纳米晶锆复合氧化物催化剂的SAS法制备与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
不断增加的汽车排放污染物已经成为危害生态环境和人体健康的越来越严重的问题。用于汽车尾气净化的锆复合氧化物的研究近年来成为新的研究热点。
     超临界抗溶剂法(Supercritical Anti-solvents, SAS)是一种新兴的微粒化技术,在热敏炸药、聚合物、催化剂等领域具有十分广阔的应用前景。与传统的制备催化剂的方法相比较,SAS法表现出很多的优势,例如制备得到的粒子形状规则、尺寸小等。本文采用SAS法制备了锆复合氧化物。
     采用SAS法制备了平均粒径为50~70 nm的CeO2前驱体,并采用正交试验法对制备工艺条件进行研究。结果表明,温度、浓度对CeO2前驱体的粒径影响较大;经焙烧,得到了纳米CeO2催化剂。采用SAS法制备了锆复合氧化物前驱体,考察了温度、压力和溶液浓度等工艺条件对锆共抗溶剂效应的影响。结果表明,温度对和锆在抗溶剂过程中有不同的影响,较高的温度下,乙酰丙酮锆比乙酰丙酮表现出更强的抗溶剂效应;随着压力、溶液流量增加,相对于乙酰丙酮,乙酰丙酮锆的抗溶剂效应逐渐降低。上述实验结果为实现不同锆比制备过程的可控性提供了有价值的依据。采用SAS法制备了一系列不同锆比的纳米锆复合氧化物催化剂并对其进行了表征。结果表明,和共沉淀法制备的催化剂相比,采用SAS法制备的纳米铈锆固溶体催化剂具有粒子尺寸小、形状规则、储氧量高、耗氢量大等优点;热稳定性实验结果表明,SAS法制备的催化剂具有较高的热稳定性和高温抗烧结能力。
It has become the serious problem that the increasing automotive exhaust pollution jeopardizes the ecological environment and people’s health. Cerium zirconium composite oxides have been widely used as three-way catalyst to control the automotive exhaust pollution. The study on the cerium zirconium composite oxides has become the hot topic in this field in recent years.
     The supercritical antisolvent method (SAS) is a novel technique for micronization used in the fields such as preparations of explosives, polymer and catalysts precursor, showing good application potential. Compared with the common preparation methods, SAS shows excellent advantages, for example, small and narrow size distribution and regular shape. In this paper, the supercritical antisolvent is applied to prepare cerium zirconium composite oxides.
     The amorphous precursor of CeO2 was prepared by the supercritical antisolvent techonology, with the average size 50~70 nm. The effects of experimental parameters were investigated by orthogonal test. The result showed that temperature and pressure influenced particle size. nano-CeO2 was obtained after calcianed at 550℃for 2 hour. Precursors of cerium zirconium composite oxides were prepared by the supercritical antisolvent, and the effects of experimental parameters on the co-antisolvent effect of Ce(acac)3 and Zr(acac)4 were investigated. It was showed that the temperature behaved distinct influences on the antisolvent of Ce(acac)3 and Zr(acac)4. Zr(acac)4 showed stronger antisolvent effect than Ce(acac)3 at higher temperature; With increasing of pressure and solution flow rate, the antisolvent effect of Zr(acac)4 became weaker, comapraed with Ce(acac)3. These conclusions provided the valuable guide for the controlled preparation of the precursor of cerium zirconium composite oxides. A series of cerium zirconium composite oxides catalyst with different Ce/Zr ratio were prepared by SAS method and then characterized. The result indicated that compared to coprecipation method, the catalyst prepared by SAS method showed considerable advantages such as smaller particle size, more regular shape and stronger OSC property and higher hydrogen consumption. The results of thermal stability tests indicated that the catalyst prepared by SAS method showed higher heat stability and the resistance to sintering, compared with the catalyst from coprecipitation method.
引文
[1] KRUKONIS V J, COFFEY M P, GAI LAGHER P M. Exploratory development on a new process to produce improved RDX crystal :supercritical f-luid antisolvent recrystallization: US Army Ballistics Research Laboratory,1988
    [2] DIXON D J, JOHNSTON K P.Formation of microporous polymer fiber and oriented fibrils by precipitation with a compressed fluid antisolvent.J Appl PolymSCi,1993,50(11): 1929~1942
    [3] THIES J, MULLER B W.Size controlled production of biodegradable microparticles with supercritical gases. European Journal of Pharm-aceutics and Bio Pharmaceutics, 1998, 45(1): 67~74
    [4] GHADERI R, ARTURSSON P, CARLFORS J. A new method for preparing biodegradable microparticles and entrapment of hydrocortisone in DL-PLGA microparticles using supercritical fluids. European Journal Pha-rmaceutical Sciences, 2000, 47(10): 1~9
    [5]贺文智,姜兆华,索全伶,超临界流体沉淀技术制备超细粒子研究,化学进展,2003,5(5):361~366
    [6] HannaM, York P. WO 95/01 221, 1994
    [7] Chattopadhyay P, Gup ta R B. Production of Antibiotic Nanoparticles Using Supercritical CO2 as Antisolvent with Enhanced Mass Transfer. Ind. Eng. Chem. Res., 2001,40: 3530~3539
    [8] Chattopadhyay P, Gup ta R B. Production of griseofulvin nanoparticles using supercritical CO2 antisolvent with enhanced mass transfer. International J. of Pharmaceutics, 2001, 228:19~31
    [9] Reverchon E. Supercritical antisolvent precipitation of micro-and nano- particles. J Supercrit Fluids, 1999, 15:1
    [10] Debenedetti P G,et a1. Formation of protein microparticles by antisolvent precipitation.EU Pat,0542314A1, 1992
    [11] Yeo S D, Lim G B, Debenedetti P G.et a1. Formation of microparticulate protein powder using a supercritical fluid antisolvent. Biotechn Bioeng, 1993, 41:341
    [12] Randolph T W, Randolph A D, Mebes M. Enzymecatalyzed oxidation of cholesterol in supercritical carbon dioxide. Biotechn Prog, 1993, 9(4): 429
    [13] Yeo S D, Lim G B, Debenedetti P G. Formation of microparticulate protein powder using supercritical fluid antisolvent. Biotechn Bioeng, 1993, 41(3): 341
    [14] Gao Y, Mulenda T K, Shi Y F et a1. Fine particles preparation of redlake C pigment by spupercriticd fluid.J supercritical Fluids, 1998, 13(31): 369
    [15] Betemo SR,洪镭,刘昆等,超临界连续GAS过程制备对苯二酚超细颗粒,华东理工大学学报,2001,27(4): 338
    [16] Taki S,Badens E,Charbit G.Controlled release system formed by super-critical antisolvent coprecipitation of a herbicide and a biodegradable polymer.J Supercritical Fluids, 2001, 21: 61
    [17] Randolph T W.Randolph A D.Mebes M.Enzymecatalyzed oxidation of cholesterol in supercritical carbon dioxide.Biotechn Prog, 1993, 9(4): 429
    [18] Rantakyla M,Aaltonen O,Hturme M.The effect of initial drop size on particle size in the supercritical antisolvent precipitation(SAS)Technique.J Supercritical Fluids, 2002, 24(3): 251
    [19]杨基础,制备超细微粒的超临界流体技术及其最新进展,第五届全国超临界流体技术及应用研讨会论文集,清华大学化学工程系
    [20] Matson D W, Smith R D.supercritical fluid technologies for ceramic-processing applications. J Am, ceram soc, 1989, 72(6): 871~881
    [21]俞守耕,贵金属催化净化汽车尾气中稀土氧化物的助催化和稳定化,贵金属,2002,23(2):66~70
    [22] Perrichon V, Laachir A, Bergeret G et al. Reduction of Ceria with different Textures by Hydrogen and their Reoxidation by Oxygen. J Chem Soc, Faraday Trans, 1994,90(5): 773~781.
    [23] Shyu J Z, Weber W H, Gandhi H S. Surface Characterization of Alumina-Supported Ceria. J Phys Chem, 1988, 92(17): 4964~4970.
    [24] Murota T, Hasegawa T, Aozasa S et al, Specific heat magnetic susceptibility and electrical resistivity measurements on LaNiO3. Journal of Alloys andCompounds, 1993, 193(2): 287~289
    [25]冯长根,胡玉才,王丽琼,锆氧化物固溶体对全钯三效催化剂性能的影响,应用化学,2003,20(2):59~162
    [26]彭新林,龙志奇,崔梅生,等,共沉淀法合成锆复合氧化物及表征,中国稀土学报,2002:32~34.
    [27] Christine Bozo, Francois Gaillad, Nolven Guilhaume. Characterisationof ceria-ziaconia solid solutions after hydrothermal ageing. Applied Catalysis A:General 220(2001): 69~77
    [28] hammachart M, Meeyoo V, Risksomboon T et al. Catalytic activity of CeO2–ZrO2 mixed oxide catalysts prepared via sol–gel technique: CO oxidation Catal. Today, 2001, 68(123): 53~61.
    [29] J G. Methods of Making Highly Dispersed Substantially Uniform Cerium and Zirconium Mixed-metal-oxide Composite Supports For Exhaust Conversion Catalysts.US 6040265,2000-03-21
    [30]陈敏,张培壮,郑小明.锆钡复合氧化物及其制备方法,CN1470455A,2004-01-28
    [31] Terribile D, Trovarelli A, Llorca J. The preparation of high surface areCeO2–ZrO2 mixed oxides by a surfactant-assisted approach. Catalysis Today,1998,43(122): 79~88
    [32]卜林涛,邵青,戴乐蓉,阳离子与非离子混合表面活性剂模板合成介孔SiO2高等化学学报,2000,21:852~854
    [33] Aruna S T, Patil K C. Combustion synthesis and properties of nanostructured ceria-zirconia solid solutions. Nano Structured Materials, 1998, 10(6): 955~964
    [34] Masui T, Ozaki T, Machida K et al. Journal of Alloys and Compounds,2000, 303: 49~55
    [35] Yu J C, Zhang L, Lin J. Preparation of ceria–zirconia sub-catalysts forautomotive exhaust cleaning. Journal of Colloid And Interface Science,2003, 260: 240~243.
    [36]钟依均,罗孟飞,陶瓷蜂窝载体表面Ce-Zr-O固溶体涂层的表征,浙江师范大学学报(自然科学版),2003,26(2):158~160
    [37] P. Fornasiero, R. D. Monte, G. Ranga Rao, Rh-Loaded CeO2-ZrO2 Solid-Solutions as Highly Efficient Oxygen Exchangers: Dependence of the Reduction Behavior and the Oxygen Storage Capacity on the Structural-Properties. J. Catal. 1995, 151: 168~177
    [38] J. P. Cuif, G. Blanchard, O. Touert. ASE Paper961906, 1996.
    [39] Alessandro Trovarelli, Francesca Zamar, Jordi Llorca. Nanophase Fluorite-Structured CeO2–ZrO2 Catalysts Prepared by High-Energy MechanicalMilling.J. Catal. 1997, 169: 490~520
    [40] P. Duwez and F. Odell. Phase Relationships in the System Zirconia-Ceria. J.Am.Ceram.Soc. 1950, 30: 274
    [41] V. Longo, S. Roitti, Solid State Phase Relations in the System CeO2-ZrO2, Ceramurgia Int. 1971, 1: 4
    [42] V. Longo, S. Roitti, Investigation of Phase Equilibrium Diagrams Among Oxides by Means of Electrical Conductivity Ceramurgia Int. 1972, 2: 97
    [43] T. Negas, R . S. Routh, C. L. McDaniel, H. S. Parker. the Proceedings of the 12 Rare Earth Research Confererance, 1976: 605
    [44] V. S. Stubican and J. R. Hellmann. Stability of cubic phase in nanocrystalline ZrO2. Adv.Ceram, 1981, 3: 25
    [45] A.Rouanet, C. R. Hebd. Zirconia-Cerium Oxide System at High Temperature, Seances Acad. Sci., Ser.C, 1968, 266: 908.
    [46] M. Yoshimura, H. K. Bowen, Am. Ceram. Soc. Bull. 1977, 56: 301.
    [47] E. Tani, M. Yoshimura, S. Somiya: Revised Phase Diagram of the System ZrO2-CeO2 Below 1400°C, J. An. Ceram. Soc., 1983, 66:506.
    [48] P. Duran, M. Gonzalez, C.Moure, J. R. Jurado. Thermodynamic Assessment and Microstructure of the ZrO2-CeO2-Al2O3 System, J. Mater. Sci., 1990,25(12): 5001.
    [49] M. Yashima, K. Morimoto, N. Ishizawaand M. Yoshimura, Diffusionless Tetragonal-Cubic Transformation Temperature in Zirconia-Ceria SolidSolutions, J. Am. Ceram. Soc., 1993, 76: 1745.
    [50] S. Meriani. Reduction of NO over Partially Reduced Metal-Loaded CeO2–ZrO2 Solid Solutions. Mater. Sci. Eng. A, 1989, 109: 121
    [51] M.Yashima, K.Morimoto, N.Ishizawa. Zirconia-Ceria Solid Solution Synthesis and the Temperature-Time-Transformation Diagram for the 1:1 Composition. J. Am. Ceram. Soc., 1993, 76: 2865~2868
    [52]M. Yashima, H. Arashi, M. Kakihana. Prediction of the Isothermal Sections in the ZrO2-YO1.5-CeO2 System. J. Am. Ceram. Soc., 1994,77: 1067~1071
    [53] Masakuni Ozawa. Role of Cerium-zirconium Mixed Oxides as Catalystsfor Car Pollution:A short review, J. Alloys and Comp., 1998, 275: 886~890
    [54] Trovarelli A et al. Design beter ceirum-based oxidation catalysts. ChemTech, 1997, 27(6): 32~37
    [55] KasparJ et al. Use of CeO2-based oxides in the three-way catalysts. Catal.Today, 1999, 50(2): 285~298
    [56] Fornasiero P, Balucci G, Di Monte R Kasmpar J., Sergo V, Gubitosa G, Fererro A., Graziani M. Modification of the redox behavior of CeO2 Induced by structural doping with ZrO2. J. Catal., 1996, 164(1): 173~183
    [57] B. M. Kincaid and P. Eisenberger, Transferability of Phase Shifts in Extended X-Ray Absorption Fine Structure. Phys. Rev. Lett. 1975, 34: 1361~1364.
    [58] N. S. Chiu, M. F. L. Johnson, S.H. Bauer. Co/Mo/alumina catalyst structure determination by EXAFS IV. Co-K edge in the oxide and sulfided states.J. Catal., 1988, 113: 281~294
    [59] B. D. Shrivastava, S.K.Joshi, K.B.Pandeya, K-absorption spectral studiesof some cobalt dithiocarbamate complexes. Physica.B, 1989, 158: 589~592
    [60]蔡小海,刘英俊,刘智巍,NiO的单层分散态及其载体效应,物理化学学报,1994(10),15~18
    [61] C. J. Howard, R. J. Hill, B. E. Reichert, Acta Crystallogr, Sect.B: Struct.Sci., 1988, 44: 116
    [62] G. Vlaic, R. D.Monte, S.Geremia etc. Relationship between the Zirconia-Promoted Reduction in the Rh-Loaded Ce0.5Zr0.5O2 Mixed Oxide and the Zr–O Local Structure, J. Catal., 1997, 168: 386~392
    [63]蹇海鸥,周新锐,赵德丰,β-二酮的合成方法及应用进展.化学试剂,2006,28(5):279~282
    [64]吴红英,王喜贵,赵惠等,三乙酰丙酮镧(镨)的合成及电化学性质,稀土,2001,22(6):63~65
    [65]陈晓红,段宏昌,姜恒等,固相法合成乙酰丙酮镧,化工科技,2007,15(1):21~24
    [66]吴光华,张爱娟,乙酰丙酮和其金属络合物的合成.精细化工原料及中间体,2007,4:11~13
    [67]宫红,赵丹,姜恒等,室温固相研磨法合成乙酰丙酮锰(II),中国锰业,2007,25(3):17~19
    [68]李孟洁,储欣,稀土乙酰丙酮配合物的合成及表征,矿业科学技术,2006 (2):14~19
    [69] Zi-Rong Tang a, Jennifer K. Edwards a. Nanocrystalline cerium oxide produced by supercritical antisolvent precipitation as a support for high-activitygold catalysts. Journal of Catalysis, 2007, 249: 208~219
    [70] Sang-Do Yeo, Jae-Ho Choi, Tae-Jong Lee Crystal formation of BaCl2 and NH4Cl using a supercritical fluid antisolvent.Journal of Supercritical Fluids.2000, 16: 235~246
    [71] Yao HC, Yao YF.Ceria in automotive exhaust catalysts: I. Oxygen storage. J. Cato1., 1984, 86: 254~265
    [72]姚青,田群,陈宏德,柠檬酸溶胶凝胶法制备铈锆固溶体的物化和氧化还原特性研究,2006,23(1):64~69
    [73]毛小波,陈耀强龚茂初.高性能Ce0.35Zr0.55Y0.1O1.95稀土储氧材料的研究,2006,8:1521~1524

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700