碱土金属掺杂对Pd/CZA三效催化剂空燃比窗口特性的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着汽车尾气污染的日益严重与汽车排放法规的日益严格,对三效催化剂(TWCs)性能提出愈加苛刻的要求。面对复杂的汽车工况运行情况,优良的TWCs在具有高催化转化率同时还应具备宽的空燃比工作窗口。本文针对Pd/Ce_(0.67)Zr_(0.33)-Al_2O_3三效催化剂体系,考察了高温水热老化、水蒸气及碱土金属掺杂改性对空燃比窗口特性的影响。
     采用柠檬酸溶胶-凝胶法制备了碱土金属掺杂的Pd/M-Ce_(0.67)Zr_(0.33)-Al_2O_3催化剂(M=Ca、Sr、Ba),考察了改性催化剂的空燃比窗口特性及动态储放氧性能(OSC),通过XRD、BET等表征手段探寻引起催化剂活性变化的原因。
     研究表明:采用溶胶-凝胶法制备的Pd/Ce_(0.67)Zr_(0.33)-Al_2O_3催化剂,结晶度差,晶粒较小,具有较好的热稳定性。5%水蒸气气氛下,1050℃水热老化10 h后铈锆固溶体(CZ)未发生分相,催化剂的表面和体相结构得到修饰,空燃比窗口保持了0.125的宽度。反应气氛中存在水蒸气,促进了水煤气变化反应和蒸汽重整反应的进行,进一步扩宽空燃比窗口。碱土金属掺杂改性后,对催化剂结构与性能产生较大影响:①Ca掺杂进入氧化铝晶格中,虽然抑制了氧化铝的烧结,但对拓宽空燃比窗口作用不大;②Sr掺杂同时进入氧化铝和铈锆固溶体晶格中,提高了CO的转化性能以及贫燃时的NO_x还原性能,使空燃比窗口向贫燃方向移动,3%的Sr掺杂量具有较优的空燃比窗口特性;③Ba掺杂影响铈锆固溶体结构,提高了其高温稳定性,并大幅提高贫燃时NO_x的转化率,拓宽了空燃比窗口。
     催化剂的空燃比窗口与催化剂的比表面积大小无直接关联,主要受催化剂OSC性能的影响。催化剂OSC性能越好,空燃比窗口越宽。
Increasing strict regulations for automotive exhaust emission control inevitably demand advanced technologies in three-way catalysts (TWC). The complexity of vehicle operation conditions not only requires high catalytic efficiency of TWCs at stoichiometric air-fuel ratio, but also needs being compatible for application under wider air-fuel ratios. This thesis aims to investigate the doping effect of alkaline earth metals (Ca, Sr, Ba), steam in net reaction and hydrothermal ageing for model Pd/Ce_(0.67)Zr_(0.33)-Al_2O_3 TWCs.
     Alkaline earth metals doped Pd/MCe_(0.67)Zr_(0.33)O_2-Al_2O_3 (M=Ca, Sr, Ba) were synthesized by a citric acid sol-gel method. TWC, dynamic oxygen storage capability (OSC) tests were performed to evaluate the catalytic redox activities. Contributions from texture modifications were obtained from XRD and BET analysis.
     Research result reveals that all as prepared samples maintained as fine particles with less crystallization and desirable thermal stability. Due to the optimized bulk and surface texture, phase separation did not take place for ceria-zirconia (CZ) solid solutions after hydrothermal ageing at 1050℃for 10 h, in conjecture with the unchanged 0.125λ-windows’width. Injection of steam in the TWC operating atmosphere promoted the water gas shift (WGS) reaction, and therefore facilitating widen theλ-windows to further extent. Doped alkaline earth metals profoundly influence the catalysts’texture and activity in discrepant ways.①Ca dopants entered the lattice of alumina and depressed the sintering of the latter, without significant effects for the width ofλ-window;②Besides entering alumina lattice, Sr dopants also worked for the lattice of CZ, fueling CO and NOx conversion in lean condition. It is estimated that 3% doped Sr has the optimized effect for widenλ-windows;③Ba dopants affected the structure of CZ in elevating thermal stability and promoting NOx conversion in lean conditions, thus broadening theλ-windows.
     Width ofλ-windows is of less correlation with the surface areas of TWCs. Instead, higher OSC activity of TWCs is of critical and positive role for widening theλ-windows.
引文
[1]吴国正,马丽萍,贺克雕,汽车尾气污染与防治,广东化工, 2007, 34(5): 67~68
    [2] Ka(?)par J, Fornasiero P, Hickey N, Automotive catalytic converters: current status and some perspectives, Catalysis Today, 2003, 77(4): 419~449
    [3] K(?)nig A, Herding G, Hupfeld B, et al., Current tasks and challenges for exhaust aftertreatment research: A viewpoint from the automotive industry, Topics in Catalysis, 2001, 16(1-4): 23~31
    [4]朱振忠,田群,陈宏德,汽车尾气三效催化剂,中国环保产业, 2002, 37(7): 34~36
    [5] Gandhi H S, Graham G W, and McCabe R W,Automotive exhaust catalysis,Journal of Catalysis, 2003, 216(1-2): 433~442
    [6]李玉山,王来军,文明芬,等,单钯汽车尾气催化剂研究进展,化工新型材料, 2006, 34(7): 1~4
    [7] Liu Z Q, Anderson J A, Influence of reductant on the regeneration of SO2-poisoned Pt/Ba/Al2O3 NOx storage and reduction, Journal of Catalysis, 2004, 228(1): 243~253
    [8] Whittington B I, Jiang C J, Trimm D L, Vehicle exhaust catalysis: I. The relative importance of catalytic oxidation, steam reforming and water-gas shift reactions, Catalysis Today, 1995, 26(1): 41
    [9] Farida S, Daniel D, Francois G, et al., Hydrogen formation in the reaction of steam with Rh/CeO2 catalysts: a tool for characterising reduced centres of ceria, Journal of Catalysis, 2003, 213(2): 226
    [10] Aneggi E, Boaro M, de Leitenburg C, et al., Insights into the redox properties of ceria-based oxides and their implications in catalysis, Journal of Alloys and Compounds, 2006, 408: 1096~1102
    [11] Di Monte R, Ka?par J, Heterogeneous environmental catalysis - a gentle art: CeO2-ZrO2 mixed oxides as a case history, Catalysis Today, 2005, 100(1-2): 27~35
    [12] Loong C K, Ozawa M, The role of rare earth dopants in nanophase zirconia catalysts for automotive emission control, Journal of Alloys and Compounds, 2000, 303: 60~65
    [13] Di Monte R, Ka?par J, On the role of oxygen storage in three-way catalysis, Topics in Catalysis, 2004, 28(1-4): 47~57
    [14] Wu X D, Yang B, Weng D, Effect of Ce-Zr mixed oxides on the thermal stabilityof transition aluminas at elevated temperature, Journal of Alloys and Compounds, 2004, 376(1-2): 241~245
    [15] Piras A, Trovarelli A, Dolcetti G, Remarkable stabilization of transition alumina operated by ceria under reducing and redox conditions, Applied Catalysis B: Environmental, 2000, 28(2): L77~L81
    [16] Jacobs G, Graham U M, Chenu E, et al., Low-temperature water-gas shift: impact of Pt promoter loading on the partial reduction of ceria and consequences for catalyst design, Journal of Catalysis, 2005, 229(2): 499~512
    [17] Suhonen S, Valden M, Hietikko M, et al., Effect of Ce-Zr mixed oxides on the chemical state of Rh in alumina supported automotive exhaust catalysts studied by XPS and XRD, Applied Catalysis A: General, 2001, 218(1-2): 151~160
    [18] Liotta L F, Longo A, Macaluso A, et al., Influence of the SMSI effect on the catalytic activity of a Pt(1%)/Ce0.6Zr0.4O2 catalyst: SAXS, XRD, XPS and TPR investigations, Applied Catalysis B: Environmental, 2004, 48(2): 133~149
    [19] Kenevey K, Valdivieso F, Soustelle M, et al., Thermal stability of Pd or Pt loaded Ce0.68Zr0.32O2 and Ce0.50Zr0.50O2 catalyst materials under oxidising conditions, Applied Catalysis B: Environmental, 2001, 29(2): 93~101
    [20] Di Monte R, Ka?par J, Fornasiero P, et al., NO reduction by CO over Pd/Ce0.6Zr0.4O2-Al2O3 catalysts: in situ FT-IR studies of NO and CO adsorption, Inorganica Chimica Acta, 2002, 334: 318~326
    [21] Cornelius S J, Collings N, Glover K, The role of oxygen storage in NO conversion in automotive catalysts, Topics in Catalysis, 2001, 16(1-4): 57~62
    [22] Formasiero P, Di Monte R, Rao G R, et al., Rh-loaded CeO2-ZrO2 solid solutions as highly effects oxygen exchanges: Dependence of the reductions behavior and the oxygen storage capacity on the structural properties, Journal of Catalysis, 1995, 151(1): 168~177
    [23] Trovarelli A, Zamar F, Llorca J, et al., Nanophase fluorite-structured CeO2-ZrO2 catalysts prepared by high-energy mechanical milling, Journal of Catalysis, 1997, 169(4): 490~502
    [24] Suzuki T, Morikawa A, Suda A, Alumina-ceria-zirconia composite oxide for three-way catalyst, R&D Review of Toyota CRDL, 2002, 37(4): 28~33
    [25] Sugiura M, Oxygen storage materials for automotive catalysts: ceria-zirconia solid solutions, Catalysis Surveys from Asia, 2003, 7(1): 77~87
    [26] Fornasiero P, Balducci G, Di Monte R, et al., Modification of the redox behaviour of CeO2 induced by structural doping with ZrO2, Journal of Catalysis, 2001, 164(1): 173~183
    [27] Sakamoto Y, Kizaki K, Motohiro T, et al., New method of measuring the amount of oxygen storage/release on millisecond time scale on planar catalyst, Journal ofCatalysis, 2002, 211(1): 157~164
    [28] De Leitenburg C, Trovarelli A, Ka?par J, A temperature-programmed and transient kinetic study of CO2 activation and methanation over CeO2 supported noble metals, Journal of Catalysis, 1997, 166(1): 98~107
    [29] Daturi M, Finocchio E, Binet C, et al., Reduction of high surface area CeO2-ZrO2 mixed oxides, Journal of Physical Chemistry B, 2000, 104(39): 9186~9194
    [30] Zhang F, Chen C H, Raitano J M, et al., Phase stability in ceria-zirconia binary oxide nanoparticles: The effect of the Ce3+ concentration and the redox environment, Journal of Applied Physics, 2006, 89(3): 1028~1036
    [31]董相廷,李铭,张伟,等,沉淀法制备CeO2纳米晶与表征,中国稀土学报, 2001, 19(1): 24~26
    [32] Rey J F Q, Muccillo E N S, Lattice parameters of yttria-doped ceria solid electrolytes, Journal of the European Ceramic Society, 2004, 24(6): 1287~1290
    [33] Fernández-García M, Martínez-Arias A, Iglesias-Juez A, et al., Structural characteristics and redox behavior of CeO2-ZrO2/Al2O3 supports, Journal of Catalysis 2000, 194(2): 385~392
    [34]燕英强,柯秀芳,张仁元,三效催化剂用储氧材料的研究进展,山西化工, 2007, 27(1): 36~39
    [35]汪文栋,胡天斗,林培琰,等,用Pr修饰的(Ce-Zr)O2固溶体在三效催化剂中的作用,中国稀土学报, 2002, 20(3): 265~269
    [36]杨志柏,林培琰,肖莉,等,以Nd改性CeO2-ZrO2固溶体助剂的研究,催化学报, 2001, 22(4): 365~369
    [37] Markaryan G L, Ikryannikova L N, Muravieva G P, et al., Redox properties and phase composition of CeO2-ZrO2 and Y2O3-CeO2-ZrO2 solid solutions, Colloids and Surfaces, A: Physicochemical and Engineering Aspects, 1999, 151(3): 435~447
    [38]王常珍,固体电解质和化学传感器,北京:冶金工业出版社, 2000, 55
    [39] Arai H, Kunisaki T, Shimizu Y, et al., Electrical properties of calcia-doped ceria with oxygen ion conduction, Solid State Ionics, 1986, 20(4): 241~248
    [40] Yahiro H, Eguchi Y, Eguchi K, et al., Oxygen ion conductivity of the ceria-samarium oxide system with fluorite structure, Journal of Applied Electrochemistry, 1988, 18(44): 527~531
    [41] Inaba H, Tanawa H, Ceria-based solid electrolytes, Solid State Ionics, 1996, 83(1-2): 1~16
    [42] Mamontov E, Egami T, et al., X-ray absorption and inelastic scattering studies of single-crystal CeO2, Journal of Physics and Chemistry of Solids, 2001, 62(4): 819~823
    [43] Minwei Zhao, Meiqing Shen, Jun Wang, Ce-Zr-Sr ternary mixed oxidesstructural characteristics and oxygen storage capacity, Journal of Alloys and Compounds, 2008, 457(1-2): 578
    [44] Fernández-García, Martínez-Arias A, et al., Ce-Zr-Ca Ternary Mixed Oxides: Structural Characteristics and Oxygen Handling Properties, Journal of Catalysis, 2002, 211(2): 326~334
    [45] Eguchi K, Setoguchi T, Inoue T, et al., Electrical properties of ceria-based oxides and their application to solid oxide full cells, Solid State Ionics, 1992, 52(1): 165~172
    [46] Kim D J, Lattice parameters, ionic conductivities, and solubility limits in fluorite-structure MO2 oxide (M=Hf4+, Zr4+, Ce4+, Th4+, U4+) solid solutions, Journal of the American Ceramic Society, 1989, 72(8): 1415~1421
    [47] Panagiotopoulou P, Papavasiliou J, Avgouropoulos G, et al., Water–gas shift activity of doped Pt/CeO2 catalysts, Chemical Engineering Journal, 2007, 134(1-3): 16~22
    [48] Andréa M Duarte de Farias, Ana P M G Barandas, Rafael F Perez, et al., Water-gas shift reaction over magnesia-modified Pt/CeO2 catalysts, Journal of Power Sources, 2007, 165(2): 854~860
    [49] Kobayashi T, Yamada T, Kayano K, Effect of basic metal additives on NOx reduction property of Pd-based three-way catalyst, Applied Catalysis B, 2001, 30(3): 287
    [50] Iwamoto M, Zengyo T, Heman dez A M, et al., Intermediate addition of reductant between an oxidation and a reduction catalyst for highly selective reduction of NO in excess oxygen, Applied Catalysis B, 1998, 17(3): 259
    [51] Liotta L F, Macalus A, Arena G E, et al., Catalyst Today, 2002, 75, 439~449
    [52] Yahiro H, Eguchi K, Arai H, Electrical properties and reducibilities of ceria-rare earth oxide system an their application to solid oxide fuel cell, Solid State Ionics, 1989, 36(1-2): 71~75
    [53] Jr J Barbier, Duprez D, Reactivity of steam in exhaust gas catalysis I. Steam and oxygen/steam conversions of carbon monoxide and of propane over PtRh catalysts, Applied Catalysis B: Environmental, 1993, 3(1): 61~83
    [54]岳伟,张益群,周伟,等,汽车尾气催化净化过程中的水煤气反应和蒸汽转换反应,工业催化, 2000, 8(5): 29~33
    [55] Martín L, L Arranz J, Prieto O, et al., Simulation three-way catalyst ageing-Analysis of two conventional catalyst, Applied Catalysis B, 2003, 44(1): 41
    [56] Martínez-Arias A, Fernández-García M, Hungría A B, et al., Effect of Thermal Sintering on Light-Off Performance of Pd/(Ce,Zr)Ox/Al2O3 Three-Way Catalysts: Model Gas and Engine Tests,Journal of Catalysis, 2001, 204(1): 238~248
    [57] Salin L, Potvin C, Tempere J-F, et al., Percentage of metal exposed on commercial three-way catalysts, Ind. Eng. Chem. Res, 1998, 37(12): 4531~4535
    [58] Lee J S, Choi S C, Crystallization behavior of nano ceria powders by hydrothermal synthesis using a mixture of H2O2 and NH4OH, Materials Letters, 2004, 58(3-4): 390~393
    [59]安源,碱土金属掺杂对铈锆固溶体结构及储放氧性能影响的研究,博士学位论文:天津,天津大学, 2006
    [60] Panayiota S Lambrou, Petros G Savva, JoséLuis G. Fierro, et al., The effect of Fe on the catalytic behavior of model Pd-Rh/CeO2-Al2O3 three-way catalyst, Applied Catalysis B: Environmental, 2007, 76: 375~385
    [61] Szailer T, Kwak JH, Kim DH, Effects of Ba loading and calcination temperature on BaAl2O4 formation for BaO/Al2O3 NOx storage and reduction catalysts, Catalysis Today, 2006, 114(1): 86~93
    [62] Szailer T, Kwak JH, Kim DH, Reduction of stored NOx on Pt/Al2O3 and Pt/BaO/Al2O3 catalysts with H2 and CO, Journal of Catalysis, 2006, 239(1): 51~64
    [63] Szanyi J, Kwak JH, Hanson J, Changing morphology of BaO/Al2O3 during NO2 uptake and release, Journal of Physical Chemistry B, 2005, 109(15): 7339~7344
    [64] Kwak JH, Kim DH, Szanyi J, Reactivity of Pt/BaO/Al2O3 for NOx storage/reduction: Effects of Pt and Ba loading, Abstracts of Papers of The American Chemical Society, 2005, 229: 876~876
    [65]杨志柏,林培琰,肖莉,等,以Nd改性CeO2-ZrO2固溶体助剂的研究,催化学报, 2001, 22(4): 365~369
    [66] Ishikawa, Komai A, Satsuma S, et al., Solid Superacid as the Support of a Platinum Catalyst for Low-Temperature Catalytic Combustion, Applied Catalysis A, 1994, 110(1): 61~66
    [67] Yoshiteru Y, Hisao Y, Nobuyuki T, et al., Acid Strength of Support Materials as a Factor Controlling Oxidation State of Palladium Catalyst for Propane Combustion, Journal of Catalysis, 1999, 187(1): 15~23
    [68] Thevenin P O, Pocoroba E, Pettersson L J, et al., Characterization and Activity of Supported Palladium Combustion Catalysts, Journal of Catalysis, 2002, 207(1): 139~149

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700