锂离子电池负极材料Li_4Ti_5O_(12)的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究采用溶胶凝胶法和高温固相法两种方法制备了Li_4Ti_5O_(12)负极材料,通过TG-DTA测试确定材料的烧结温度,XRD测试确定产物的物理组成和晶体结构,通过SEM研究颗粒的表面形貌和颗粒尺寸范围,用恒流充放电、循环伏安、交流阻抗测试方式来研究材料的电化学性能。
     采用溶胶凝胶法,以钛酸四丁酯和Li_2CO_3为原料、柠檬酸为络合剂,将前驱体在650℃烧结8h冷却研磨后再在850℃烧结16h制备了Li_4Ti_5O_(12)负极材料。通过对柠檬酸与Ti(Ⅳ)的摩尔比R的研究,发现当R = 1∶2时得到产物的性能最好,首次放电容量为148.65mAh/g,100次循环后保持在116.82mAh/g,容量保持率为78.59%。
     用LiAc代替Li_2CO_3作为锂源时,制得的Li_4Ti_5O_(12)负极材料颗粒致密性更好,电化学性能也更好,首次放电比容量为153.61mAh/g,100个循环之后放电比容量为124.37mAh/g,容量保持率为80.96%。
     采用高温固相法,以无定形TiO2和Li_2CO_3为原料制备了Li_4Ti_5O_(12)负极材料。通过研究各种条件对产物性能的影响,得到最优工艺条件:采用两步煅烧法,在650℃烧结8h再在850℃烧结16h后得到产物的性能最好,首次放电容量为159.16mAh/g,放电平台较长,100次循环后保持在143mAh/g左右,容量保持率约89.9%。
     尝试用葡萄糖对Li_4Ti_5O_(12)进行碳包覆,在预烧后加入葡萄糖混合充分,包覆质量百分比为20%产物的性能最好,首次放电比容量为172.94mAh/g,100次循环后放电比容量为135.93mAh/g,葡萄糖含量为10%的产物性能有一定的改进,30%的样品电化学性能反而下降。
In this paper, Lithium Titannate was synthesized by sol-gel method and solid-state reaction respectively. In addition, Thermogravimetry-Differential Thermoanalysia(TG-DTA) was used to fix the sinter temperature, X-Ray Diffraction(XRD) to analyze micro-structure, Scanning Electron Microscope(SEM) to observe superficial morphology. Galvanostatic charge-discharge test, Cycle Voltammagram(CV) and Electrochemical Impedanc Spectroscopy(EIS) were used to study specific capacity and cyclic behavior.
     Anode material Li_4Ti_5O_(12) for lithium ion batteries had been prepared by a sol-gel method with Tetra-n-butyl Titanate and Li_2CO_3 as starting materials and citric acid as a chelating agent. Citric acid can complex with Ti and Li at the same time to realize more uniform distribution of ions and smaller particle size in the solution. The effect of amount of chelating agent on electochemical properties of product was investigated. In our study, the sample synthesized at 650℃for 8h and 850℃for 16h with citric acid to titanium molar ratio R = 1∶2 showed the best discharge capacity of 148.65mAh/g and 116.82mAh/g for the first cycle and the 100th cycle respectively. The capacity retention was 78.59%。
     Anode material Li_4Ti_5O_(12) using LiAc as Li source had smaller paricle distance and contacted each other closer. The material had better electochemical properties than the former using Li_2CO_3. It had a first discharge capacity of 153.61mAh/g and obtained 143mAh/g with a capacity retention of 80.96% after 100 cycles.
     Li_4Ti_5O_(12) materials synthesized by solid-state reaction were prepared with amorphism TiO2 and Li_2CO_3 as the raw materials. The results demonstrated that the materials of best performance were sintered by two-step method, the raw materials were pre-sintered at 650℃for 8h then were treated at 850℃for 16h. The Li_4Ti_5O_(12) as the anode materials for lithium ion battery had a first discharge capacity of 159.16mAh/g, and a long platform around the voltage of 1.55V. The sample obtained a capacity of 143mAh/g with a capacity retention of 89.9% after 100 cycles. The materials showed fine cycling properties.
     The carbon modification using dextrose as carbon source was researched. The results showed that 20%wt was the best carbon doping quantity, the materials had a first discharge of 172.94 mAh·g-1. The sample with 10%wt carbon had a little improvement in cyclic stability and diacharge capacity. However, the 30%wt carbon doped sample’s electrochemical properties were weakened.
引文
1夏永姚.高能二次电池开发的现状和展望.产业论坛.2003, 118 (9): 16~22
    2 B. A. Ritchie, C. O. Giwa, J. C. Lee. Future Cathode Materials for Lithium Rechargeable Batteries. Journal of Power Sources. 1999, 80(1-2): 98~102
    3 A. G. Ritchie. Recent Developments and Future Prospects for Lithium Rechargeable Batteries. Journal of Power Sources. 2001, 96(1): 1~4
    4 J. S. Xue, R D. Wise, X. L. Zhang, et al. Performance Characteristics of Ultralife’s Solid Polymer Rechargeable Batteries. Journal of Power Sources. 1999, 80(1-2):119~127
    5 E. A. Cuellar, M. E. Manna, R. D. Wise. Ultralife’s Polymer Electrolyte Rechargeable Lithium-Ion Batteries for Use in the Mobile Electronics Industry. Journal of Power Sources. 2001, 96(1): 184~198
    6 J. R. Dahn, U. V. Sacken, M. W. Juzkow. Rechargeable LiNiO2/Carbon Cells. Journal of The Electrochemical Society. 1991, 138(8): 2207-2211
    7高文明.钛酸锂的制备与改性研究.天津大学硕士论文. 2007: 1~2
    8 M. S. Whittingham. Insertion Eleetrodes as Smart Materials the First 25 Years and Future Promises. Solid State Ionies. 2000. 134(1-2): 169~178
    9李阳新等.锂离子电池的研究与开发.第四届中国国际电池技术交流会,北京: 2002: 26~30
    10 I. Bloom, A. N. Jansen, D. P. Abraham, et al. Differential Voltage Analyses of High- Power, Lithium-Ion Cells. Technique and application. Journal of Power Sources. 2005, 139(1-2): 2955~303
    11 J. Fan, P. S. Fedkiw. Electrochemical Impedance Spectra of Full Cells:Relation to Capacity and Capacity-rate of Rechargeable Li Cells Using LiCoO_2,LiMn_2O_4 and LiNiO_2 Cathodes. Journal of Power Sources. 1998, 72(2): 165~173
    12 S. H. Choi, O. A. Shlyakhtin, K. Joosun. Structural and Electrochemical Properties of Li_(1+x)Ni_(0.5)Mn_(0.5)O_2(0≤x≤0.7) Cathode Materials for Lithium-Ion Batteries. Journal of Power Sources. 2005, 140(2): 355~360
    13 C. P. Vicente, J. M. Lloris, J. L.Tirado. Understanding the Voltage Profile of Li Insertion into LiNi_(0.5-y)Fe_yMn_(1.5)O_4 in Li Cells. Electrochimica. 2004, 49(12): 1963~ 1967
    14 Y. Idemoto, H. Sekina, K. Ui. Crystal Structurl Change during Charge- Discharge Process of LiMn_(1.5)Ni_(0.5)O_4 as Cathode Material for 5V Class Lithium Secondary Battery. Solid State Ionics. 2005, 176(3-4): 299~306
    15 K. S. Park, J. T. Son, H. T. Chung, et al. Surface Modification by Silver Coating forImproving Electrochemical Properties of LiFePO4. Solid State communication. 2004, 129(5): 311~314
    16陈召勇,肖劲,朱华丽,刘业翔.不同原料对Li-Ni-Mn-O 5V正极材料的结构和性能影响.无机化学学报. 2005, 9(21): 1417
    17米常焕,曹高劭,赵新兵.锂离子蓄电池负极材料最新研究进展.电源技术. 2004, 28(3): 180~183
    18 M. Endo, C. Kim, K. N. Shimura,et al. Recent Development of Carbon Material for Lithium Ion Batteries. Carbon. 2000, 38(2): 183~179
    19 T. D. Tran. Commerial Carbonaceous Materials as Lithium Intercalation Anodes. Journal of The Electrochemical Society. 1995, 142(10): 3297~3302
    20周向阳,胡国荣,彭忠东.锂离子电池碳负极材料的研究进展.电池. 2001, 31(3):146~149
    21 H. Fujimoto, A. Mabuchi, K. Tokumitsu. Effect of Crystallite Size on the Chemical Compositions of the Stage Metal-graphite Intercalation Compounds. Carbon. 1994, 32(2):193~202
    22王先友.锂离子电池碳负极研究新动向.电源技术. 1999, 23(4):233~234
    23 T. Zheng, Y. Liu, E. W. Fuller. Lithium Insertion in High Capacity Carbonaceous Materials. Journal of The Electrochemical Society. 1995, 142(8):2581~2590
    24 F. Leroux, K. Metenier, S. Gantier. Electrochemical Insertion of Lithiumin Catalytic Multi-walled Carbon Nanotubes. Journal of the Electrochemical Soeiety. 1999, 81~82: 317~322
    25 M. Fujimoto. Electrochemieal behavior of Carbon Eleetrodes in Some Electrolyte Solutions. Journal of Power Sources. 1996, 63(1): 127
    26 K. Wang, X. M. He, J. G. Ren. PreParation of Sn2Sb Alloy Encapsulated Carbon Microsphere Anode Materials for Li-ion Batteriesby Carbothermal Reduetion of the Oxides. Electroehimca Acta. 2006, 52(3): 1221~1225
    27 J. Santos-pena, T. Brousse, D. M. Schleich. Search for Suitable Matrix for the Use of Tin-based Anodes in Lithium Ion Batteries. Solid State Ionics. 2000, 135(1-4): 87~93
    28 L. Yuan, Z. P. Guo, K. Konstantinov. Nano-structured Spherical Porous SnO_2 Anodes for Lithium-Ion Batteries. Journal of Power Sources. 2006, 159(l): 345~348
    29 P. Poizot, S. Laruelle, S. Grugeon, etal. Nano-Sized Transition-Metal Oxides as Negative-Electrode Materials for Lithium-Ion Batteries. Nature. 2000, 407: 496~499
    30 Y. Idota, T. Kubota, A. Matsufuji. Tin-based Amorphous Oxide: A High-capacity Lithium Ion Storage Material. Science. 1997, 276(5317): 1395~1397
    31 Y. Takeda, I. Yang. New Composite Anode Systems Combined with Li_(2.6)Co_(0.4)N.Journal of Power Sources. 2001, 97~98: 244~246
    32 Y. Liu, K. Horikawa, M. Fujiyosi, et al. Layered Lithium Transition Metal Nitrides as Novel Anodes for Lithium Secondary Batteries. Electrochemical Acta. 2004, 49(21): 3487~3496
    33 P. E. Lippens, M. Womes, P. Kubiak. Electronic Structure of the Spinel Li4Ti5O12 Studied by Abinitio Calculations and X-ray Absoprtion Spectroscopy. Solid State Sciences. 2004, 6(2): 161~166
    34苏岳锋,吴锋,陈朝峰.纳米微晶TiO2合成Li4Ti5O12及嵌锂行为.物理化学学报. 2004, 20(7): 707~711
    35 K. Zaghib, M. Armand, M. Gauthier. Electrochemistry of Anodes in Solid-State Li-ion Polymer Batteries. Journal of the Electrochemical Society. 1998, 145(9): 3135-3140
    36吴宇平,戴晓兵,马军旗.锂离子电池-应用与实践.北京化学工业出版社. 2004,1: 120~124
    37 T. Ohzuku, A. Ueda, N. Yamamoto.Zero-Strain Insertion Material of Li[Li13Ti5/3]O4 for Rechargeable Lithium Cells. Journal of the Electrochemical Society. 1995, 142(5): 1431~1435
    38郝艳静.锂离子电池负极材料Li4Ti5O12的制备及电化学性能研究.四川大学博士学位论文. 2006: 23~40
    39张治安,王姣丽,赖延清,李劼.非对称电化学电容器负极材料Li4Ti5O12的研究进展.材料导报. 2008, 9(22): 26~28
    40 M. S. Enin, J. B. Scott, H. K. Jung. Three-Dimensionally Ordered Macroporous Li4Ti5O12: Effect of Wall Structure on Electrochemical Properties. ChemMater. 2006, 146(2): 482~489
    41 G. X. Wang, D. H. Bradhurst, S. X. Dou, H. K. Liu. Spinel Li[Li1/3Ti5/3]O4 as an Anode Material for Lithium Ion Batteries. Journal of Power Sources. 1999, 83(1-2): 156
    42 P. P. Prosini, R. Mancini, L. Petrucci. Li_4Ti_5O_(12) as Anode in All-Solid-State, Plastic,Lithium-ion Batteries for Low-Power Applications. Solid State Ionics. 2001, 144(1-2): 185~192
    43 S. H. Huang, Z. Y. Wen, X. J. Zhu. Preparation and Electrochemical Performance of Ag Doped Li_4Ti_5O_(12). Electrochemistry Communications. 2004, 6(11): 1093~1097
    44 J. R. Li, Z. L. Tang, Z. G. Zhang. Controllable Formation and Electrochemical Properties of One-dimensional Nanostructured Spinel Li4Ti5O12. Electrochemistry Communications. 2005, 7(9): 894~899
    45 K. Nakahara, R. Nakajima, T. Matsushima. Prepa-ration of Particulate Li4Ti5O12 Having Excellent Characteristics As an Electrode Active Material for Power StorageCells. Journal of Power Sources. 2003, 117(1-2): 131~136
    46唐致远,阳晓霞,陈玉红,贺艳兵.钛酸锂电极材料的研究进展.电源技术. 2007, 31(4): 332~334
    47 A. Guerfi, P. Charest. Nano Electronically Conductive Titanium-spinel as Lithium Ion Storage Native Electrode. Journal of Power Sources. 2004, 126(1-2): 163~168
    48 K. Zaghib, M. S imoneau, M. Amrand. Electrochemical Study of Li4Ti5O12 as Negative Electorde for Li-ion Polymer Rechagerable Batteries. Journal of Power Sources. 1999, 81~82: 300~305
    49徐宇虹,巩桂英,马萍,张宝宏. Li4Ti5O12的合成及其性能研究.电源技术. 2007, 31(2): 140~142
    50臧戈,包丽颖,苏岳锋,吴锋等.非对称电化学电容器用新型Li4Ti5O12的制备与研究.功能材料. 2008, 5(39): 817~819
    51官云龙,仇卫华,赵海雷.液相法合成Li4Ti5O12负极材料电化学性能的研究.第十三次全国电化学会议论文集. 2005: 432~433
    52王国庆,吕菲,白莹,吴锋.复合熔盐法合成Li4Ti5O12及其电化学性能研究.功能材料. 2008, 7(39): 1158~1160
    53郭雪飞. AC/Li4Ti5O12电化学混合电容器性能的研究.天津大学硕士论文. 2006: 22~26 31~48
    54程亮.电化学超级电容器负极材料Li4Ti5O12的研究.复旦大学博士论文. 2008: 10~25
    55 A. Guerfi, S. Sevigny, M. Lagace. Nano-particle Li4Ti5O12 Spinel as Electrode for Electrochemical Generators. Journal of Power Sources. 2003, 119-121: 88~94
    56徐宇虹,巩桂英,马萍,张宝宏. C改性Li4Ti5O12的性能研究.电源技术. 2007, 5(31): 389~392
    57钟志强,岳敏.改性钛酸锂负极材料的合成及性能.电源技术. 2008, 2(32): 99~101
    58陈猛,金江敏,李金媛,韩文伟.掺杂型锂钛复合氧化物的制备及性能测试.电源技术. 2007, 12(31): 957
    59 D. Robertson, H. Tukamoto, J. T. Irvine. Li1+xFe1-3xTi1+2xO4(0.0≤x≤0.33)Based Spinels: Possible Negative Electrode Materials for Future Li-ion Batteries. Journal of the Electrochemical Society. 1999, 146(11): 3958~3962
    60杨晓燕,华寿南,张树文.锂钛复合氧化物锂离子电池负极材料的研究.电化学. 2000, 6(3): 350~356
    61杨建文. Li4Ti5O12基混合超级电容器负极材料的开发及相关机理研究.中南大学博士论文. 2005: 43 77~78 99~10
    62 L. Cheng, X. L. Li, H.J. Liul. Carbon-Coated Li4Ti5O12 as a High Rate Electrode Material for Li-ion Interlation. Joumal of the Eleetrochemieal Soeiety. 2007, 154(7): 692~697
    63 Y. J. Hao, Q. Y. Lai, Z. H. Xu. Synthesis by TEA Sol-Gel Methode and Electrochemical Properties of Li4Ti5O12 Electrode Material for Lithium-Ion Battery. Solid State Ionics. 2005, 176(13-14): 1201~1206

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700