锂离子电池LiMn_20_4/LiFePO_4和Li[Ni_(1/3)Co_(1/3)Mn_(1/3)]O_2/LiFePO_4复合电极的制备与性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自从1991年索尼公司率先推出第一块商品化锂离子电池以来,关于它的研究方兴未艾。目前,商业上广泛应用的锂离子正极材料主要有LiCoO_2层状材料、尖晶石型LiMn_2O_4材料、橄榄石型LiFePO_4材料和Li[Ni_(1/3)Co_(1/3)Mn_(1/3)]O_2三元层状材料。然而它们都有其自身不可忽略的缺点。近几年来,复合型电极材料的出现引起了研究人员的广泛关注。复合型电极指两种或者两种以上材料组成的电极,它通常具有单一型电极所不具备的更加优越的性能。LiMn_2O_4和LiFePO_4作为锂离子电池正极材料相互竞争并且彼此互补,特别是对混合动力汽车和纯电动汽车的应用。但是LiMn_2O_4由于二价Mn~(2+)离子的溶解和三价Mn~(3+)离子引起的Jahn-Taller畸变导致结构不稳定,使得电池容量衰减严重。 LiFePO_4材料最主要的问题是电子电导率低,以及由于LiFePO_4材料为两相反应, LiFePO_4/FePO_4相界面处的Li~+离子扩散缓慢而影响材料的倍率性能。因此,本论文的前半部分,我们选择LiMn_2O_4和LiFePO_4两个材料制备成复合电极,以复合后互相补偿各自缺点进而改善其电化学性能为研究目的,对LiMn_2O_4/LiFePO_4复合电极进行研究:
     首先我们采用简单共混方法制备成五个不同比例的LiMn_2O_4/LiFePO_4复合电极,通过X射线衍射和扫描电子显微镜对复合材料的结构、颗粒尺寸以及颗粒表面形貌进行分析得知,质量比为1:1时, LiFePO_4纳米颗粒不仅粘附在微米尺寸的LiMn_2O_4颗粒表面,而且还填充在LiMn_2O_4颗粒与颗粒之间的间隙中,具有紧密填充状态。我们还对材料进行了电导率的分析,得知碳包覆的LiFePO_4材料具有更高的电子电导性,电导率高于LiMn_2O_4两个数量级。然后通过恒流充放电、循环伏安法以及电化学阻抗谱对复合材料进行电化学性能研究。该复合材料对应的电池具有较高的放电容量和良好的循环稳定性,是得益于这样特殊的表面形貌,材料具有良好的电子接触和振实密度。
     然后,我们采用三种不同共混方式,即简单共混、球磨120rpm/5小时和球磨200rpm/10小时,制备质量比为1:1的LiMn_2O_4/LiFePO_4复合电极。通过对比XRD图谱可知,简单共混和球磨共混未改变材料原有晶体结构。扫描电镜分析得知,简单共混方法容易得到均匀分散的复合材料,而球磨共混方法严重破坏复合材料的均匀性。尤其是球磨能量达到200rpm/10小时,已经破坏了LiFePO_4原有的纺锤型颗粒形貌,且粘结在LiMn_2O_4颗粒表面,部分被包裹的LiMn_2O_4颗粒发生团聚。通过充放电、循环伏安法和电化学阻抗研究得知,简单共混的LiMn_2O_4/LiFePO_4复合电极具有较高的容量和循环稳定性,而球磨共混的LiMn_2O_4/LiFePO_4复合电极容量和循环性都有所减低,而且球磨能量越高,降低越多。这源于球磨使LiFePO_4紧密包裹在LiMn_2O_4颗粒表面,隔离了LiMn_2O_4颗粒与电解液之间的接触,LiMn_2O_4实际反应面积减小,并且使颗粒之间失去了物理接触的同时也失去了电子接触,因此导致了界面阻抗的急剧增加。
     LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2三元层状材料结合了Ni、Co和Mn的各自优势,具有更高的可逆容量,较低的成本和较为温和的热稳定性。但是,该材料具有较低的电子传导性,限制了其倍率性能和容量保持率。而Padhi等人开发的碳包覆的LiFePO_4成为目前非常有应用前景的锂离子电池正极材料。其表面的碳涂层增强了LiFePO_4材料电子导电性,并且纳米颗粒有利于Li~+离子扩散。因此本文的后半部分,我们选择LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2和LiFePO_4材料制备成复合电极,我们以利用LiFePO_4提高层状LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2材料表面的电导率从而改善电池的倍率性、循环性能以及热稳定性为目的,对LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2/LiFePO_4复合电极进行研究:
     首先我们采用共沉淀法合成了LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2层状材料,用机械球磨方法制备了LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2/LiFePO_4复合电极材料,采用X射线衍射对复合材料的结构分析得知,LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2为层状有序结构,与LiFePO_4复合后材料晶体结构未发生改变。使用扫描电镜观察到20wt%含量的LiFePO_4纳米颗粒均匀且完整地填充在LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2球体颗粒表面凹凸不平的凹槽中,与我们希望得到的形貌最为接近。得益于这样的表面形貌,使得该复合电极对应的电池在C/4倍率下,充电到4.4V时首次放电容量为178mAh/g,容量保持率为100%。对复合材料进行倍率性能测试,LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2/LiFePO_4复合电极表现出非常出色的循环稳定性明显优于单一的LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2电极。通过循环伏安法和电化学阻抗谱的分析,得知LiFePO_4包裹在LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2颗粒表面外,避免了LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2与电解液的直接接触,从而抑制了电解液与LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2之间不必要的副反应,因此降低了SEI膜的阻抗。另一方面LiFePO_4的表面碳层不仅有利于电子传导,而且有利于电极间的锂离子插入脱出并降低了电荷转移电阻。采用DSC分析仪对复合材料进行热稳定研究,发现电极的放热峰向高温区移动,并且释放的热量也明显减小。LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2/LiFePO_4复合电极安全性得到提高。
     最后我们在2.5~4.8V电压区间,对LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2/LiFePO_4复合电极的循环性能和倍率性能进行分析,发现LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2/LiFePO_4复合电极在高电压下的放电容量、循环稳定性以及倍率性能都有所提高。通过循环伏安法和电化学阻抗谱分析,得出LiFePO_4颗粒避免了LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2与电解液的直接接触,抑制了电解液与LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2之间不必要的副反应,抵制了SEI膜的生长。同时, LiFePO_4表面的碳包覆层不仅有利于电子传导,而且有利于电极间锂离子插入脱出并降低了电荷转移电阻。采用DSC测试分析,得知LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2/LiFePO_4复合电极在高电压下安全性能有所改善。
     总之,通过本文的研究我们进一步加深了对LiMn_2O_4/LiFePO_4和LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2/LiFePO_4两种复合电极材料制备工艺、结构特征与电化学性质的理解,这为上述复合材料的基础研究和实际应用提供了必要的理论基础和技术指导。
Great efforts have been made on the lithium-ion batteries since SONY companyfirstly applied lithium-ion batteries for the commercial use in1991. Nowadays, themost popular cathode materials are layered LiCoO_2and Li[Ni_(1/3)Co_(1/3)Mn_(1/3)]O_2, spinelLiMn_2O_4, and olivine LiFePO_4. Recently, blend electrode materials, which containstwo or more electrodes, have attracted wide attention, due to the superior performancethan single-type electrode. LiMn_2O_4and LiFePO_4are competitive andcomplementary to each other as cathode materials, especially for the electric vehiclesor hybrid electric vehicles. However, LiMn_2O_4undergoes a gradual capacity fadingduring charge-discharge cycling because of the dissolution of Mn~(2+)and the structuraldistortion by the Jahn-Teller effect of Mn~(3+)ions. One of the main problems of LiFePO_4is the low electronic conductivity and slow lithium ion diffusion across the LiFePO_4/FePO4boundary. Therefore, in the first part of this work, we selectedLiMn_2O_4/LiFePO_4as a blend electrode in order to compensate their respectivedisadvantageous and improve its electrochemical performances:
     Firstly, we successfully prepared LiMn_2O_4/LiFePO_4blend cathodes using asimple blending technique with five different mass ratios. Structural preoperty,particle size and particle surface morphology were examined by XRD and SEM.When the mass ratio of LiMn_2O_4: LiFePO_4equalled to1:1, the nano-sized LiFePO_4powders not only uniformly adhered to the micron-sized LiMn_2O_4particlesbut also effectively filled into the cavities of the LiMn_2O_4space as a close-packedstate. We also found that carbon-coated LiFePO_4had a higher electron conductivityand was two orders of magnitude larger than that of LiMn_2O_4. Then we studied theelectrochemical properties of the blend cathodes by charge-discharge cycling, cyclicvoltammetry (CV) and electrochemical impedance spectroscopy (EIS). This blendmaterial had a high discharge capacity and good cycle stability, because the special surface morphology could induce a good electrical contact and tap density
     Secondly, we prepared LiMn_2O_4/LiFePO_4blend cathodes with mass ratio of1:1,using different blending techniques, i.e. hand-milling and ball-milling for5h/120rpmand10h/rpm. XRD showed that the samples did not change the originalcrystalstructures after hand milling or ball milling. While SEM indicated thathand-milling method was easy to get a uniform dispersion of the blend materials, butball-milling methods seriously damaged to the uniformity of the blend materials. Inparticular, when the ball-milling energy reached200rpm/10h, the spindle-shapedmorphology of LiFePO_4was destroyed and bonded on LiMn_2O_4particle surface withthe result of LiMn_2O_4particles reunion. We also studied the electrochemicalproperties of the material by charge-discharge cycling, CV and EIS. It was shown thatLiMn_2O_4/LiFePO_4blend cathodes using hand-milling method had a higher capacityand cycle stability in comparison with other methods. While ball-milling methodwould reduce electrode capacity and cycle resistance, and the higher milling energy,the more capacity fading. Because ball-milling would result in a tight wrap on theLiMn_2O_4particle surface by LiFePO_4, isolate the contact between LiMn_2O_4particlesand the electrolyte, reduce the actual reaction area of LiMn_2O_4, and lose the contactbetween the particles both from the physical and the electronic aspects. Thus all theseeffects would result in a increase of the interfacial impedance dramatically.
     Layered LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2material showed a high reversible capacity, a lowcost and moderate thermal stability because it combines the advantages of Ni, Co andMn. However, the low electronic conductivity limited the rate capability and capacityretention rate of LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2. Padhi et al. developed a method ofcarbon-coated LiFePO_4and was considered to have a good application prospect. Thecarbon-coating on the particle surface would enhance the electronic conductivity ofthe LiFePO_4material, and the nanoparticles benefited to Li~+ion diffusion. Therefore,in the latter part of this paper, we choose LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2/LiFePO_4blendcathodes in order to improve the rate capability, cycle characteristics and thermalstability of LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2material by the surface conductivity of particles:
     Firstly, we synthesized LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2material using a co-precipitationmethod, then prepared LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2/LiFePO_4blend material by mechanical ball milling. XRD showed that LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2is a layered structure. Afterblending with LiFePO_4, the crystal structure of LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2did not change.SEM pictures showed that LiFePO_4nanoparticles uniformly and completely filledinto the uneven spherical particles of LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2surface, when the contentwas20wt%, and the morphology was what we expected. Thanks to such kind ofsurface morphology, the blend cathode had a initial discharge capacity of178mAh/gand a capacity retention rate of100%when it charged to4.4V at C/4rate. Rateperformance test showed that LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2/LiFePO_4blend cathodes exhibitedexcellent cycle stability which was significantly better than singleLiNi_(1/3)Co_(1/3)Mn_(1/3)O_2cathode. Then, CV and EIS measurement showed that LiFePO_4wrapped on the particle surfaces of LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2, avoided the direct contactbetween LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2and the electrolyte, and inhibited the unwanted sidereaction between the electrolyte and LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2with the results of thereduced impedance of the SEI film. On the other hand, the surface carbon layer of LiFePO_4benefited to both electron conductivity and lithium ion insertion/extractionand reduced the charge transfer resistance. Hence, DSC measurement showed that theexothermic peak of the electrode moved to the high-temperature region, and therelease of heat was also reduced. Therefore, the safety performance ofLiNi_(1/3)Co_(1/3)Mn_(1/3)O_2/LiFePO_4blend cathodes could be improved.
     At last, the electrochemical performance analysis ofLiNi_(1/3)Co_(1/3)Mn_(1/3)O_2/LiFePO_4blend cathodes in the voltage window of2.5~4.8Vfound that discharge capacity, cycle stability and rate capability ofLiNi_(1/3)Co_(1/3)Mn_(1/3)O_2/LiFePO_4blend cathodes had also been enhanced. CV and EISanalysis showed that LiFePO_4particles avoided the direct contact betweenLiNi_(1/3)Co_(1/3)Mn_(1/3)O_2and electrolyte, suppressed the unwanted side reaction betweenthe electrolyte and LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2, and resisted the growth of the SEI film at thesame time. The surface carbon layer of LiFePO_4benefited to both electronconductivity and lithium ion insertion/extraction, and reduced the charge transferresistance. DSC measurement showed that safety performance ofLiNi_(1/3)Co_(1/3)Mn_(1/3)O_2/LiFePO_4blend cathodes had been improved in high voltage.
     In sum, this work provided a comprehensive understanding on the preparation, structural and electrochemical performances of two types of blend cathode materials:LiMn_2O_4/LiFePO_4and LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2/LiFePO_4, and offered a necessarytheoretical and technical guidance for the research of blend cathodes.
引文
[1] Winter M, Brodd R J. What Are Batteries, Fuel Cells, and Supercapacitors?[J].Chemical Reviews,2004,104:4245-4270.
    [2] Vincent C A, Scrosati B. Modern Batteries: An Introduction to ElectrochemicalPower Sources [M]. New York: John Wiley&Sons Inc,1997.
    [3] Blomen L J M J, Mugerwa M N. Fuel Cell Systems [M]. New York: PlenumPublishing Co.,1993.
    [4] Tarascon J M, Armand M. Issues and challenges facing rechargeable lithiumbatteries [J]. Nature,2001,414:359-367.
    [5]郭炳焜,徐徽,王先友,肖立新.锂离子电池[M].长沙:中南大学出版社,2002.
    [6] Wakihara M. Recent developments in lithium ion batteries [J]. Materials Scienceand Engineering: R: Reports,2001,33:109-134.
    [7] Linden D. Handbook of Batteries [M]. New York: McGraw-Hill,1995
    [8] Brandt K. Historical development of secondary lithium batteries [J]. Solid StateIonics,1994,69:173-183.
    [9]黄可龙,王兆翔,刘素琴.锂离子电池原理与关键技术[M].北京:化学工业出版社,2007.
    [10]黄祖飞. LiMnO2体系结构与性能的第一原理研究[D].长春:吉林大学,2006.
    [11]庄大高.锂离子电池正极材料LiFePO4合成方法及电化学性能研究[D].杭州:浙江大学,2006.
    [12] Xu K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries[J]. Chemical Reviews,2004,104:4303-4417.
    [13]刘大亮.锂离子电池负极材料Li3-xMxN的制备及表征[D].长春:吉林大学,2009.
    [14] Whittingham M S. Lithium batteries and cathode materials [J]. ChemicalReviews,2004,104:4271-4301.
    [15] Mizushima K, Jones P C, Wiseman P J. LixCoO2(0≤x≤1): A new cathodematerial for batteries of high energy density [J]. Materials Research Bulletin,1980,15:783-789.
    [16] Zhai X J, Zhou Y G, Fu Y. Lithium ion battery cathode material LiCoO2synthesized by microwave method [J]. J. Rare Earths,2005,23:85-88.
    [17] Jones C D, Rossen E, Dahn J R. Structure and electrochemistry of LixCryCo1-yO2[J]. Solid State Ionics,1994,68:65-69.
    [18]张世超.锂离子电池关键材料的现状与发展[J].新材料产业,2004,2:32-40.
    [19] Delmas C, Fouassier C, Hagenmuller P. Structural classification and propertiesof the layered oxides [J]. Physica,1980,99B:81-85.
    [20] Choi S, Manthiram A. Factors influencing the layered to spinel-like phasetransition in layered oxide cathodes [J]. J. Electrochemical Society,2002,149:A1157-A1163.
    [21] Chebiam R V, Kannan A M, Prado F, et al. Comparison of the chemical stabilityof the high energy density cathodes of lithium-ion batteries [J]. ElectrochemistryCommunications,2001,3:624-627.
    [22] Chebiam R V, Prado F, Manthiram A. Soft chemistry synthesis andcharacterization of layered Li1-xNi1-yCoyO2-δ(0≤x≤1and0≤y≤1)[J]. Chemistryof Materials,2001.13:2951-2957.
    [23] Croguennec L, Pouillerie C, Delmas C. NiO2obtained by electrochemicallithium deintercalation from lithium nickelate: structural modifications [J]. J.Electrochemical Society,2000,147:1314-1321.
    [24] Croguennec L, Pouillerie C, Mansour A N, et al. Structural characterisation ofthe highly deintercalated LixNi1.02O2phases (with x≤0.30)[J]. J. MaterialsChemistry,2001,11:131-141.
    [25] Van der Ven A, Aydino M K, Ceder G, et al. First-principles investigation ofphase stability in LixCoO2[J]. Physical Review B,1998.58:2975-2987.
    [26] Van der Ven A, Aydino M K, Ceder G. First-principles evidence for stageordering in LixCoO2[J]. J. Electrochemical Society,1998,145:2149-2155.
    [27] Venkatraman S, Manthiram A. Synthesis and characterization of P3-type CoO2-δ[J]. Chemistry of Materials,2002,14:3907-3912.
    [28] Mclarcn V L, West A R, Tabuchi M. Study of the capacity fading mechanism forFe-substituted LiCoO2positive electrode [J]. J. Electrochemical Society,2004,151:A672-A681.
    [29] Kim J, Noh M, Cho J. Controlled nanoparticle metal phosphates (metal=Al, Fe,Ce and Sr) coatings on LiCoO2cathode materials [J]. J. Electrochemical Society,2005,152: A1142-A1148.
    [30] Hong W, Chen M C, Modification of LiCoO2by surface coating withMgO/TiO2/SiO2for high-performance lithium ion battery [J]. Electrochemical andSolid-State Letters,2006,9: A82-A85.
    [31] Miyashiro H, Yamanaka A, Tabuchi M. Improvement of degradation at elevatedtemperature and at high state-of-charge storage by ZrO2coating on LiCoO2[J]. J.Electrochemical Society,2006,153: A348-A353.
    [32] Kosova N, Devyatkina E, Slobodyuk A. Surface chemistry stud of LiCoO2coated with alumina [J]. Solid State Ionics,2008,179:1745-179.
    [33] Garcia S C, Rodriguez M A, Couceiro A C. Influence of the synthesis and dopingon the morphologic, structural and electrochemical properties of LiCo1-xMxO2(M=Ni, Al, Mg) oxides [J]. Bolttin de la Sociedad Espanola de Ceramica y Vidrio,2004,43:780-786.
    [34] Zhou Y, Shen C, Li H. Synthesis of high-ordered LiCoO2nanowire arrays byAAO template [J]. Solid State Ionics,2002,146:81-86.
    [35] Nakai I, Takahasi K, Shiraishi Y, et al. Study of the Jahn-Teller distortion inLiNiO2, a cathode material in a rechargeable lithium battery, byin Situ X-rayabsorption fine structure analysis [J].J. Solid State Chemistry,1998,140:145-148.
    [36] Dutta G, Manthiram A, Goodenough J B. Chemical synthesis and properties ofLi1δ xNi1+δO2and Li[Ni2]O4[J]..J. Solid State Chemistry,1992,96:123-131.
    [37] Morales J, Perez-Vincente C, Tirado J L. Cation distribution and chemicaldeintercalation of Li1-xNi1+xO2[J]. Materials Research Bulletin,1990,25:623-630.
    [38] Arai H, Okada S, Ohtsuka H, et al. Characterization and cathode performance ofLi1xNi1+xO2prepared with the excess lithium method [J]. Solid State Ionics,1995,80:261-269.
    [39] Huheey J E. Inorganic Chemistry: Principles of structure and Reactivity [M].New York: Harper&Row,1972.
    [40] Li W, Curie J. Morphology effects on the electrochemical performance ofLiNi1-xCoxO2[J]..J. Electrochemical Society,1997,144:2773-2779.
    [41] Zhecheva E, Stoyanova R. Stabilization of the layered crystal structure ofLiNiO2by Co-substitution [J]. Solid State Ionics,1993,66:143-149.
    [42] Delmas C, Saadoune I, Rougier A. The cycling properties of the LixNi1yCoyO2electrode [J]..J. Power Sources,1993,43-44:595-602.
    [43] Ohzuku T, Ueda A, Nagayama M, et al. Comparative study of LiCoO2,LiNi1/2Co1/2O2and LiNiO2for4volt secondary lithium cells [J]. Electrochimica Acta,1993,38:1159-1167.
    [44] Thackeray M M, Johnson P J, De Picciotto L A, et al. Electrochemical extractionof lithium from LiMn2O4[J]. Materials Research Bulletin,1984,19:179-187.
    [45] Thackeray M M, De Picciotto L A, De Kock A, J et al. Spinel electrodes forlithium batteries-A review [J]..J. Power Sources,1987,21:1-8.
    [46] Pistoia G, Wang D. Aspects of the Li+insertion into LixMn2O4for0    [47] Thackeray M M. Structural considerations of layered and spinel lithiated oxidesfor lithium ion batteries [J]..J. Electrochemical Society,1995,142:2558-2563.
    [48] Aydinol M K, Ceder G. First-principles prediction of insertion potentials inLi-Mn oxides for secondary Li batteries [J]. J. Electrochemical Society,1997,144:3832-3835.
    [49] Gummow R J, De Kock A, Thackeray M M. Improved capacity retention inrechargeable4V lithium/lithium-manganese oxide (spinel) cells [J]. Solid State Ionics,1994,69:59-67.
    [50] Thackeray M M. Spinel electrodes for lithium batteries [J]. J. American CeramicSociety,1999,82:3347-3354.
    [51] Jang D H, Shin Y J, Oh S M. Dissolution of spinel oxides and capacity losses in4V Li/LixMn2O4cells [J]. J. Electrochemical Society,1996,143:2204-2211.
    [52] Thackeray M M, Shoa-Horn Y, Kahaian A J, et al. Structural fatigue in spinelelectrodes in high voltage (4V) Li/LixMn2O4Cells [J]. Electrochemical andSolid-State Letters,1998,1:7-9.
    [53] Xia Y, Yoshio M. An investigation of lithium ion insertion into spinel structureLi-Mn-O compounds [J]. J. Electrochemical Society,1996,143:825-833.
    [54] Shin Y, Manthiram A. Microstrain and capacity fade in spinel manganese oxides[J]. Electrochemical and Solid-State Letters,2002,5: A55-A58.
    [55] Shin Y, Manthiram A. High rate, superior capacity retention LiMn22yLiyNiyO4spinel cathodes for lithium-ion batteries [J]. Electrochemical and Solid-State Letters,2003,6: A34-A36.
    [56] Shin Y, Manthiram A. Influence of the lattice parameter difference between thetwo cubic phases formed in the4V region on the capacity fading of spinel manganeseoxides [J]. Chemistry of Materials,2003,15:2954-2961.
    [57] Shin Y, Manthiram A. Factors influencing the capacity fade of spinel lithiummanganese oxides [J]..J. Electrochemical Society,2004,151: A204-A208.
    [58] Shigemura H, Sakebe H, Kageyama H. Structure and electrochemical propertiesof LiFexMn2-xO4(0≤x≤0.5) spinel as5V electrode material for lithium batteries [J].J. Electrochemical Society,2001,148: A730-A736.
    [59] Sun Y K, Park G S, Lee Y S. Structural changes (degradation) of oxysulfideLiAl0.24Mn1.76O3.98S0.02spinel on high-temperature cycling [J]. J. ElectrochemicalSociety,2001,148: A994-A998.
    [60] Lourdes H, Julian M, Luis S. Use of Li-M-Mn-O (M=Co, Cr, Ti) spinelsprepared by a sol-gel method as cathodes in high-voltage lithium batteries [J]. SolidState Ionics,1999,118:179-185.
    [61] De Kock A, Rossouw M H, De Picciotto L A, et al. Defect spinels in the systemLi2O·yMnO2(y>2.5): A neutron-diffraction study and electrochemicalcharacterization of Li2Mn4O9[J]. Materials Research Bulletin,1990,25:657-664.
    [62] Rossouw M H, De Kock A, De Picciotto L A, et al. Structural aspects oflithium-manganese oxide electrodes for rechargeable lithium batteries [J]. MaterialsResearch Bulletin,1990,25:173-182.
    [63] Choi S, Manthiram A. Synthesis and electrode properties of metastableLi2Mn4O9δspinel oxides [J]. J. Electrochemical Society,2000,147:1623-1629.
    [64] Kim J, Manthiram A. Low temperature synthesis and electrode properties ofLi4Mn5O12[J]. J. Electrochemical Society,1998,145: L53-L55.
    [65] Chen Y, Wang G X, Kongstantinov K, et al. Synthesis and characterization ofLiCoxMnyNi1-x-yO2as a cathode material for secondary lithium batteries [J]. J. PowerSources,2003,119-121:184-188.
    [66] Tsai Y W, Hwang B J, Ceder G, et al. In-situ X-ray absorption spectroscopicstudy on variation of electronic transitions and local structure of LiNi1/3Co1/3Mn1/3O2cathode material during electrochemical cycling [J]. Chemistry of Materials,2005,17:3191-3199.
    [67] Liao P Y, Duh J G, Sheen S R. Effect of Mn content on the microstructure andelectrochemical performance of LiNi0.75-xCo0.25MnxO2cathode materials [J]. J.Electrochemical Society,2005,152: A1695-A1700.
    [68] Koyama Y, Tanaka I, Adachi H, et al. Crystal and electronic structures ofsuperstructural Li1-x[Co1/3Ni1/3Mn1/3]O2(0≤x≤1)[J]. J. Power Sources,2003,119-121:644-648.
    [69] Koyama Y, Yabuuchi N, Tanaka I, et al. Solid-state chemistry andelectrochemistry of LiCo1/3Ni1/3Mn1/3O2for advanced Lithium-ion batteries [J]. J.Electrochemical Society,2004,151: A1545-A1551.
    [70] Li D C, Muta T, Zhang L Q, et al. Effect of synthesis method on theelectrochemical performance of LiNi1/3Mn1/3Co1/3O2[J]. J. Power Sources,2004,132:150-155.
    [71] Kobayashi H, Arachi Y, Kamiyama T, et al. Investigation on lithiumde-intercalation mechanism for LiNi1/3Mn1/3Co1/3O2[J]. J. Power Sources,2005,146:640-644.
    [72] Shaju K M, Subba Rao G V, Chowdari B V R. Performance of layeredLiNi1/3Mn1/3Co1/3O2as cathode for Li-ion batteries [J]. Electrochimica Acta,2002,48:145-151.
    [73] Lee M H, Kang Y J, Myung S T, et al. Synthetic optimization of LiNi1/3Mn1/3Co1/3O2via Co-precipitation [J].Electrochimica Acta,2004,50:939-948.
    [74] Kim J H, Park C W, Sun Y K. Synthesis and electrochemical behavior ofLi[Li0.1Ni0.35-x/2CoxMn0.55-x/2]O2cathode materials [J]. Solid State Ionics,2003,164:43-49.
    [75] Li D C, Takahisa M, Zhang L Q. Effect of synthesis method electrochemicalperformance of Li[Ni1/3Mn1/3Co1/3]O2[J]. J. Power Sources,2004,132:150-154.
    [76] Park S H, Yoon C S, Kang S G, et al. Synthesis and structural characterization oflayered Li[Ni1/3Mn1/3Co1/3]O2cathode materials by ultrasonic spray pyrolysis method[J]. Electrochimica Acta,2004,49:557-563.
    [77] Myung S T, Lee M H, Komaba S, et al. Hydrothermal synthesis of layeredLi[Ni1/3Mn1/3Co1/3]O2as positive electrode material for lithium secondary battery [J].Electrochimica Acta,2005,50:4800-4806.
    [78] Padhi A K, Najundaswamy K S, Goodenough J B. Phospho-olivines aspositive-electrode materials for rechargeable lithium batteries [J]. Journal of TheElectrochemical Society,1997,144:1188-1194.
    [79] Yamada A, Chung S C, Hinokuma K. Optimized LiFePO4for lithium batterycathodes [J]. J. The Electrochemical Society,2001,148: A224-A229.
    [80] Yamada A, Koizumi H, Nishimura S I, et al. Room-temperature miscibility gapin LixFePO4[J]. Nature Materials,2006,5:357-360.
    [81] Delmas C, Maccario M, Croguennec L, et al. Lithium deintercalation in LiFePO4nanoparticles via a domino-cascade model [J]. Nature Materials,2008,7:665-671.
    [82] Andersson A S, Thomas J O. The source of first-cycle capacity loss in LiFePO4[J]. J. Power Sources,2001,97:498-502.
    [83] Andersson A S, Thomas J O. The source of first-cycle capacity loss in LiFePO4[J]. J. Power Sources,2001,97:498-502.
    [84] Tajimi S, Ikeda Y, Kazuyoshi U, et al. Enhanced electrochemical performance ofLiFePO4prepared by hydrothermal reaction [J]. Solid Stated Ionics,2004,175:287-290.
    [85] Dominko R, Bele M, Goupil J M, et al. Wired porous cathode materials: A novelconcept for synthesis of LiFePO4[J]. Chemistry of Materials,2007,19:2960-2969.
    [86] Ojczyk W, Marzec J, Swierczek K, et al. Studies of selected synthesis proceduresof the conducting LiFePO4-based composite cathode materials for Li-ion batteries [J].J. Power Sources,2007,173:700-706.
    [87] Huang H, Yin S C, Nazar L F. Approaching theoretical capacity of LiFePO4atroom temperature at high rates electrochem [J]. Solid State Letters,2001,4:A170-A172.
    [88] Tajimi S, Ikeda Y, Kazuyoshi U, et al. Enhanced electrochemical performance ofLiFePO4prepared by hydrothermal reaction [J]. Solid Stated Ionics,2004,175:287-290.
    [89] Dominko R, Bele M, Goupil J M, et al. Wired porous cathode materials: A novelconcept for synthesis of LiFePO4[J]. Chemistry of Materials2007,19:2960-2969.
    [90] Ojczyk W, Marzec J, Swierczek K, et al. Studies of selected synthesis proceduresof the conducting LiFePO4-based composite cathode materials for Li-ion batteries [J].J. Power Sources,2007,173:700-706.
    [91] Wu S H, Chen M S, Chien C J. Preparation and characterization of Ti4+dopedLiFePO4cathode materials for lithium-ion batteries [J]. J. Power Sources,2009,189:440-444.
    [92] Shenouda A Y, Liu H K. Studies on electrochemical behaviour of zinc-dopedLiFePO4for lithium battery positive electrode [J]. J. Alloys and Compounds,2009,477:498-503.
    [93] Shi S Q, Liu L J. Ouyang C Y. Enhancement of electronic conductivity ofLiFePO4by Cr doping and its identification by first-principles calculations [J].Physical Review B,2003,68:195108.
    [94] Numata K, Sakaki C, Yamanaka S. Synthesis of solid solutions in a system ofLiCoO2-Li2MnO3for cathode materials of secondary lithium batteries [J]. ChemistryLetters,1997,8:725-726.
    [95] Numata K, Sakaki C, Yamanaka S. Synthesis and characterization of layerstructured solid solutions in the system of LiCoO2-Li2MnO3[J]. Solid State Ionics,1999,117:257-263.
    [96] Lu Z, Beaulieu L Y, Donaberger R A, et al. Synthesis, structure, andelectrochemical behavior of Li[NixLi1/3-2x/3Mn2/3-x/3]O2[J]. J. Electrochemical Society,2002,149: A778-A791.
    [97] Lu Z, Dahn J R. Understanding the anomalous capacity ofLi/Li[NixLi(1/3-2x/3)Mn(2/3-x/3)]O2cells using in situ X-ray diffraction andelectrochemical studies [J]. J. Electrochemical Society,2002,149: A815-A822.
    [98] Lu Z, Chen Z. Dahn J R. Lack of cation clustering in Li[NixLi1/3-2x/3Mn2/3-x/3]O2(0    [99] Balasubramanian M, McBreen J, Davidson I J, et al. In situ X-ray absorptionstudy of a layered manganese-chromium oxide-based cathode Material [J]. J.Electrochemical Society,2002,149: A176-A184.
    [100] Pan C J, Lee Y J, Ammundsen B, et al.6Li MAS NMR studies of the localstructure and electrochemical properties of Cr-doped lithium manganese and lithiumcobalt oxide cathode materials for lithium-ion batteries [J]. Chemistry of Materials,2002,14:2289-2299.
    [101] Thackery M M, Kang S H, Jonson C S, et al. Comments on the structuralcomplexity of lithium-rich Li1+xM1-xO2electrodes (M=Mn, Ni, Co) for lithiumbatteries [J]. Electrochemistry Communications,2006,8:1531-1538.
    [102] Yoon W S, Iannopollo S, Grey C P, et al. Local structure and cation ordering inO3lithium nickel manganese oxides with stoichiometry Li[NixMn(2-x)/3Li(1-2x)/3]O2[J].Electrochemical and Solid-State Letters,2004,7: A167-A171.
    [103] Kim J S, Johnson C S, Vaughey J T, et al. Electrochemical and structuralproperties of x xLi2MO3·(1-x)LiMn0.5Ni0.5O2electrodes for lithium batteries (M=Ti,Mn, Zr;0≤x≤0.3)[J]. Chemistry of Materials,2004,16:1996-2006.
    [104] Armstrong A R, Holzapfel M, Novak P, et al. Demonstrating oxygen loss andassociated structural reorganization in the lithium battery cathodeLi[Ni0.2Li0.2Mn0.6]O2[J]. J. American Chemical Society,2006,128:8694-8698.
    [105] Barkouse D A R, Dahn J R. A novel fabrication technique for producing denseLi[NixLi(13-2x3)Mn(23-x3)]O2,0≤x≤12[J]. J. Electrochemical Society,2005,152:A746-A751.
    [106] Jiang J, Eberman K W, Krause L J, et al. Structure, electrochemical properties,and thermal stability studies of cathode materials in thexLi[Mn12Ni12]O2·yLiCoO2·zLi[Li13Mn23]O2pseudoternary system (x+y+z=1)[J]. J.Electrochemical Society,2005,152: A1879-A1889.
    [107] Jiang J, Dahn J R. Electrochemical and thermal studies ofLi[NixLi(1/3-2x/3)Mn(2/3-x/3)]O2(x=1/12,1/4,5/12, and1/2)[J]. Electrochimica Acta,2005,50:4778-4783.
    [108] Jiang J, Dahn J R. Insignificant impact of designed oxygen release from highcapacity Li[(Ni1/2Mn1/2)xCoy(Li1/3Mn2/3)1/3]O2(x+y=2/3) positive electrodes duringthe cycling of Li-ion cells [J]. Electrochimica Acta,2006,51:3413-3416.
    [109] Kang S H, Amine K. Synthesis and electrochemical properties oflayer-structured0.5Li(Ni0.5Mn0.5)O2-0.5Li(Li1/3Mn2/3)O2solid mixture [J]. J. PowerSources,2003,124:533-537.
    [110] Johnson C S, Kim J S, Lefief C et al. The significance of theLi2MnO3component in ‘composite’ xLi2MnO3·(1-x)LiMn0.5Ni0.5O2electrodes [J].Electrochemistry Communications,2004,6:1085-1091.
    [111] Kim J S, Johnson C S, Vaughey J T, et al. Pre-conditioned layered electrodes forlithium batteries [J]. J. Power Sources,2006,153:258-264.
    [112] Johnson C S, Li N, Vaughey J T, et al. Lithium-manganese oxide electrodeswith layered-spinel composite structures xLi2MnO3·(1-x)Li1+yMn2-yO4(0    [113] Gao J, Kim J, Manthiram A. High capacity Li[Li0.2Mn0.54Ni0.13]O2-V2O5composite cathodes with low irreversible capacity loss for lithium ion batteries [J].Electrochemistry Communications,2009,11:84-86.
    [114] Zhou W J, He B L, Li H L. Synthesis, structure and electrochemistry ofAg-modified LiMn2O4cathode materials for lithium-ion batteries [J]. MaterialsResearch Bulletin,2008,43:2285-2294.
    [115] Wu X M, Chen S, He Z Q, et al. Solution-derived lithium manganese oxide thinfilms with silver additive and their characterization [J]. Materials Chemistry andPhysics,2007,101:217-220.
    [116] Wang G P, Zhang Q T, Yu Z L, et al. The effect of different kinds ofnano-carbon conductive additives in lithium ion batteries on the resistance andelectrochemical behavior of the LiCoO2composite cathodes [J]. Solid State Ionics,2008,179:263-268.
    [117] Muraliganth T, Murugan A V, Manthiram A. Nanoscale networking of LiFePO4nanorods synthesized by a microwave-solvothermal route with carbon nanotubes forlithium ion batteries [J]. J. Materials Chemistry,2008,18:5661-5668.
    [118] Li X L, Kang F Y, Shen W C. Multiwalled carbon nanotubes as a conductingadditive in a LiNi0.7Co0.3O2cathode for rechargeable lithium batteries [J]. Carbon,2006,44:1298-1352.
    [119] Sakamoto J S, Dunn B. Vanadium oxide-carbon nanotube composite electrodesfor use in secondary lithium batteries [J]. J. Electrochemical Society,2002,149:A26-A30.
    [120] Huang S H, Wen Z Y, Yang X L, et al. Improvement of the high-rate dischargeproperties of LiCoO2with the Ag additives [J]. J. Power Sources,2005,148:72-77.
    [121] Son J T, Park K S, Kim H G, et al. Surface-modification of LiMn2O4with asilver-metal coating [J]. Journal of Power Sources,2004,126:182-185.
    [122] Son J T, Kim H G, Park Y J. New preparation method and electrochemicalproperty of LiMn2O4electrode [J]. Electrochimica Acta,2004,50:453-459.
    [123] Mi C H, Cao Y X, Zhang X G, et al. Synthesis and characterization of LiFePO4(Ag+C) composite cathodes with nano-carbon webs [J]. Powder Technology,2008,181:301-306.
    [124] Park K S, Son J T, Chung H T, et al. Surface modification by silver coating forimproving electrochemical properties of LiFePO4[J]. Solid State Communications,2004,129:311-314.
    [125] Wen Z Y, Huang S H, Yang X L, et al. High rate electrode materials for lithiumion batteries [J]. Solid State Ionics,2008,179:1800-1805.
    [126] Guo R, Shi P F, Cheng X Q, et al. Effect of Ag additive on the performance ofLiNi1/3Co1/3Mn1/3O2cathode material for lithium ion battery [J]. J. Power Sources,2009,189:2-8.
    [127] Jin B, Jin E M, Park K H, et al. Electrochemical properties ofLiFePO4-multiwalled carbon nanotubes composite cathode materials for lithiumpolymer battery [J]. Electrochemistry Communications,2008,10:1537-1540.
    [128] Wang L N, Li Z C, Xu H J, et al. Studies of Li3V2(PO4)3additives for theLiFePO4-based Li ion batteries [J]. J. Physical Chemistry C,2008,112:308-312.
    [1] Park O K, Cho Y, Lee S, et al. Who will drive electric vehicles, olivine or spinel?[J]. Energy&Environmental Science,2011,4:1621–1633.
    [2] Yoshio M. Lithium-Ion Batteries [M]. New York: Springer,2008.
    [3] Yoshio M, Xia Y Y, Kumada N, et al. Storage and cycling performance ofCr-modified spinel at elevated temperatures [J]. J. Power Sources,2001,101:79-85.
    [4] Thackeray M M. Manganese oxides for lithium batteries [J]. Progress in SolidState Chemistry,1997,25:1-71.
    [5] Wakihara M. Lithium Ion Batteries: Fundamentals and Performance [M].Germany: Wiley-VCH,1998.
    [6] Nazri G A. Lithium Batteries Science and Technology [M]. Boston: Wiley-VCH,2004.
    [7] Aurbach D, Gofer Y. The Behavior of lithium electrodes in mixtures of alkylcarbonates and ethers [J]. J. Electrochemical Society,1991,138:3529-3536.
    [8] Cho J, Kim Y J, Park B. Structural changes of Li3.1Mn0.91Cr1.09O4cathodematerial [J]. Solid State Ionics,2001,138:221-225.
    [9] Gummow R J, Dekock A, Thackeray M M. Improved capacity retention inrechargeable4V lithium/lithium-manganese oxide (spinel) cells [J]. Solid State Ionics,1994,69:59-67.
    [10] Gnanaraj J S, Pol V G, Gedanken A, et al. Improving the high-temperatureperformance of LiMn2O4spinel electrodes by coating the active mass with MgO via asonochemical method [J]. Electrochemistry Communications,2003,5:940-945.
    [11] Blyr A, Sigala C, Amatucci G, et al. Self-discharge of LiMn2O4/C Li-Ion cells intheir discharged state: understanding by means of three-electrode measurements [J]. J.Electrochemical Society,1998,145:194-209.
    [12] Hunter J C. Preparation of a new crystal form of manganese dioxide: λ-MnO2[J].J. Solid State Chemistry,1981,39:142-147.
    [13] Kim W K, Han D W, Ryu W H, et al. Al2O3coating on LiMn2O4by electrostaticattraction forces and its effects on the high temperature cyclic performance [J].Electrochimica Acta,2012,71:17-21.
    [14] Walz K A, Johson C S, Genthe J, et al. Elevated temperature cycling stability andelectrochemical impedance of LiMn2O4cathodes with nanoporous ZrO2and TiO2coatings [J]. J. Power Sources,2010,195:4943-4951.
    [15] Cho M Y, Roh K C, Park S M, et al. Effects of CeO2coating uniformity on hightemperature cycle life performance of LiMn2O4[J]. Materials Letters,2011,65:2011-2014.
    [16] Ma Y L, Gao Y Z, Zuo P J, et al. Effect of Sb2O3modification onelectrochemical performance of LiMn2O4cathode material [J]. J. ElectrochemicalScience,2102,7:11001-11010.
    [17] Sigala C, Guyomard D, Verbaere A, et al. Positive electrode materials with highoperating voltage for lithium batteries: LiCryMn2yO4(0≤y≤1)[J]. Solid StateIonics,1995,81:167-170.
    [18] Shigemura H, Sakaebe H, Kageyama H, et al. Structure and electrochemicalproperties of LiFexMn2-xO4(0≤x≤0.5) spinel as5V electrode material for lithiumbatteries [J]. J. Electrochemical Society,2001,148: A730-A736.
    [19] Jo M, Lee Y K, Kim K M, et al. Nanoparticle-nanorod core-shellLiNi0.5Mn1.5O4spinel cathodes with high energy density for Li-ion batteries [J]. J.Electrochemical Society,2010,157: A841-A845.
    [20] Ravet N, Chouinard Y, Magnan J F, et al. Electroactivity of natural and synthetictriphylite [J]. J. Power Sources,2001,97-98:503–507.
    [21] Striebel K, Guerfi A, Sim J, et al. LiFePO4/gel/natural graphite cells for theBATT program [J]. J. Power Sources,2003,119–121:951-954.
    [22] Shiraishi K, Dokko K, Kanamura K. Formation of impurities on phospho-olivineLiFePO4during hydrothermal synthesis [J]. J. Power Sources,2005,146:555-558.
    [23] Myung S T, Komaba S, Hirosaki N, et al. Emulsion drying synthesis of olivineLiFePO4/C composite and its electrochemical properties as lithium intercalationmaterial [J]. Electrochimica Acta,2004,49:4213-4222.
    [24] Tarascon J M, Armand M. Issues and challenges facing rechargeable lithiumbatteries [J]. Nature,2001,414:359–367.
    [25] Yuan L X, Wang Z H, Zhang W X, et al. Goodenough J B. Development andchallenges of LiFePO4cathode material for lithium-ion batteries [J]. Energy&Environmental Science,2011,4:269–284.
    [26] Wang Y, He P, Zhou H. Olivine LiFePO4: development and future [J]. Energy&Environmental Science,2011,4:805–817.
    [27] Huang H, Yin S C, Nazar L F. Approaching theoretical capacity of LiFePO4atroom temperature at high Rates [J]. Electrochemical and Solid-State Letters,2001,4:A170-A172.
    [28] Chen Z, Dahn J R. Reducing carbon in LiFePO4/C composite electrodes tomaximize specific Energy, volumetric energy, and tap density [J]. J. ElectrochemicalSociety,2002,149: A1184-A1189.
    [29] Zhang S S, Allen J L, Xu K, et al. Optimization of reaction condition forsolid-state synthesis of LiFePO4-C composite cathodes [J]. J. Power Sources,2005,147:234-240.
    [30] Ma Z F, Yang X Q, Liao X Z, et al. Electrochemical evaluation of compositecathodes base on blends of LiMn2O4and LiNi0.8Co0.2O2[J]. ElectrochemistryCommunications,2001,3:425-428.
    [31] Tran H Y, Taübert C, Fleischhammer M, et al. LiMn2O4spinel/LiNi0.8Co0.15Al0.05O2blends as cathode materials for lithium-ion batteries [J].J.Electrochemical Society,2011,158: A556-A561.
    [32] Jeong S K, Shin S J, Nahm K S, et al. Electrochemical studies on cathode blendsof LiMn2O4and Li[Li1/15Ni1/5Co2/5Mn1/3]O2[J]. Materials Chemistry and Physics,2008,111:213–217.
    [33] Imachi N, Takano Y, Fujimoto H, et al. Layered cathode for improving safety ofLi-ion batteries [J]. J. Electrochemical Society,2007,154: A412-A416.
    [34] Xiang J Y, Tu J P, Zhang L, et al. Improved electrochemical performances of9LiFePO4·Li3V2(PO4)/C composite prepared by a simple solid-state method [J]. J.Power Sources,2010,195:8331–8335.
    [35] Gallagher K G, Kang S H, Par S U, et al. xLi2MnO3·(1x)LiMO2blended withLiFePO4to achieve high energy density and pulse power capability [J]. J. PowerSources,2011,196:9702-9707.
    [36] Whitacre J F, Zaghib K, West W C, et al. Daul active material composite cathodestructures fo Li-ion batteries [J]. J. Power Sources,2008,177:528-536.
    [37]李树棠.晶体X射线衍射学基础[M].北京:冶金工业出版社,1990.
    [38]盛世雄,方正知. X射线衍射技术-多晶体和非晶体材料[M].北京:冶金工业出版社,1983.
    [39]苏勉曾.固体化学导论[M].北京:北京大学出版社,1987.
    [40] Fu P, Zhao Y M, Dong Y Z, et al. Synthesis of Li3V2(PO4)3with highperformance by optimized solid-state synthesis routine [J]. J. Power Sources,2006,162:651-657.
    [41] Wang C S, Hong J. Ionic/electronic conducting characteristics of LiFePO4cathode materials [J]. Electrochemical and Solid-State Letters,2007,10: A65-A69.
    [42] Jamnik J. Impedance spectroscopy of mixed conductors with semi-blockingboundaries [J]. Solid State Ionics,2003,157:19-28.
    [43] Wang C, Kakwan I, Appleby A J, et al. In situ investigation of electrochemicallithium intercalation into graphite powder [J]. J. Electroanalytical Chemistry,2000,489:55-67.
    [44] Jin B, Gu H B, Zhang W X, et al. Effect of different carbon conductive additiveson electrochemical properties of LiFePO4-C/Li batteries [J]. J. Solid StateElectrochemistry,2008,12:1549-1554.
    [45] Levi M D, Aurbach D. The mechanism of lithium intercalation in graphite filmelectrodes in aprotic media. Part1. High resolution slow scan rate cyclicvoltammetric studies and modeling [J]. J. Electroanalytical Chemistry,1997,421:79-88.
    [46]田昭武.电化学研究方法[M].北京:科学出版社,1984.
    [47] Gao Y, Reimers J N, Dahn J R. Changes in the voltage profile of Li/Li1+xMn2-xO4cells as a function of x [J]. Physical Review B,1996,54:3878-3881.
    [48] Gao Y, Myrtle K, Zhang M J, Reimers J N, Dahn J R. Valence band ofLiNixMn2-xO4and its effects an the voltage profiles of LiNixMn2-xO4/Lielectrochemical cells [J]. Physical Review B,1996,54:16670-16675.
    [49] Suresh P, Shukla A K, Munichadraiah N. Characterization of Zn-andFe-substituted LiMnO2as cathode materials in Li-ion cells [J]. J. Power Sources,161:1307-1313.
    [50] Wu S, Yu M. Preparation and characterization of o-LiMnO2cathode materials [J].J. Power Sources,2007,165:660-665.
    [51] Xia Y, Yoshio M. An investigation of lithium ion insertion into spinel structureLi-Mn-O Compounds [J]. J. The Electrochemical Society,1996,143:825-833.
    [52] Padhi A K, Nanjundawamy K S, Goodenough J B. Phospho-olivine as positiveelectrode materials for rechargeable lithium batteries [J]. J. Electrochemical Society,1997,144:1188-1194.
    [53]查全性.电极过程动力学导论[M].北京:科学出版社,2002.
    [54]曹楚南,张鉴清.电化学阻抗谱导论[M].北京:科学出版社,2002.
    [55] Zhu G N, Wang C X, Xia Y Y. A comprehensive study of effects of carboncoating on Li4Ti5O12anode material for lithium-ion batteries [J]. J. ElectrochemicalSociety,2011,158: A102-A109.
    [56] Chen Y H, Wang C W, Liu G, et al.Selection of conductive additives in Li-ionbattery cathodes: a numerical study [J]. J. Electrochemical Society,2007,154:A978–A986.
    [1] Whitacre J F, Zaghib K, West W C, et al. Daul active material composite cathodestructures fo Li-ion batteries [J]. J. Power Sources,2008,177:528-536.
    [2] Fu P, Zhao Y M, Dong Y Z, et al. Synthesis of Li3V2(PO4)3with high performanceby optimized solid-state synthesis routine [J]. J. Power Sources,2006,162:651-657.
    [3] Padhi A K, Nanjundawamy K S, Goodenough J B. Phospho-olivine as positiveelectrode materials for rechargeable lithium batteries [J]. J. Electrochemical Society,1997,144:1188-1194.
    [4] Gao Y, Reimers J N, Dahn J R. Changes in the voltage profile of Li/Li1+xMn2-xO4cells as a function of x [J]. Physical Review B,1996,54:3878-3881.
    [5] Gao Y, Myrtle K, Zhang M J, et al. Valence band of LiNixMn2-xO4and its effectsan the voltage profiles of LiNixMn2-xO4Li electrochemical cells [J]. Physical ReviewB,1996,54:16670-16675.
    [6] Ma Z F, Yang X Q, Liao X Z, et al. Electrochemical evaluation of compositecathodes base on blends of LiMn2O4and LiNi0.8Co0.2O2[J]. ElectrochemistryCommunications,2001,3:425-428.
    [7] Lee D, Scrosati B, Sun Y K. Ni3(PO4)2-coated Li[Ni0.8Co0.15Al0.05]O2lithiumbattery electrode with improved cycling performance at55°C [J]. J. Power Sources,2011,196:7742-7746.
    [8] Kang S H, Sun Y K, Amine K. Electrochemical and ex situ X-ray study ofLi(Li0.2Ni0.2Mn0.6)O2cathode material for Li secondary batteries [J]. Electrochemicaland Solid-State Letters,2003,6: A183-A186.
    [9] Jeong S K, Shin J S, Nahm K S, et al. Electrochemical studies on cathode blendsof LiMn2O4and Li[Li1/15Ni1/5Co2/5Mn1/3]O2[J]. Materials Chemistry and Physics,2008,111:213-217.
    [10] Aurbach D, Markovsky B, Levi M D, et al. New insights into the interactions ofbetween electrode materials and electrolyte solutions for advanced nonaqueousbatteries [J]. J. Power Sources,1999,81-82:95-111.
    [11] Chen Y H, Wang C W, Liu G, et al. selection of conductive additives in Li-ion
    battery cathodes: A numerical study [J]. J. Electrochemical Society,2007,154:
    A978–A986.
    [1] Goodenough J B. Cathode materials: A personal perspective [J]. J. Power Sources,2009,174:996-1000.
    [2] He P, Yu H J, Li D, et al. Layered lithium transition metal oxide cathodes towardshigh energy lithium-ion batteries [J]. J. Materials Chemistry,2012,22:3680-3695.
    [3] Miyashiro H, Yamanaka A, Tabuuchi M, et al. Improvement of degradation atelevated temperature and at high state-of-charge storage by ZrO2coating on LiCoO2[J]. J. The Electrochemical Society,2006,153: A348-A353.
    [4] Kim G H, Myung S T, Bang H J, et al. Synthesis and electrochemical properties ofLi[Ni1/3Co1/3Mn(1/3-x)Mgx]O2-yFyvia coprecipitation [J]. Electrochemical andSolid-State Letters,2004,7: A477-A480.
    [5] Park S H, Oh S W, Sum Y K. Synthesis and structural characterization of layeredLi[Ni1/3+xCo1/3Mn1/3-2xMox]O2cathode materials by ultrasonic spray pyrolysis [J]. J.Power Sources,2005,146:622-625.
    [6] Park S H, Shin S S, Sun Y K. The effects of Na doping on performance of layeredLi1.1-xNax[Ni0.2Co0.3Mn0.4]O2materials for lithium secondary batteries [J]. MaterialsChemistry and Physics,2006,95:218-221.
    [7] Na S H, Kim H S, Moon S I. The effect of Si doping on the electrochemicalcharacteristics of LiNixMnyCo(1-x-y)O2[J]. Solid State Ionics,2005,176:313-317.
    [8] Sun Y, Xia Y, Noguchi H. The improved physical and electrochemicalperformance of LiNi0.35Co0.3-xCrxMn0.35O2cathode materials by the Cr doping forlithium ion batteries [J]. J. Power Sources,2006,159:1377-1382.
    [9] Li J, He X, Zhao R, et al. Stannum doping of layered LiNi3/8Co2/8Mn3/8O2cathodematerials with high rate capability for Li-ion batteries [J]. J. Power Sources,2006,158:524-528.
    [10] Myung S T, Izumi K, Komaba S, et al. Role of alumina coating onLi-Ni-Co-Mn-O particles as positive electrode material for lithium-ion batteries [J].Chemistry of Materials,2005,17:3695-3704.
    [11] Kim Y, Kim H S, Martin S W. Synthesis and electrochemical characteristics ofAl2O3-coated LiNi1/3Co1/3Mn1/3O2cathode materials for lithium ion batteries [J].Electrochimica Acta,2006,52:1316-1322.
    [12] Hu S, Cheng G, Cheng M, et al. Cycle life improvement of ZrO2-coated sphericalLiNi1/3Co1/3Mn1/3O2cathode material for lithium ion batteries [J]. J. Power Sources,2009,188:564-569.
    [13] Yun S H, Park K, Park Y J. The electrochemical property of ZrFx-coatedLi[Ni1/3Co1/3Mn1/3]O2cathode material [J]. J. Power Sources,2010,195:6108-6115.
    [14] Sun Y K, Cho S W, Lee S W, et al. AlF3-Coating to improve high voltage cyclingperformance of Li[Ni13Co13Mn13]O2cathode materials for lithium secondaryBatteries [J]. J. Electrochemical Society,2007,154: A168-A172.
    [15] Wu F, Wang M, Su Y F, et al. Surface of LiCo1/3Ni1/3Mn1/3O2modified byCeO2-coating [J]. Electrochimica Acta,2009,54:6803-6807.
    [16] Lee K S, Myung S T, Kim D W, et al. AlF3-coated LiCoO2andLiCo1/3Ni1/3Mn1/3O2blend composite cathode for lithium ion batteries [J]. J. PowerSources,2011,196:6974-6977.
    [17] Cho J, Kim T J, Kim J, et al. Synthesis, thermal, and electrochemical propertiesof AlPO4-coated LiNi0.8Co0.1Mn0.1O2cathode materials for a Li-ion cell [J]. J. TheElectrochemical Society,2004,151: A1899-A1904.
    [18] Kim Y J, Cho J. Lithium-reactive Co3(PO4)2nanoparticle coating onhigh-capacity LiNi0.8Co0.16Al0.04O2cathode material for lithium rechargeable batteries[J]. J. Electrochemical Society,2007,154: A495-A499.
    [19] Bai Y S, Wang X Y, Yang S Y, et al. The effects of FePO4-coating onhigh-voltage cycling stability and rate capability of Li[Ni0.5Co0.2Mn0.3]O2[J]. J.Alloys and Compounds,2012,541:125-131.
    [20] Liu D L, Ying B, Sen Z, et al. Improved cycling performance of5V spinelLiMn1.5Ni0.5O4by amorphous FePO4coating [J]. J. Power Sources,2012,219:333-338.
    [21] Qing C B, Bai Y, Yang J M, et al. Enhanced cycling stability of LiMn2O4cathodeby amorphous FePO4coating [J]. Electrochimica Acta,2011,56:6612-6618.
    [22] Lee H, Kim Y, Hong Y, et al. Structural characterization of the surface-modifiedLixNi0.9Co0.1O2cathode materials by MPO4coating (M=Al, Ce, Sr, and Fe) forLi-ion cells [J]. J. Electrochemical Society,2006,153: A781-A786.
    [23] Liu X Z, Li H Q, Yoo E J, et al. Fabrication of FePO4layer coatedLiNi1/3Co1/3Mn1/3O2: towards high-performance cathode materials for lithium ionbatteries [J]. Electrochimiaca Acta,2012,83:253-258.
    [24] Li G, Yang Z, Yang W. Effect of FePO4coating on electrochemical and safetyperformance of LiCoO2as cathode material for Li-ion batteries [J]. J. Power Sources,2008,183:741-748.
    [25] Liu D, Trottier J, Charest P. Effect of nano LiFePO4coating on LiMn1.5Ni0.5O45V cathode for lithium ion batteries [J]. J. Power Sources,2012,204:127-132.
    [26] Gallagher K G, Kang S H, Park S U, et al. xLi2MnO3·(1-x)LiMO2blended withLiFePO4to achieve high energy density and pulse power capability [J]. J. PowerSources,2011,196:9702-9707.
    [27] Kim H S, Kim S I, Kim W S, et al. A study on electrochemical characteristics ofLiCoO2/LiNi1/3Mn1/3Co1/3O2mixed cathode for Li secondary battery [J].Electrochimica Acta,2006,52:1457-1461.
    [28] Ma Z F, Yang X Q, Liao X Z, et al. Electrochemical evaluation of compositecathodes base on blends of LiMn2O4and LiNi0.8Co0.2O2[J]. ElectrochemistryCommunications,2001,3:425-428.
    [29] Alonso M, Satoh M, Miyanami K. Mechanism of the combinedcoating-mechanofusion processing of powders [J]. Powder Technology,1989,59:45-52.
    [30] Hwang B J, Tsai Y W, Chen C H, et al. Influence of Mn content on themorphology and electrochemical performance of LiNi1-x-yCoxMnyO2cathodematerials [J]. J. Materials Chemistry,2003,13:1962-1968.
    [31] Shaju K M, Subba Rao G V, Chowdari B V R. Performance of layeredLi(Ni1/3Co1/3Mn1/3)O2as cathode for Li-ion batteries [J]. Electrochimica Acta,2002,48:145-151.
    [32] Park K S, Cho M H, Jin S J, et al. Stuctural and electrochemical properties ofnanosize layered Li[Li1/5Ni1/10Co1/5Mn1/2]O2[J]. Electrochemical and Solid-StateLetters,2004,7: A239-A241.
    [33] Whitfield P S, Davidson I J, Cranswick L M D, et al. Investigation of possiblesuperstructure and cation disorder in the lithium battery cathode matericalLi(Mn1/3Ni1/3Co1/3)O2using neutron and anomalous dispersion powder diffraction [J].Solid State Ionics,2005,176:463-471.
    [34] Ohzuku T, Ueda A, Nagayama Y. Comparative study of LiCoO2, LiNi1/2Co1/2O2and LiNiO2for4-volt secondary lithium cells [J]. Electrochimica Acta,1993,38:1159-1167.
    [35] Bruce P G, Armstrong R, Gitzendanner R L. New intercalation compounds forlithium batteries: layered LiMnO2[J]. J. Materials Chemistry,1999,9:193-198.
    [36] Hwang B J, Tsai Y W, Carlier D, et al. A combined computational/experimentalstudy on LiNi1/3Co1/3Mn1/3O2[J]. Chemistry of Materials,2003,15:3676-3682.
    [37] Delmas C, Pérès J P, Demourgues A, et al. On the behavior of the LixNiO2system: an electrochemical and structural overview [J]. J. Power Sources,1997,68:120-125.
    [38] Koyama Y, Yabuuchi N, Tanaka I, et al. Solid-state chemistry andelectrochemistry of LiCo1/3Ni1/3Mn1/3O2for advanced lithium-ion batteries: I.first-principles calculation on the crystal and electronic structures [J]. J.Electrochemical Society,2004,151: A1545-A1551.
    [39] Wang Z X, Sun Y C, Chen L Q, et al. Electrochemical characterization ofpositive electrode material LiNi1/3Co1/3Mn1/3O2and compatibility with electrolyte forlithium-ion batteries [J]. J. Electrochemical Society,2004,151:914-921.
    [40] Rougier A, Saadoune I, Gravereau P, et al. Effect of cobalt substitution oncationic distribution in LiNi1-yCoyO2electrode materials [J]. Solid State Ionics,1996,90:83-90.
    [41] Zaghib K, Charest P, Dontigny M, et al. LiFePO4: From molten ingot tonanoparticles with high-rate performance in Li-ion batteries [J]. J. Power Sources,2010,195:8280-8288.
    [42] Lu Z, Dahn J R. Understanding the anomalous capacity ofLi/Li[NixLi(1/3-2x/3)Mn(2/3-x/3)]O2cells using in situ X-ray diffraction andelectrochemical studies [J]. J. Electrochemical Society,2002,149: A815-A822.
    [43] Kim J S, Johnson C S, Thackeray M M. xLiMO2·(1x)Li2MO3electrodes forlithium batteries: a study of0.95LiMn0.5Ni0.5O2·0.05Li2TiO3[J]. ElectrochemistryCommunications,2002,4:205-209.
    [44] MacNeil D D, Lu Z, Dahn J R. Structure and electrochemistry ofLi[NixCo12xMnx]O2(0≤x≤1/2)[J]. J. Electrochemical Society,2002,149:A1332-A1336.
    [45] Kim M G, Shin H J, Kim J H, et al. XAS investigation of inhomogeneousmetal-oxygen bond covalency in bulk and surface for charge compensation in Li-ionbattery cathode Li[Ni13Co13Mn13]O2material [J]. J. Electrochemical Society,2005,152: A1320-A1328.
    [46] Wang Z, Sun Y K, Chen L, et al. Electrochemical characterization of positiveelectrode material LiNi1/3Co1/3Mn1/3O2and compatibility with electrolyte forlithium-ion batteries [J]. J. Electrochemical Society,2004,151: A914-A921.
    [47] Fan J, Fedkiw P S. Electrochemical impedance spectra of full cells: Relation tocapacity and capacity-rate of rechargeable Li cells using LiCoO2, LiMn2O4, andLiNiO2cathodes [J]. J. Power Sources,1998,72:165-173.
    [48] Manthiram A, Kim J. Low temperature synthesis of insertion oxides for lithiumbatteries [J]. Chemistry of Materials,1998,10:2895-2909.
    [49] Delmas C, Menetrier M, Croguennec L, et al. An overview of theLi(Ni,M)O2systems: syntheses, structures and properties [J]. Electrochimica Acta,1999,45:243-253.
    [50] Madhavi S, Subba Rao G V, Chowdari B V R, et al. Synthesis and cathodicproperties of LiCo1-yRhyO2(0≤y≤0.2) and LiRhO2[J]. J. ElectrochemicalSociety,2001,148: A1279-A1286.
    [51] Kajiyama A, Takada K, Inada T, et al. Layered Li-Co-Mn oxide as a high-voltagepositive electrode material for lithium batteries [J]. J. Electrochemical Society,2001,148: A981-A983.
    [52] Cao H, Zhang Y, Zhang J, et al. Synthesis and electrochemical characteristics oflayered LiNi0.6Co0.2Mn0.2O2cathode material for lithium ion batteries [J]. Solid StateIonics,2005,176:1207-1211.
    [53] Gopukumar S, Chung K Y, Kim K B. Novel synthesis of layered LiNi1/2Mn1/2O2as cathode materical for lithium rechargeable cells [J]. Electrochimica Acta,2004,49:803-810.
    [54] Padhi K A, Nanjundawamy K S, Goodenough J B. Phospho-olivine as positiveelectrode materials for rechargeable lithium batteries [J]. J. Electrochemical Society,1997,144:1188-1194.
    [55] Zhu G N, Wang C X, Xia Y Y. A comprehensive study of effects of carboncoating on Li4Ti5O12anode material for lithium-ion batteries [J]. J. ElectrochemicalSociety,2011,158: A102-A109.
    [56] Chen Y, Wang C W, Liu G, et al. Selection of conductive additives in Li-ionbattery cathodes: a numerical study [J]. J. Electrochemical Society,2007,154:A978-A986.
    [57] Yang Z, Song Z, Chu G, et al. Surface modification of LiCo1/3Ni1/3Mn1/3O2withCoAl-MMO for lithium-ion batteries [J]. J. Materials Science,2012,47:4205-4209.
    [1] Kim J H, Park C W, Sun Y K. Synthesis and electrochemical behavior ofLi[Li0.1Ni0.35-x/2CoxMn0.55-x/2]O2cathode materials [J]. Solid States Ionics,2003,164:43-49.
    [2] Jouanneau S, Eberman K W, et al. Synthesis, characterization and electrochemicalbehavior of improved Li[NixCo1-2xMnx]O2(0.1≤x≤0.5)[J]. J. Electrochemical Society,2003,150: A1637-A1642.
    [3] Ohzuku T, Makimura Y. Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2for lithium-ion batteries [J]. Chemistry Letters,2001,7:642-643.
    [4] Liu Z L, Yu A S, Lee Y J. Synthesis and characterization of LiNi1-x-yCoxMnyO2asthe cathode materials of secondary lithium batteries [J]. J. Power Sources,1999,81-82:416-419.
    [5] Ryuji S, Akihiro F, Kazuya O, et al. Positive electrode active material for lithiumsecondary cell [P]. EP1447866A1,2004,8,18.
    [6]永山雅敏,芳泽浩司.非水电解质二次电池用正极活性物质的制备[P].200410001673.5,2004,1,9.
    [7] Yoshio M, Noguchi H, Iton J I, et al. Preparation and properties ofLiCoyMnxNi1-x-yO2as a cathode for lithium ion batteries [J]. J. Power Sources,2000,90:176-181.
    [8] Whittingham M S. Lithium batteries and cathode materials [J]. Chemical Reviews,2004,104:4271-4302.
    [9] Guo J, Jiao L F, Yuan H T, Wang L Q, et al. Effect of structural andelectrochemical properties of different Cr-doper contents of Li[Ni1/3Mn1/3Co1/3]O2[J].Electrochimica Acta,2006,51:6275-6280.
    [10] Ohzuku T, Ueda A, Yamamoto N. Zero-strain insertion material ofLi[Li1/3Ti5/3]O4for rechargeable lithium cells [J]. J. Electrochemical Society,1995,142:1431-1435.
    [11] Ueda A, Ohzuku T. Solid-state redox reactions of LiNi1/2Co1/2O2(R-3m) for4volt secondary lithium cells [J]. Journal of The Electrochemical Society,1994,141:2010-2014.
    [12] Cho J, Kim Y J, Park B. Novel LiCoO2cathode material with Al2O3coating fora Li ion cell [J]. Chemistry of Materials,2000,12:3788-3791.
    [13] Mladenov M, Stoyanova R, Zhecheva E, et al. Effect of Mg doping andMgO-surface modification on the cycling stability of LiCoO2electrodes [J].Electrochemistry Communications,2001,3:410-416.
    [14] Shaju K M, Subba Rao G V, Chowdari B V R. Performance of layeredLi[Ni1/3Mn1/3Co1/3]O2as cathode for Li-ion batteries [J]. Electrochimica Acta,2002,48:145-151.
    [15] Hwang B J, Tsai Y W, Carlier D, et al. A combined computational/experimentalstudy on LiNi1/3Co1/3Mn1/3O2[J]. Chemistry of Materials,2003,15:3676-3682.
    [16] Delmas C, Pérès J P, Demourgues A, et al. On the behavior of the LixNiO2system: an electrochemical and structural overview [J]. J. Power Sources,1997,68:120-125.
    [17] Koyama Y, Yabuuchi N, Tanaka I, et al. Solid-state chemistry andelectrochemistry of LiCo1/3Ni1/3Mn1/3O2for advanced Lithium-ion batteries [J]. J.Electrochemical Society,2004,151: A1545-A1551.
    [18] Zaghib K, Charest P, Dontigny M, et al. LiFePO4: From molten ingot tonanoparticles with high-rate performance in Li-ion batteries [J]. J. Power Sources,2010,195:8280-8288.
    [19] Lu Z, Dahn J R. Understanding the anomalous capacity ofLi/Li[NixLi(1/3-2x/3)Mn(2/3-x/3)]O2cells using in situ X-ray diffraction andelectrochemical studies [J]. J. Electrochemical Society,2002,149: A815-A822.
    [20] Kim J S, Johnson C S, Thackeray M M.Layered xLiMO2·(1x)Li2MO3electrodes for lithium batteries: a study of0.95LiMn0.5Ni0.5O2·0.05Li2TiO3[J]. Electrochemistry Communications,2002,4:205-209.
    [21] MacNeil D D, Lu Z, Dahn J R. Structure and electrochemistry ofLi[NixCo12xMnx]O2(0≤x≤1/2)[J]. J. Electrochemical Society,2002,149:A1332-A1336.
    [22] Kim M G, Shin H J, Kim J H, et al. XAS investigation of inhomogeneousmetal-oxygen bond covalency in bulk and surface for charge compensation in Li-ionbattery cathode Li[Ni13Co13Mn13]O2material [J]. J. Electrochemical Society,2005,152: A1320-A1328.
    [23] Wang Z, Sun Y K, Chen L, et al. Electrochemical characterization of positiveelectrode material LiNi1/3Co1/3Mn1/3O2and compatibility with electrolyte forlithium-ion batteries [J]. J. Electrochemical Society,2004,151: A914-A921.
    [24] Fan J, Fedkiw P S. Electrochemical impedance spectra of full cells: Relation tocapacity and capacity-rate of rechargeable Li cells using LiCoO2, LiMn2O4, andLiNiO2cathodes [J]. J. Power Sources,1998,72:165-173.
    [25] Manthiram A, Kim J. Low temperature synthesis of insertion oxides for lithiumbatteries [J]. Chemistry of Materials,1998,10:2895-2909.
    [26] Delmas C, Menetrier M, Croguennec L, et al. An overview of theLi(Ni,M)O2systems: syntheses, structures and properties [J]. Electrochimica Acta,1999,45:243-253.
    [27] Ohzuku T, Ueda A, Nagayama M, et al. Comparative study of LiCoO2,LiNi1/2Co1/2O2and LiNiO2for4volt secondary lithium cells [J]. Electrochimica Acta,1993,38:1159-1167.
    [28] Madhavi S, Subba Rao G V, Chowdari B V R, et al. Synthesis and cathodicproperties of LiCo1-yRhyO2(0≤y≤0.2) and LiRhO2[J]. Journal of TheElectrochemical Society,2001,148: A1279-A1286.
    [29] Kajiyama A, Takada K, Inada T, et al. Layered Li-Co-Mn oxide as ahigh-voltage positive electrode material for lithium batteries [J]. J. ElectrochemicalSociety,2001,148: A981-A983.
    [30] Padhi K A, Nanjundawamy K S, Goodenough J B. Phospho-olivine as positiveelectrode materials for rechargeable lithium batteries [J]. J. Electrochemical Society,1997,144:1188-1194.
    [31] Zhu G N, Wang C X, Xia Y Y. A comprehensive study of effects of carboncoating on Li4Ti5O12anode material for lithium-ion batteries [J]. J. ElectrochemicalSociety,2011,158: A102-A109.
    [32] Chen Y, Wang C W, Liu G, et al. Selection of conductive additives in Li-ionbattery cathodes: a numerical study [J]. J. Electrochemical Society,2007,154:A978-A986.
    [33] Yabuuchi N, Ohzuku T. Novel lithium insertion material of LiNi1/3Co1/3Mn1/3O2for advanced lithium-ion batteries [J]. J. Power Sources,2003,119-121:171-174.
    [34] Yang Z, Song Z, Chu G, et al. Surface modification of LiCo1/3Ni1/3Mn1/3O2withCoAl-MMO for lithium-ion batteries [J]. J. Materials Science,2012,47:4205-4209.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700