,韩彬.锂离子电池负极材料Li_4Ti_5O_(12)的研究进展[J].化 工进展,2006,25(2):159-162页
    [102] C. Shen, X. Zhang, Y. Zhou, et al. Preparation and characterization of nanocrystalline Li_4Ti_5O_(12) by sol-gel method [J]. Materials Chemistry and Physics, 2002, 78:437-441P
    [103] 苏岳锋,吴锋,陈朝峰.纳米微晶TiO_2合成Li_4Ti_5O_(12)及嵌锂行为[J].物理化学学报,2004,20(7):707-711页
    [104] 阮艳莉,唐致远,彭庆文.尖晶石Li_4Ti_5O_(12)电极材料的合成与电化学性能研究[J].无机材料学报,2006,21(4):873-879页
    [105] A. D. Robertson. New inorganic spinel oxide for use as negative electrode materials in future lithium-ion batteries [J]. Journal of Power Sources, 1999, 81-82: 352-357P
    [106] A. D. Robertson, H, Tukamoto, J. T. S. Irivne, et al. Li_(1+x)Fe_(1-3x)Ti_(1+2x)O_4 (0.0≤x≤0.33) based spinel: possible negative electrode materials in future lithium-ion batteries [J]. J.Electrochem. Soc., 1999, 146(11): 3958-3962P
    [107] K. Nakahara, R. Nakajima, T. Matsushima, et al. Preparation of particulate Li_4Ti_5O_(12) having excellent characteristics as an electrode active material for power storage cells [J]. Journal of-Power Sources, 2003, 117(1-2): 131-136P
    [108] 赵海雷,林久,仇卫华等.钒掺杂对Li_4Ti_5O_(12)性能的影响[J].电池, 2006,36(2):124-126页
    [109] C. H. Chen, J. T. Vaughey, A. N. Jansen, et al. Studies of Mg-substituted Li_(4-x)Mg_xTi_5O_(12)(0≤x≤1) spinel electrodes for lithium batteries [J]. J. Electrochem. Soc., 2001, 148(1): 102-104P
    [110] A. Guerfi, E Charest, et al. Nano electronically conductive titanium-spinel as lithium ion storage native electrode [J]. Journal of Power source, 2004(26): 163-168P
    [111] S. H. Huang, Z. Y. Wen et al. Preparation and electrochemical performance of Ag doped Li_4Ti_5O_(12)[J]. Electrochemistry Communications 2004, 6: 1093-1097P
    [112] I. Belharouak, K. Amine. Li_2MTi_6O_(12)(M=Sr, Ba): new anodes for lithium-ion batteries [J]. Electro-chemistry Communications 2003, 5: 435-438P
    [113] 唐致远,高飞,韩彬.锂离子电池负极材料Li_4Ti_5O_(12)的研究进展[J].化工进展,2006,25(2):159-162页
    [114] 高剑,姜长印,应皆荣等.锂离子电池负极材料钛酸锂的研究进展[J].电池,2005,35(5):390-392页
    [115] 常铁军,祁欣.材料近代分析测试方法[M].哈尔滨工业大学出版社,1999:1-175页
    [116] 田昭武.电化学研究方法[M].科学出版社,1984:1-405页
    [117] K. L. Heitner. The search for the better polymer electrolyte[J]. Journal of Power Source, 2000, 89: 128-131P
    [118] F. Boudin, X, Andrieu, C. Jehoule, et al. Microporous PVdF gel for lithium-ion batteries [J]. Journal of Power Source, 1999, 81-82:804-807P
    [119] C. C. Yang, S. Lin T, S. T. Hsu. Thermal, mechanical, swelling, and electrochemical properties of poly(vinylidenefluoride)-co- hexafluorop-ropylene/poly(ethylene glycol) hybrid-type polymer electrolytes [J], Journal of Power Source, 2003, 124:148-154P
    [120] C. Chuy, J. F. Ding, E. Swanson,et al. Conductivity and electrochemical or mass transport properties of solid polymer electrolytes containing poly(styrene sulfonic acid) graft chains [J]. Journal of Electrochemical Society, 2003, 150(5):E271-E279P
    [121] H. J. Walls, M. W. Riley, P. S. Fedlow, et al. Composite electrolytes from self-assembled colloidal networks [J]. Electrochimica Acta, 2003, 48:2071-2077P
    [122] Z. X. Wang, X. J. Huang, L. Q. Chen. Understanding of effects of nano-Al_2O_2 particles on ionic conductivity of composite polymer electrolytes [J]. Electrochemical and Solid State Letters, 2003, 6(11):E40-E44P
    [123] Y. Liu, J. Y. Lee, L. Hong. Functionalized SiO_2 in poly(ethylene oxide)-based polymer electrolytes [J]. Journal of Power Source, 2002, 109:507-514P
    [124] Z. Y. Wen, M. M. Wu, T. Itoh, et al. Effects of alumina whisker in (PE0)_8-LiClO_4-based composite' polymer electrolytes [J]. Solid State Ionics, 2002, 148:185-191P
    [125] H. S. Kim, K. S. Kum, W Cho, et al. Electrochemical and physical properties of composite polymer electrolyte of poly(methyl methacrylate) and poly(ethylene glycol diacrylate) [J]. Journal of Power Sources, 2003, 124:221-224P
    [126] S. Rajendran, M. Sivakumar, R. Subadevi. Effect of plasticizers in poly(vinyl alcohol)-based hybrid solid polymer electrolytes [J]. Journal of Applied Polymer Science, 2003, 90(10):2794-2800P
    [127] S. S. Sekhon, M. Deepa, S. A. Agnihotry. Solvent effect on gel electrolytes containing lithium salts [J]. Solid State Ionics, 2000, 136/137:1189-1192P
    [128] Y. Saito, M. Stephan, H. Kataoka. Ionic conduction mechanisms of lithium gel polymer electrolytes investigated by the conductivity and diffusion coefficient [J]. Solid State Ionics, 2003, 160(1-2): 149-153P
    [129] S. Rajendran, M. Sivakumar, R. Subadevi. Effect of salt concentration in poly(vinyl alcohol)-based solid polymer electrolytes [J]. Journal of Power Sources, 2003, 124:225-230P
    [130] T. B. Ren, X. B. Huang, X. Zhao. The effects of salt concentration on ion state and conductivity in comb cross-linked polymer electrolytes [J]. Journal of Material Science, 2003, 38(14):3007-3011P
    [131] Y. G. Andreev, P. G. Bruce. Polymer electrolyte structure and its implications [J]. Electrochimica Acta, 2000, 45:1417-1423P
    [132] C.A. Angell, C. Liu, E. Sanche. Rubbery solid electrolytes with dominant cationic transport and high ambient conductivity [J]. Nature, 1993, 362: 137-139P
    [133] 路密,史鹏飞,陈猛等.基于PEO的复合聚合物电解质的研究进展[J].功能高分子学报,2002,15:355-360
    [134] C. H. Park, D. W. Kim, J. Prakash, et al. Electrochemical stability and conductivity enhancement of composite polymer electrolyte [J].Solid State Ionics, 2003, 159: 111-119P
    [135] A. C. Bloise, J. P. Donoso, C. J. Magon, et al. NMR and conductivity study of PEO-based composite polymer electrolytes [J]. Electrochimica Acta, 2003, 48:2239-2246P
    [136] 李剑,席靖宇,宋青等.PVDF-PEO微孔聚合物电解质的研究[J].科学通报,2005,50(3):305-307页
    [137] 吴人洁.现代分析技术-在高聚物中应用[M].上海:上海科学技术出版社,1987
    [138] 王占良.锂离子用聚合物电解质应用基础研究[D].天津大学博士学位论文,2003:36-38页
    [139] 王占良,唐致远.一种新型聚合物电解质中离子传递及界面性质研究[J].高校化学工程学报,2003,17(3):248-252页
    [140] 马俊涛,梁美霞,李洪武.Li/SPE/Li体系阻抗谱分析[J].电池,2004,34(6):420-421页
    [141] S. Salne, M. Salomon. Composite gel electrolyte for rechargeable lithium batteries [J]. Journal of Power Sources, 1995, 55: 7-10P
    [142] 汪形艳,王先友,黄伟国.超级电容器电极材料研究[J].电池,2004,34(3):192-193页
    [143] 海永强,张文峰,王碧燕等.超级电容器用活性炭的制备及性能[J].电池,2006,36(2):92-94页
    [144] 常俊玲,刘洪波,张红波.高比表面积活性炭作双电层电容器电极材料的研究.第四届中国功能材料及其应用学术会议论文集,2001年第四届中国功能材料及其应用学术会议中国厦门:1213-1216页
    [145] Y.J. Jung, S. Kim. New approaches to improve cycle life characteristics of lithium-sulfur cells [J]. Electrochemistry Communications, 2007, 9: 249-254P
    [146] H. S. Ryu, H. J. Ahn, K. W. Kim, et al. Discharge process of Li/PVdF/S cells at room temperature [J]. Journal of Power Sources, 2006, 153: 360-364P
    [147] 吕东生,李伟善,刘煦,邱仕洲.锂离子嵌脱的交流阻抗模型[J].电池,2003,33(5):326-327页
    [148] 吕东生,李伟善.尖晶石锂锰氧化物锂离子嵌脱过程的交流阻抗谱研究[J].化学学报,2003,61(2):225—229页
    [149] M. Mladenov, R. Stoyanova, E. Zhecheva, et al. Effect of Mg doping and MgO-surface modification on the cycling stability of LiCoO_2 electrodes [J]. Electrochem. Commun., 2001, 3: 410-416P
    [150] Z. X. Wang, L. J. Liu, L.Q. Chen, et al. Structural and electrochemical characterizations of surface-modified LiCoO_2 cathode materials for Li-ion batteries [J]. Solid State Ionics, 2002, 148: 335-342P
    [151] L. J. Fu, H. Liu, Y. R Wu, et al. Electrode materials for lithium secondary batteries prepared by sol-gel methods [J]. Progress in Material Science, 2005, 50: 881-928P
    [152] Y. Iriyama, H. Kurita, I. Yamada, et al. Effects of surface modification by MgO on interfacial reactions of lithium cobalt oxide thin film electrode [J]. Journal of Power Sources, 2004, 137:111-116P
    [153] J. Cho, Y. J. Kim, B. Park. LiCoO_2 cathode material that does not show a phase transition from hexagonal to monoclinic phase [J]. J. Electrochem. Soc, 2001,148:A1110-A1115P
    [154] J. Cho, Y. J. Kim, B. Park. Novel LiCoO_2 Cathode Material with Al_2O_3 Coating for a Li-ion Cell [J].Chem. Mater., 2000,12:3788-3791P
    [155] H. J. Kweon, J. J. Park, J. W. Seo, et al. Effects of metal oxide coatings on the thermal stability and electrical performance of LiCoO_2 in a Li-ion cell [J]. Journal of Power Sources, 2004,126:156-162P
    [156] H.S. Liu, Z. R. Zhang, Z. L. Gong, et al. A comparative study of LiNi_(0.8)Co_(0.2.)O_2 cathode materials modified by lattice-doping and surface-coating [J]. Solid State Ionics, 2004, 166:317-325P
    [157] Z. R. Zhang, H. S. Liu, Z. L. Gong, et al. Comparison of electrochemical and surface properties of bare and TiO2-coated LiNi_(0.8)Co_(0.2)O_2. Electrodes. [J]. J. Electrochem. Soc, 2004,151 :A599-A603P
    [158] Y. K. Sun, Y. S. Lee, M. Yoshio, et al. Synthesis and Electrochemical properties of ZnO-coated LiNi_(0.5)Mn_(1.5)O_4 Spinel as 5 V Cathode Material for Lithium Secondary Batteries [J]. Electrochem. Solid-StateLett. ,2002,5: A99-A102P
    [159] J. Cho, C. S. Kim, S. Yoo. Improvement of structural stability of LiCoO_2 cathode during electrochemical cycling by sol-gel coating of SnO_2 [J]. Electrochem. Solid-State Lett. 2000, 3:362-365P
    
    [160] J. Kim, M. Nob, J. Cho, et al. Controlled nanoparticle metal phosphates (Metal=Al, Fe, Ce, and Sr) coatings on LiCoO_2 cathode materials [J]. J. Electrochem. Soc. 2005,125:A1142-A1148P
    [161] J. Cho, T. J. Kim, Y. J. Kim, et al. High-performance ZrO_2-Coated LiNiO_2 cathode Material Electrochem [J]. Solid-State Lett., 2001, 4:A159-A161P
    [162] H. W. Ha, K. H. Jeong, N. J. Yun, et al. Effects of surface modification on the cycling stability of LiNi_(0.8)Co_(0.2)O_2 electrodes by CeO_2 coating [J]. Electrochimica Acta, 2005, 50: 3764-3769P
    [163] H. W. Ha, N. J. Yun, M. H. Kim,et al. Enhanced electrochemical and thermal stability of surface-modified LiCoO_2 cathode by CeO_2 coating. Electrochimica Acta ,2006,51:3297-3302P
    [164] G. T. K. Fey, R Muralidharan, C. Z. Lu, et al. Enhanced electrochemical performance and thermal stability of La_2O_3-coated LiCoO_2. Electrochimica Acta, 2006,51:4850-4858P
    [165] 曹彬,徐金威,丁玲红等.TiO_2纳米管的电化学性能研究[J],电化学,2006,12(4):445-448页
    [166] I. C. Song, J. S. Oh, S. H. Kim, et al. Effect of an inorganic additive on cycling performance of Li/V_2O_5 polymer cells prepared with gel polymer electrolyte [J]. Journal of Power Sources, 2005, 150:202-207P
    [167] 魏坤,何地宝,翟建伟等.沉淀法制备稀土氧化物纳米粉体的研究[J].稀土,1999,20(4):27-29页
    [168] 董相廷,李铭,张伟等.沉淀法制备CeO_2纳米晶与表征[J].中国稀土学报.2001,19(1):24-26页
    [169] 王艳荣.沉淀法制备二氧化铈[D].成都理工大学硕士学位论文,2004:12-18页
    [170] 潘湛昌,肖楚民,张环华等.液相法制备纳米二氧化铈的方法比较.中国有色金属学会第五届学术年会论文集,北京,2003:178-180页
    [171] 王艳荣,邱克辉,邓昭平.沉淀法制备纳米二氧化铈及其表征[J].桂林工学院学报,2004,24(4):486-488页
    [172] H. W. Ha, K. H. Jeong, N. Ji, et al. Effects of surface modification on the cycling stability of LiNi_(0.8)Co_(0.2)O_2 electrodes by CeO_2 coating [J]. Electrochimica Acta, 2005, 50:3764-3769P
    [173] 生瑜,陈建定,朱德钦等.导电高分子纳米复合材料[J].功能高分子学报,2002,15(2):236-244页
    [174] 生瑜,陈建定,朱德钦.导电聚苯胺/二氧化锰复合材料原位化学合成制备及表征.复合材料学报.2004,21(4):1-7页
    [175] B. Nirmalya. High-conducting polyaniline via oxidative polymerization of aniline by MnO_2, PbO_2 and NH_4VO_3 [J]. Materials Letters, 2004, 58(26): 3257-3260P
    [176] 井新利,王杨勇,张东华.二氧化硅/聚苯胺复合粒子的制备与性能[J].材料工程,2004,1:20-24页
    [177] X. W. Li, G. C. Wang, X. X. Li. Surface modification of nano-SiO_2 particles using polyaniline. Surface and Coatings Technology [J], 2005, 197(1): 56-60P
    [178] X. L. Luo, A. J. Killard, A. Morrin, et al. Enhancement of a conducting polymer-based biosensor using carbon nanotube-doped polyaniline [J]. Analytical Chimica Acta,2006,575:39-44P
    [179] C.Y. Wang, V. Mottaghitalab, C.O. Too, et al. Polyaniline and polyaniline-carbon nanotube composite fibres as battery materials in ionic liquid electrolyte [J]. Journal of Power Sources, 2007, 163(2): 1105-1109P
    [180] N. E.. Konyushenko, J. Stejskal, M. Trchová, et al. Multi-wall carbon nanotubes coated with polyaniline [J]. Polymer, 2006, 47:5715-5723P
    [181] S. E. Bourdo,. T. Viswanathan. Graphite/polyaniline (GP) composites: synthesis characterization [J]. Carbon, 2005, 43: 2983-2988P
    [182] C. C. Hu, C. H. Chu. Electrochemical impedance characterization of polyaniline-coated graphite electrodes for electrochemical capacitors—effects of film coverage/thickness and anions [J]. Journal of Electroanalytical Chemistry, 2001,503(1-2): 105-116P
    [183] E. T. Kang, K. G. Neoh, K. L. Tan. Polyaniline:a polymer with many interesting intrinsic redox states[J], Prog. Polym. Sci., 1998, 23:277-324P
    [184] 杨红生,周啸,张庆武.以多层次聚苯胺颗粒为电极活性物质的超级电容器的电化学性能[J].物理化学学报,2005,21(4):414-418页
    [185] B.H. Jeon, J. H. Yeon., I. J. Chung. Preparation and electrical properties of lithium-sulfur-composite polymer batteries [J]. Journal of Materials Processing Technology, 2003,143-144:93-97P
    [186] I. A. Courtney, J. R. Dahn.Electrochemical and in-situ X-ray diffraction studies of the reaction of lithium with tin oxide composites [J]. J Elect rochem Soc, 1997,144(6): 2043 2052P
    [187] Z. Q. He, X. H. Li, X. M. Wu, et al. Preparation and electrochemical properties of nanosized tin dioxide electode material by sol-gel process [J]. Transaction of Nonferrous Metals Society of China, 2003, 13(4): 998 1002P
    [188] 苏树发.锑及锑锡合金薄膜的电化学吸放锂性能研究[D].浙江大学硕士学位论文,2004:19-27页
    [189] 苏树发,曹高劭,赵新兵.金属锑薄膜用作锂离子电池负极的研究[J].稀有金属与材料工程,2005,34(3):452-454页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700