单钯催化剂制备工艺及组分间相互作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了满足日益严格的汽车排放标准,对三效催化剂(TWCs)的性能提出了愈加苛刻的要求。在TWCs的改进过程中,寻找最佳的催化剂制备工艺,及进行催化剂组分间相互作用对催化剂性能影响的研究已成为目前研究热点之一。
     本论文以三效催化剂Pd/Ce0.7Zr0.3O2/Al2O3为研究对象,将获得优越性能催化剂作为研究目标,比较了不同的催化剂制备工艺路线,优化制备条件后获得了最佳路线,进一步研究了TWCs中Pd、Ce0.7Zr0.3O2及Al2O3间相互作用对催化剂性能的影响作用。
     经研究确立,使用前驱溶液混合方法制备Ce0.7Zr0.3O2-Al2O3复合载体,等体积浸渍Pd溶液,可制备得到热稳定性优良、储氧性能及三效催化转化性能突出的Pd/Ce0.7Zr0.3O2/Al2O3催化剂。
     使用不同钯负载方式制备Pd/Ce0.7Zr0.3O2可控制组分间相互作用程度。比较五种不同方式获得样品,等体积浸渍法制备催化剂Pd分布于表面具有较多表面活性位,表现出最优的储放氧以及三效催化性能。
     研究表明,使用前驱溶液混合方法制备的复合载体,Ce0.7Zr0.3O2与Al2O3间存在强相互作用。此强相互作用有利于形成规则大孔的均匀材料并可提高载体热稳定性,抑制高温老化过程中Al2O3相变以及Ce0.7Zr0.3O2分相。同时也能提高材料的Ce3+与氧空位浓度,提高氧迁移速率,增强材料储放氧性能。
     采用原位红外漫反射、H2吸附等表征手段研究不同载体负载Pd样品,结果显示:Pd-Al2O3相互作用使Pd具有更适合NO与C3H8转化的粒径与形貌,促进C3H8的吸附、N-O键的断裂和N-N键的重组。Pd-Ce0.7Zr0.3O2间相互作用使Pd更倾向于以氧化价态存在,并具有较高分散度以及较小粒径,形成大量的活性位,有利于CO氧化反应发生。
In order to satisfy the increasing strict regulations on emission of vehicle exhausts, development of advanced automobile three-way-catalyst (TWCs) have been widely investigated. For the purpose of promoting the activities, optimizing preparation technology of TWCs is considered as the sticking point to advance efficient solutions. In this work, to obtain catalyst with excellent thermal stability and high catalytic properties, different preparation technologies were studied. The results show the best preparation method is: CeO2–ZrO2–Al2O3 supports are obtained by precursor mixing co-precipitation, and Pd is supported on the supports by the incipient wetness method.
     Pd/Ce0.7Zr0.3O2 samples prepared by various Pd support methods have different interaction between components on different level. The sample obtained by co-precipitation which possesses intimate interaction between Pd and Ce0.7Zr0.3O2 has high thermal stability but few Pd active sites; the sample obtained by incipient wetness has most Pd active sites, outstanding oxygen storage/release capability and catalytic activity.
     Obtained by precursor mixing co-precipitation, strong interaction between Ce0.7Zr0.3O2 and Al2O3 exists in mixed ceria-zirconia-alumina oxides. With most incorporation of Al3+ into the lattices of Ce0.7Zr0.3O2 indicates the essential of the interaction between Ce0.7Zr0.3O2 and Al2O3. This sample has the smallest crystallites and highest surface area confirmed through BET and XRD measurements. Meanwhile, EPR detected increasing Ce3+ and OSC is obviously enhanced by intimate interaction between ceria-zirconia and alumina. The results show that the intimate interaction between ceria-zirconia and alumina could modify the structural properties,improve thermal stability and enhance OSC.
     Moreover, to induce the interactive effect between Pd and different supports, a series Pd-loaded sample was designed to obtain different interaction forms. The results show that the interaction between Pd and Al2O3 benefits the conversion of HC and NO under stoichiometric air/fuel condition. Pd tends to exist on Al2O3 with large particles and metallic state, which improves the adsorption of HC, N-O bond rupture and N-N bond recombination. Meanwhile, Pd loaded on Ce0.7Zr0.3O2 with small Pd particle size and high Pd dispersion is in favor of CO elimination.
引文
[1]中华人民共和国公安部交管局通报,2007, http://www.mps.gov.cn/
    [2]冯晋祥,汽车排放法规及控制技术的研究,交通标准化,2003,(7) :24~28
    [3]中华人民共和国国民经济和社会发展年度统计公报, 2006 , http://www.stats.gov.cn/tjgb/ndtjgb/index.htm
    [4]沈美庆,贾莉伟,许全瑞等,燃油种类对汽油车尾气净化催化剂性能的影响,催化学报,2005,26(6),527~530
    [5]范秀英,张微,韩圣慧,我国汽车尾气污染状况及其控制对策分析,环境科学,1999,20(5):103~108
    [6] Shen M, Wang X, An Y et al, Dynamic Oxygen Storage Capacity Measurements on Ceria-based Material, Journal of Rare Earths, 2007, 25 (1), 48-52
    [7]肖益鸿,蔡国辉,詹瑛瑛等,汽车尾气催化净化技术发展动向,中国有色金属学报,2004,14 (1):347~348
    [8]张永波,马迎,现代汽车尾气的检测标准与净化措施,交通标准化,2007,7:12~15
    [9]汪卫东,现代汽油车排放及其控制技术综述,内燃机,2004,(5):1~4
    [10] Matsumoto S, Recent advances in automobile exhaust catalysts, Catalysis Today, 2004, 90: 184-186
    [11] John N, Armor Environmental Catalysis, Applied Catalysis B: Environmental, 1992, (1):221-256
    [12] Gandhi H, Graham G, McCabe R, Automotive exhaust catalysis, Journal of Catalysis, 2003, 216: 433-442
    [13] Ka?par J, Fornasiero P, Hickey N, Automotive catalytic converters: current status and some perspectives, Catalysis Today, 2003, 77: 419-449
    [14] http://www.cre.net/xtzs/cuihua.htm
    [15]翁端,吴晓东,2005年我国稀土催化领域稀土消费情况,稀土信息,2006,03
    [16]翁端,卢冠忠,张国成等,稀土催化材料在能源环境领域中的应用探讨.,中国基础科学, 2003(4):10~13
    [17] Ozawa M, Kimura M, Isogai A, The application of Ce-Zr oxide solid-solution to oxygen storage promoters in automotive catalysts, Journal of Alloys and Compounds, 1993, 193(1-2): 73-75
    [18] Suzuki T, Morikawa A, Suda A et al, Alumina-ceria-zirconia composite oxide for three-way catalyst,R&D Review of Toyata CRDL, 37(4): 28-33
    [19] Yashima M, Morimoto K, Ishizawa N et al, Zirconia-ceria solid solution synthesis and the temperature-time-transformation diagram for the 1:1 composition, Journal of the American Ceramic Society, 1993, 76(7): 1745-1750
    [20] Yashima M, Hirose T, Katano S et al, Structural-Changes of ZrO2-CeO2 Solid-Solutions around the Monoclinic-Tetragonal Phase-Boundary, Physical Review B, 1995, 51(13): 8018-8025
    [21] Haass F, Fuess H, Structural characterization of automotive catalysts, Advanced Engineering Materials, 2005, 7(10): 899-913
    [22] Burch R, Knowledge and know-how in emission control for mobile applications. Catalysis Review, 2004, 46(3-4): 271-333
    [23] Vidmar P, Fornasiero P, Ka?par J et al, Effects of trivalent dopants on the redox properties of Ce0.6Zr0.4O2 mixed oxide, Journal of Catalysis, 1997, 171(1): 160-168
    [24] Rossignol S, Descorme C, Kappenstein C et al, Synthesis, structure and catalytic properties of Zr-Ce-Pr-O mixed oxides, Journal of Materials Chemistry, 2001, 11(10): 2587-2592
    [25] Ikryannikova L N, Aksenov A A, Markaryan G L et al, The redox treatments influence on the structure and properties of M2O3-CeO2-ZrO2 (M = Y, La) solid solutions. Applied Catalysis A. General, 2001, 210(1-2): 225-235
    [26] Cho B. K, Chemical modification of catalyst support for enhancement of transient catalytic activity: nitric oxide reduction by carbon monoxide over rhodium, Journal of catalysis, 1991, 131(1): 74-87
    [27]朱振忠,田群,陈宏德,汽车尾气三效催化剂,中国环保产业,2002,37(7): 34~36
    [28]周文龙,共沉淀法制备锆氧化铝复合氧化物的性能研究:[硕士学位论文]天津;天津大学,2006
    [29] Zhang Y, Andersson S, Muhammed M, Nanophase Catalytic Oxides.1.Synthesis of Doped Cerium Oxides as Oxygen Storage Promoters, Applied Catalysis B: Environmental, 1995, 6(4): 325-337
    [30]杨志柏,林培琰,汪文栋,以Nd改性CeO2-ZrO2固溶体助剂的研究,催化学报,2001,22(4):365~369
    [31] Morikawa A, Suzuki T, Kanazawa T et al, A new concept in high performance ceria–zirconia oxygen storage capacity material with Al2O3 as a diffusion barrier, Applied Catalysis B: Environmental, 2007, 78,210-221
    [32] Sugiura M, Oxygen storage materials for automotive catalysts: ceria-zirconia solid solutions, Catalysis Surveys from Asia, 2003, 7(1), 77-86
    [33] Monte R.Di, Fornasiero P, Ka?par J et al, Stabilisation of nanostructured Ce0.2Zr0.8O2 solid solution by impregnation on Al2O3: a suitable method for the production of thermally stable oxygen storage/ release promoters for three-way catalysts, Chemical Communications, 2000, 2167- 2168
    [34] Monte R.Di, Fornasiero P, Desinan S et al, Thermal stabilization of CexZr1-xO2 oxygen storage promoters by addition of Al2O3: Effect of thermal aging on textural, structural, and morphological properties, Chemistry of Materials, 2004, 16(22), 4273-4285
    [35] Sobukawa H, Development of Ceria-Zirconia Solid Solutions and Future Trends, R&D Review of Toyota CRDL, 2002, 37(4)
    [36]王乐夫,纪红兵,汽车尾气净化催化剂的现状与发展,广州化工,2003,31(4):18~23
    [37] McCabe R.W, Usmen R.K, Amsterdam: Elsevier, Studies in Surface Science and Catalysis, 1996, p355
    [38] Fornasiero P, Di Monte R, Montini T et al, Thermal stability and oxygen storage capacity of noble metal/ceria-zirconia catalysts for the automotive converters with the on-board-diagnostics (OBD), Studies in Surface Science and Catalysis, 2000, 130(2):1355-1360
    [39] Luo M. F, Zheng X.M, Redox behaviour and catalytic properties of Ce0.5Zr0.5O2-supported palladium catalysts, Applied Catalysis A: General, 1999, 189(1):15-21
    [40] Bozo C, Guilhaume N, Herrmann J, Role of the ceria–zirconia support in the reactivity of platinum and palladium catalysts for methane, Journal of catalysis, 2001, 203: 393-406
    [41] Hori C. E, Brenner A, Rahmoeller K. M et al, Studies of the oxygen release reaction in the platinum–ceria–zirconia system, Catalysis Today, 1999, 50: 299-308
    [42] Masui T, Ozaki T, Machida K et al, Preparation of ceria–zirconia sub–catalysts for automotive exhaust cleaning, Journal of Alloys and Compounds, 2000, 303–304: 49-55
    [43] Fan J, X.Wu, X.Wu et al, Thermal ageing of Pt on low-surface-area CeO2–ZrO2–La2O3 mixed oxides: Effect on the OSC performance, Applied Catalysis B: Environmental, 2008, 81, 38–48
    [44] Zhao M, Shen M, Wang J, Effect of surface area and bulk structure on oxygen storage capacity of Ce0.67Zr0.33O2, Journal of Catalysis, 248, 2, 258-267
    [45] Wu X, Fan J, Ran R et al, Effect of preparation method on the structure and redox behavior of platinum–ceria–zirconia catalysts. Journal of Chemical Engineering, 2005, 109: 133–139
    [46] Gennari F.C, Neyertz C, Meyer G, et al, Kinetics of hydrogen chemisorption on high surface area Pd/Ce0.8Zr0.2O2. Journal of Alloys and Compounds, 404-406, 317-322
    [47]王军,合成氨原料气中CO加氢甲醇化催化剂的研究:[硕士学位论文]天津;天津大学,1996
    [48]樊俊,金属-载体强相互作用对Pt/CeO2–ZrO2三效催化剂性能的影响:[硕士学位论文]北京;清华大学,2006
    [49] Golunski S. E, Hatcher H. A, Rajaram R. R, Origins of low-temperature three-way activity in Pt/CeO2, Applied Catalysis B: Environmental, 1995, 5: 367-376
    [50] Iglesias-Juez A, Martínez-Arias A, Fernández-García M, Metal–promoter interface in Pd/ (Ce,Zr)Ox/Al2O3 catalysts: effect of thermal aging, Journal of Catalysis, 2004, 221: 148-161
    [51] Bekyarova E, Fornasiero P, Ka?par J et al, CO oxidation on Pd/CeO2-ZrO2 catalysts, Catalysis Today, 1998, 45, 179-183
    [52] Vidal H, Kaspar J, Pijolat M et al, Redox behavior of CeO2-ZrO2 mixed oxides - II. Influence of redox treatments on low surface area catalysts, Applied Catalysis B: Environmental, 2001, 30(1-2): 75-85
    [53] Wang W D, Lin P Y, Fu Y L et al, Redox properties and catalytic behavior of praseodymium-modified (Ce-Zr)O2 solid solutions in three-way catalysts. Catalysis Letter, 2002, 82(1-2): 19-27
    [54] Yashima M, Ohtake K, Kakihana M et al, Determination of tetragonal-cubic phase boundary of Zr(1-x)R(x)O(2-x/2) (R=Nd,Sm,Y,Er and Yb) by Raman scattering, Journal of Physics and Chemistry of Solids, 1996, 57(1): 17-24
    [55] Aneggi E, Boaro M, Leitenburg C et al, Insights into the dynamics of oxygen storage/release phenomena in model ceria–zirconia catalysts as inferred from transient studies using H2, CO and soot as reductants, Catalysis Today, 2006, 112:94-98
    [56] Fernández-García M, Martínez-Arias A, Iglesias-Juez A et al, Structural Characteristics and Redox Behavior of CeO2–ZrO2/Al2O3 Supports, Journal of Catalysis, 2000, 194: 385-392
    [57] Zhang F, Chan S W, Spanier J E et al, Cerium oxide nanoparticles: Size-selective formation and structure analysis, Applied Physics Letters, 2002, 80(1): 127-129
    [58] Wang J.B, Tai Y.L, Dow W.P, Study of ceria-supported nickel catalyst and effect of yttria doping on carbon dioxide reforming of methane, Applied Catalysis A: General, 2001, 218: 69-79
    [59] Sanchez-Valente J, Bokhimi X, Hernandez F, Physicochemical and Catalytic Properties of Sol-Gel Aluminas Aged under Hydrothermal Conditions, Langmuir, 2003, 19 :3583-3588
    [60] Leofanti G, Padovan M, Tozzola G et al, Surface area and pore texture of catalysts, Catalysis Today, 1998, 41:207-219
    [61] Jia L.W, Shen M.Q, Hao J.J et al, Dynamic oxygen storage and release over Mn0.1Ce0.9Ox and Mn0.1Ce0.6Zr0.3Ox complex compounds and structural characterization, Journal of Alloys and Compounds, 2007, doi:10.1016/j.jallcom.2006. 12.040
    [62] Sergent N,Lamonier J-F, Aboukais A, Electron Paramagnetic Resonance in Combination with the Thermal Analysis, X-ray Diffraction, and Raman Spectroscopy to Follow the Structural Properties of ZrxCe1-xO2 Solid Systems and Precursors, Chemistry of Materials, 2000, 12: 3830-3835
    [63] Saab E, Abi-Aad E, Bokova M.N et al, EPR characterisation of carbon black in loose and tight contact with Al2O3 and CeO2 catalysts, Carbon, 2007, 45(3): 561-567
    [64] Aboukais A, Zhilinskaya E.A, Lamonier J.F et al, EPR study of ceria–silica and ceria–alumina catalysts: Localization of superoxide radical anions, Colloids and Surfaces A: Physicochemical and Engineering, 2005, 260(1-3):199-207
    [65] Saab E, Aouad S, Abi-Aad E et al, Carbon black oxidation in the presence of Al2O3, CeO2, and Mn oxide catalysts: An EPR study, Catalysis Today, 2007, 119:286-290
    [66] Huaqing Z, Zhangfeng Q, Wenjuan S et al, Pd/CeO2-TiO2 catalyst for CO oxidation at low temperature: a TPR study with H2 and CO as reducing agents, Journal of Catalysis, 2004, 225:267-277
    [67] Martínez-Arias A, Fernández-García M, Ignesis-Juez A et al, In situ analysis of CO oxidation and NO reduction under stoichiometric CO+NO+O2, Applied Catalysis B: Environmental, 2001, 31: 51-56
    [68] Tsud N, CO adsorption on palladium model catalysts: XPS Pd–Al2O3 interaction study, Surface Science, 2000, 467:169-176
    [69] Hoost T.E, FTIR spectroscopy of nitric oxide adsorption on Pd/Al2O3: evidence of metal-support interaction, Journal of catalysis, 1995, 155:303-311
    [70] Granger P, Kinetics of the CO+NO Reaction over bimetallic platinum-rhodium on alumina: effect of ceria incorporation into noble metals, Journal of Catalysis, 2002, 207:202-212
    [71] Hu Z, Wan C Z, Lui Y K et al, Design of a novel Pd three-way catalysts: integration of catalytic functions in three dimensions, Catalysis Today, 1996, 30:83-89
    [72] Hadi A, Yaacob I.I, Synthesis of PdO/CeO2 mixed oxides catalyst for automotive exhaust emissions control, Catalysis Today, 2004, 96(3):165
    [73] Zhu H.Q, Qin Z.F, Shan W.J et al, Pd/CeO2–TiO2 catalyst for CO oxidation at low temperature: a TPR study with H2 and CO as reducing agents, Journal of Catalysis, 2004, 225:267-277
    [74] Priolkar K.R, Parthasaratm B, Sarode P.R et al, Formation of Ce1-xPdxO2- Solid Solution in Combustion-Synthesized Pd/CeO2 Catalyst: XRD, XPS, and EXAFS Investigation, Chemistry of Materials, 2002, 14: 2120-2128
    [75] Zenboury L, Azambre B, Weber J.V,Transient TPSR, DRIFTS-MS and TGA studies of a Pd/ceria-zirconia catalyst in CH4 and NO2 atmospheres , Catalysis Today, 2008, doi:10.1016/j.cattod.2007.12.136
    [76] Dean J. A, Lange’s Handbook of Chemistry, 15th New York: McGraw–Hill, 1998. Section 8.134
    [77] M. Fernández-García, A. Martínez-Arias, A. Iglesias-Juez et al, New Pd/CexZr1?xO2/Al2O3 three-way catalysts prepared by microemulsion: Part 1. Characterization and catalytic behavior for CO oxidation, Applied Catalysis B: Environmental, 2001, 31:39-50
    [78] X. Xu, P. Chen, D.W. Goodman, A Comparative Study of the Coadsorption of CO and NO on Pd(100), Pd(lll), and Silica-Supported Palladium Particles with Infrared Reflection -Absorption Spectroscopy, Journal of Physical Chemistry, 1994, 98:9242-9246
    [79] Rodriguez N. M, Dallabetta R. A, Baker R. T. K et al, In-Situ Electron Microscopy Studies of Palladium Supported on Al2O3, SiO2 and ZrO2 in Oxygen, Journal of Catalysis, 1995,157( 2):676-686
    [80] Sanchez-Valente J, Bokhimi X, Hernandez F, Physicochemical and Catalytic Properties of Sol-Gel Aluminas Aged under Hydrothermal Conditions, Langmuir, 2003, 19(9):3583-3588
    [81] Dumeignil F, Sato K, Imamura M et al, Modification of structural and acidic properties of sol–gel-prepared alumina powders by changing the hydrolysis ratio, Applied Catalysis A:General, 2003, 241:319-329
    [82] Cai S.H, Rashkeev S.N, Pantelides S.T et al, Atomic Scale Mechanism of the Transformation ofγ-Alumina toθ-Alumina, Physical Review Letter, 2002, 89:235501-235505
    [83] Descorme C, Taha R, Moral N.M, Oxygen storage capacity measurements of three-way catalysts under transient conditions, Applied Catalysis A: General , 2002, 223 :287-299
    [84] Bond G.C, Kinetics of alkane reactions on metal catalysts: activation energies and the compensation effect , Catalysis Today, 1999, 49(1-3):41-48
    [85] Galwey, A.K., Compensation effect in heterogeneous catalysis, Advances in Catalysis, 1977, 26:247
    [86] Bond G.C, Hooper A.D, Slaa J.C et al, Kinetics of Metal-Catalyzed Reactions of Alkanes and the Compensation Effect , Journal of Catalysis, 1996, 163:319-327
    [87] Wootsch A, Descorme C, Rousselet S et al, Carbon monoxide oxidation over well-defined Pt/ZrO2 model catalysts: Bridging the material gap, Applied Surface Science, 2006, 253:1310-1322
    [88] Cordatos H, Ford D, Gorte R.J, Simulated Annealing Study of the Structure and Reducibility in Ceria Clusters, Journal of Physical Chemistry, 1996, 100:18128-18132
    [89] Mamontov E, Egami T, Brezny R, Lattice Defects and Oxygen Storage Capacity of Nanocrystalline Ceria and Ceria-Zirconia, Journal of Physical Chemistry B, 2000, 104(47): 11110-11116

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700