二氧化锆钴基催化剂上F-T合成反应研究及其对生态环境的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化石能源直接燃烧产生的大量二氧化碳和甲烷等温室气体进入大气层后导致地球升温而造成的全球气候变暖是人类迄今所面临的最重大环境问题,全球气候变暖已严重影响到人类的生存和可持续发展进程。Fischer-Tropsch (F-T)合成技术是将煤、天然气和生物质气化成合成气进而转化为烃类液体燃料,大规模地生产高品质的汽油、柴油等清洁油品和其它高附加值化学品的二次能源转化技术,是减少环境污染、缓解石油资源短缺、推进煤炭清洁高效利用的重要途径。然而,F-T合成尾气中CO2、CH4等温室气体的排放及生产过程的高能耗制约了该技术的长足发展。设计和制备具有高反应活性以及高C5+选择性F-T合成催化剂是解决该问题的重要手段之一。CH4/CO2重整制合成气技术是对温室气体CO2、CH4进行合理转化与利用的工艺过程,F-T合成反应和CH4/CO2重整具有相似的催化剂体系,而且,F-T合成反应为一放热反应,CH4/CO2重整为一吸热反应,将这两种反应过程进行耦合不仅有助于F-T合成反应中温室气体的减排,通过物质循环和能量流动达到反应过程中的生态平衡,具有极其重要的环保和经济意义。
     本论文根据F-T合成反应和CH4/CO2重整反应催化剂的特点,分别制备了以不同孔径的ZrO2、介孔铈锆固溶体为载体的负载型钴基催化剂,采用XRD、N2-吸附/脱附、TEM、SEM、XPS、TPR,氢气化学吸附等方法对催化剂的物理化学性质进行了表征,系统地考察了催化剂组成、孔径结构对催化剂性质和催化反应性能的影响。在铈锆固溶体钴基催化剂体系中,模拟F-T合成反应与CH4/CO2重整反应过程的耦合,综合评价了一次耦合后甲烷及二氧化碳减排量,得到了如下结论:
     1.对具有3DOM结构的Co/ZrO2催化剂的F-T合成催化反应性能进行了研究,由于具有3DOM结构的ZrO2载体具有规则相通网状的大孔孔道特点,活性组分很少聚集使催化剂具有更好的分散度和还原度,可为反应提供了更多的活性位,使催化剂具有更好的反应活性;活性组分的高度分散,降低了载体与活性物质之间的相互作用,是催化剂CO转化率及反应速率提高的关键原因。催化剂的选择性依赖于催化剂3DOM ZrO2载体的孔结构,大孔使反应物/产物分子的快速移除,有利于C5+选择性的提高,而3DOM ZrO2载体孔壁上较小的介孔限制了反应物/产物的有效扩散,使催化剂同时具有较高的甲烷选择性。为进一步提高3DOM Co/ZrO2催化剂的反应活性和C5+选择性,可通过优化3DOM ZrO2载体上的双孔的大孔和介孔孔径尺寸来实现。
     2.采用水热合成法制备的不同Ce/Zr比的具有介孔结构的ZrO20.02,0.05,0.08,0.10)载体,用等体积浸渍法制备了以铈锆固溶体为载体的钴基催化剂。通过各种表征手段对催化剂的物理化学性质进行了表征,系统地研究了该类催化剂的F-T反应性能及其关系。随着Ce/Zr比的增加,由于Zr4+进入CeO2中占据Ce4+的晶格,所形成的铈锆固溶体的XRD图谱相比于纯CeO2特征衍射峰的衍射角度明显右移并宽化,载体结构呈现出双孔特征,双孔结构载体的小孔改善了催化剂中活性组分钴在载体表面的分散性,决定了催化剂的反应活性;而双孔结构载体上的大孔提供了分子传递快速通道,有利于反应物/产物在催化剂表面的快速有效扩散,决定着F-T合成反应产物的选择性。各种表征方法最终得到一致的研究结果,催化剂反应活性遵循Co/Ce0.05Zr0.95O2> Co/Ce0.08Zr0.92O2>Co/Ce0.02Zr0.98O2>CO/Ce0.10Zr0.90O2的规律;以铈锆固溶体为载体的钻基催化剂中,Ce元素能够抑制反应过程中活性金属钴在催化剂表面的聚集,催化剂表现出优异的F-T活性抗失活性能力,具有良好的稳定性。
     3.采用等体积浸渍法制备了CeO2助剂改性的ZrO2-nCeO2(n=5,10)载体,继而用等体积浸渍法制备了Co/ZrO2-nCeO2(n=0,5,10)催化剂。研究发现,在催化剂中,钴活性组分以Co304形式存在。少量CeO:助剂能够促进催化剂中易还原的表面相数量的增加,使催化剂的还原性能明显提高。而加入较多的Ce02助剂,由于活性金属在载体表面的聚集,催化剂中的钴物种主要以体相形式存在,还原温度提高,使催化剂的还原性能下降。相比于没有Ce02改性的催化剂,少量Ce02的加入可使催化剂拥有更多的表面活性位。因此在F-T合成催化反应过程中催化剂Co/ZrO2-5CeO2具有较高的反应活性和较高的C5+选择性。同时,Ce02助剂能够抑制反应过程中活性金属钴在催化剂表面的进一步的聚集,具有良好的抗烧结性能,含有Ce02助剂的催化剂在F-T反应中表现出优异抗失活性能,具有良好的稳定性。
     4.以铈锆固溶体为载体的催化剂Co/Ce0.6Zr0.4O2和Co/Ce0.33Zr0.67O2保留了Ce02的立方晶型结构,与Zr02和Ce02相比,由于铈锆固溶体(Ce0.6Zr0.402和Ce0.33Zr0.67O2)具有较高的比表面积和独特的氧化还原性能,改善了催化剂中活性组分钻物种的分散度和还原度,因而使催化剂在CH4/CO2重整反应中具有较高的反应活性和较好的选择性,其优良的抗积炭性能使催化剂具有很好的稳定性。通过对F-T合成反应与CH4/CO2重整反应的耦合模拟,将F-T合成反应尾气中的CH4和C02作为CH4/CO2重整反应的原料进行合成气的转化,所得产物具有较低的H2/CO比值,可直接作为F-T合成反应的原料气体进行循环使用。综合F-T合成放热反应和CH4/CO2重整吸热反应的特点,不仅实现了生产过程的能量平衡,而且有效地将反应过程中产生的温室气体进行了资源化利用。经对F-T合成尾气作为原料进行一次CH4/CO2重整催化反应的模拟耦合,F-T合成反应尾气中温室气体CH4排放量降低了81.0%,CO2排放量降低了82.4%,有效降低了温室气体的排放。
Heretofore, global climate warming is the one of the most serious environmental problem all around the world. It was caused by green house gas (GHG) emissions which were let out when burning the fossil-fuels directly. Global climate warming not only does harm to human's daily life but has negative influence on the modernization and sustainable development. Due to such severe situation, the international negotiations are aimed to alleviate the harm of global warming. The Fischer-Tropsch synthesis (FTS) is one of the most promising synthetic routes to produce ultra-clean automotive fuels and valuable organic compounds that are originally from coal, natural gas and biomass. The quality of the fuels from FTS can offer significant environmental and efficient benefits over those derived from crude oil. FTS technique is not only a complementarity to the shortage of liquid fuels, but also a measure to reduce effectively the consumptions of non-renewable fuel thus producing lower pollution and controlling the emission of GHG. However, the continued development of FTS technique is limited because of the emissions of GHG (CH4and CO2) in tail gases and the high energy consumptions for FTS reaction. One of the key strategies solves the problem by designing and developing the effective catalysts with excellent performance for FTS. In terms of the practical demand for chemical industry and environment protection, an important topic that attracts much interest in carbon dioxide reforming of methane. Both methane and carbon dioxide are GHG from FTS that can be transformed synthesis gas with low H2/CO ratio, which is proper feed gas for FTS processes. Both FTS and carbon dioxide reforming methane have the same catalyst system. Additionally, FTS is an exothermic reaction and carbon dioxide reforming methane to synthesis gas is an endothermic reaction. Combining both reactions leading to thermal coupling can reduce the emission of GHG, which is actually important and extensive practical prospect in chemical industry.
     In present paper, a series of cobalt bases catalysts were prepared such as the catalysts supported on ZrO2with different pore structure and mesoporous CeO2-ZrO2solid solution. All cobalt catalysts were prepared by incipient wetness impregnation. X-ray diffraction (XRD), N2adsorption/desorption, transmission electron microscopy (TEM), scanning electron microscopy (SEM), temperature programmed reduction (TPR), X-ray photoelectron spectroscopy (XPS) and hydrogen chemisorption were used to characterize these catalysts. The activity of FTS was measured in a fixed bed reactor. The effects of component, promoter, pore size and structure on FTS catalytic performance have been investigated. Combining both the FTS processes and carbon dioxide reforming methane are investigated on Co-based catalyst supported on CeO2-ZrO2solid solution. It is comprehensively evaluated that catalytic performance for FTS, carbon dioxide reforming methane and the decrease emissions for CH4and CO2are via single cycle. The following conclusions were obtained.
     1. The3DOM Co/Zr02catalyst was prepared and its catalytic performance was investigated for the FTS. Due to the unique3DOM structure with the interconnected networks of spherical voids for the ZrO2-3support, the Co/ZrO2-3catalyst showed less aggregation, better dispersion and higher reducibility of Co3O4particles, which led to more cobalt surface active sites, further displayed high CO conversion and high FTS reaction rate. The high dispersion of the active components was one of the key factors for improving CO conversion and FTS reaction rate of the Co/ZrO2catalyst with weak interaction between cobalt species and support. The hydrocarbon selectivity of the catalyst greatly depended on the pore structure of the3DOM ZrO2support. The macropores providing channels for rapid molecular transportation were in favor of the enhancement of C5+selectivity, the small pores within the wall of3DOM entities limited the diffusion efficiency of the reactants/products. Thus, the catalyst with bimodal pore structure showed the interesting result of higher C5+selectivity and higher methane selectivity. For cobalt catalyst supported on3DOM structure, the best reaction activity and the best C5+selectivity might be obtained in the FTS by optimizing both the mesopores within the walls and the macropores of the3DOM structure.
     2. Mesoporous CexZr1-xO2(x=0,0.02,0.05,0.08,0.10) solid solutions with different Ce/Zr molar ratios were prepared by the hydrothermal method. All cobalt catalysts were prepared by incipient wetness impregnation. X-ray diffraction (XRD), N2adsorption/desorption, transmission electron microscopy (TEM), temperature programmed reduction (TPR), X-ray photoelectron spectroscopy (XPS) and hydrogen chemisorptions were applied to characterize these catalysts. The activities of the catalysts were measured in a fixed bed reactor for FTS. The smaller Zr4+ions entered into the lattice of CeO2with increasing Ce/Zr ratios. XRD patterns demonstrated that the diffraction of ceria-zirconia solid solutions shifted to right and got broadening compared with that of CeO2. The support of ceria-zirconia solid solutions exhibited the bimodal pore structure, which the small pores provide a large area for active surface, improving the dispersion of supported metal and enhancing the catalytic activity of the catalysts for FTS reactions. And the large pores of the bimodal pore structure provide pathways or rapid molecular transportation which is beneficial to higher chain growth probability and higher C5+selectivity. The results obtained from different measures were consistent, and the catalytic activity of the catalysts followed the order of Co/Ce0.08Zro.9202> Co/Ce0.02Zro.9802> Co/ZrO2> Co/Ce0.10Zr0.9002. The catalysts supported on ceria-zirconia solid solutions can inhibit the sinter of cobalt active species during the reaction process and display an excellent performance of resistance against deactivation for FTS.
     3. For cerium promoted Co/ZrO2catalysts, addition of small amount of CeO2to the Co/ZrO2catalyst (Co/ZrO2-5CeO2) can increase Co3O4particles size, improve the reducibility, and enhance the numbers of cobalt active sites on the catalyst surface. Thus the Co/ZrO2-5CeO2catalyst exhibited high CO conversion and the FTS reaction rate. Meantime, it was also possessed of high C5+and low CH4selectivity. However, excess of CeO2resulted in the agglomeration of active metal on the catalyst (Co/ZrO2-10CeO2) surface, which decreased the catalyst reducibility and cobalt active sites, further decreased the catalytic activity. The CeO2-promoted catalysts (Co/ZrO2-5CeO2and Co/ZrO2-10CeO2) could inhibit the agglomeration of cobalt particles during the reaction process so that they displayed an excellent performance of resistance against deactivation for FTS.
     4. The as-prepared of Co/Ce0.6Zr0.4O2and Co/Ce0.33Zr0.6702retained cubic fluorite structure of CeO2support. The high BET surface area and unique redox property of ceria-zirconia solid solution with cubic fluorite structure improved the dispersion of active components and enhanced the reduction degree of active components. For Co/Ce0.6Zr0.4O2catalyst, the amount of activated carbon was far higher than that of inert carbon. The small cobalt particle could accelerate the elimination of activated carbon in the reaction. The products have low H2/CO ratio from combining both the reactions of FTS and carbon dioxide reforming of methane, which suit to the feed gases for FTS directly. After combining both the reactions via single cycle, the decrease emissions of CH4and CO2were81.0%and82.4%respectively.
引文
[1]C. Knottenbelt, Mossgas "gas-to-liquid" diesel fuels-an environmentally friendly option, Catal. Today,2002,71(3-4),437-445.
    [2]M.S.P. Kahandawala, J.L. Graham, S.S. Sidhu, Particulate emission from combustion of diesel and Fischer-Tropsch fuels:a shock tube study, Energy Fuels,2004,18(2),289-295.
    [3]李博,杨持,林鹏,生态学[M],北京,高等教育出版社,2000年.
    [4]骆仲袂,王勤辉,方梦样等,煤的热点电气多联产技术及工程实例[M],化学工业出版社,2004年.
    [5]A.P. Steynberg, H.G Nel, Clean coal conversion options using Fischer-Tropsch technology [J], Fuel,2004,83(6),765-770.
    [6]M.E. Dry, Fischer-Tropsch reaetions and the environment [J], Appl. Catal. A:Gen.,1999,189, 185-190.
    [7]J.P. Szybist, S.R. Kirby, A.L. Boehman, NOX emissions of alternative diesel fuels:A comparative anaiysis of biodiesel and FT diesel [J], Energy Fuels,2005,19(4),1484-1492.
    [8]唐宏青,现代煤化工新技术[M],北京,化学工业出版社,2009年.
    [9]蒋兰兰,宋永臣,赵越超,二氧化碳封存和资源化利用研究进展[J],能源与环境,2010,(3),71-78.
    [10]姚强,陈超,洁净煤技术[M],北京,化学工业出版社,2004年.
    [11]J.R. Rostrup-Nielsen, Production of synthesis gas [J], Catal. Today,1993,18(4),305-324.
    [12]王志,CH4-CO2催化重整制合成气的研究进展[J],工业催化,2005,13(5),14-18.
    [13]S.T. Sie, M.M.G. Senden, H.M.H. Van Wechum, Conversion of natural gas to transportation fuels via the shell middle distillate synthesis process (SMDS) [J], Catal. Today,1991,8,371-394.
    [14]高晋生,张德祥,煤液化技术[M],北京,化学工业出版社,2005年,331-333.
    [15]M.Y. Ding, Y. Yang, B.S. Wu, etc, Study of phase transformation and catalytic performance on precipitated iron-based catalyst for Fischer-Tropsch synthesis [J], J. Mol. Catal. A:Chem.,2009, 303,65-71.
    [16]B.H. Davis, Fischer-Tropsch Synthesis:Reaction mechanisms for iron catalysts [J], Catal. Today,2009,141,25-33.
    [17]0 Borg, N. Hamme, S. Eri, Fischer-Tropsch synthesis over un-promoted and Re-promoted γ-Al2O3 supported cobalt catalysts with different pore sizes [J]. Catal. Today,2009,142,70-77.
    [18]M. Ojeda, M.L. Granados, S. Rojas, etc, Influence of residual chloride ions in the CO hydrogenation over Rh/SiO2 catalysts [J], J. Mol. Catal. A:Chem.,2003,202:179-186.
    [19]E. Iglesia, S.C. Reyes, R.J. Madon, Transport-enhanced a-olefin readsorption pathways in Ru-catalyzed hydrocarbon synthesis [J]. J. Catal.,1991,129(1),238-256.
    [20]R.J. Madon, S.C.Reyes, E. Iglesia, Primary and secondary reaction pathways in ruthenium-catalyzed hydrocarbon synthesis [J]. J. Phys. Chem.,1991,95(20),7795-7804.
    [21]R.J. Madon, E. Iglesia, The Importance of Olefin readsorption and H2/CO reactant ratio for hydrocarbon chain growth on ruthenium catalysts [J]. J. Catal.,1993,139(2),576-590.
    [22]H. Schulz, Short history and present trends of Fischer-Tropsch synthesis [J], Appl. Catal. A: Gen.,1999,186(1-2),3-12.
    [23]C.X. Xiao, Z.P. Cai, T. Wang, etc, Aqueous-phase Fischer-Tropsch synthesis with a ruthenium nanocluster catalyst [J], Angew. Chem., Int. Ed,2008,47(4),746-749
    [24]银董红,李文怀,杨文书等,钻基催化剂在Fischer-Tropsch合成烃中研究进展[J],化学进展,2001,13(2),118-127
    [25]F. Tihay, A.C. Roger, A. Kiennemann, etc, Fe-Co based metal/spinel to produce light olefins from syngas [J], Catal. Today,2000,58(4),263-269.
    [26]P.J. Van Berge, R.C. Everson, Cobalt as an alternative Fischer-Tropsch catalyst to iron for the production of middle distillates [J]. Stud. Surf. Sci. Catal.,1997,107,207-212.
    [27]R.C. Reuel, C.H. Bartholomew, Effects of support and dispersion on the CO hydrogenation activity/selectivity properties of cobalt [J], J. Catal.,1984,85(1),78-88.
    [28]E. Iglesia, Design, synthesis, and use of cobalt-based Fischer-Tropsch synthesis catalysts [J]. Appl. Catal. A:Gen.,1997,161(1-2),59-78.
    [29]高海燕,陈建刚,相宏伟等,Co/SiO2催化剂合成重质烃的反应性能[J],催化学报,2001,22(2),133-137.
    [30]张俊岭,陈建刚,董庆年等,化学修饰氧化铝负载钻基催化剂吸附与反应行为的研究[J],高等化学学报,2003,24(2),301-304.
    [31]周晓峰,陶跃武,翁惠新等,费托合成Co基催化剂载体的研究进展[J],化工进展(增刊),2008,27,236-240.
    [32]苏海全,张晓红,丁宁等,费托合成催化剂的研究进展[J],内蒙古大学学报(自然科学版),2009,40(4),499-513.
    [33]J.L. Zhang, J.G. Chen, J. Ren, etc. Chemical treatment of γ-Al2O3 and its influence on the properties of Co-based catalysts for Fischer-Tropsch synthesis [J], Appl. Catal. A:Gen.,2003, 243(1),121-133.
    [34]R. Bechara, D. Balloy, D. Vanhove. Catalytic properties of Co/Al2O3 system for hydrocarbon synthesis [J]. Appl. Catal. A:Gen.,2001,207(1-2):343-353.
    [35]T. Ishihara, K. Egichi, H. Arai, Importance of surface hydrogen concentration in enhancing activity of Co-Ni alloy catalyst for CO hydrogenation [J]. J. Mol. Catal. A:Chem.,1992,72(2), 253-261.
    [36]A.Y. Khodakov, W. Chu, P. Fongarland, Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels [J], Chem. Rev., 2007,107(5),1692-1744.
    [37]E. Iglesia. Design synthesis and use of cobalt-based Fischer-Torpsch synthesis catalysts [J], Appl. Catal. A:Gen.,1997,161(1),59-78.
    [38]M. Kruam, M. Baerns. Fischer-Torpsch synhtesis:the influence of various cobalt compounds appalied in the preparation of supported cobalt catalyst on their performance [J], Appl. Catal. A: Gen.,1999,186(1-2),189-200.
    [39]X. Zhang, H. Su, X. Yang, Catalytic performance of a three-dimensionally ordered macroporous Co/ZrO2 catalyst in Fischer-Tropsch synthesis [J], J. Mol. Catal. A:Chem.,2012,360, 16-25.
    [40]R.B. Anderson, The Fischer-Tropsch synthesis [M], Washington, Academy Press,1984.
    [41]A.Y. Khodakov, A.G. Constant, R. Bechara, etc. Pore size Effects in Fischer Tropsch synthesis over cobalt supported mesoporous silicas [J], J. Catal.,2002,206,230-241.
    [42]银董红,李文怀,钟炳等,中孔分子筛HMS负载钴催化剂在费-托合成中的应用载体HMS的孔径对钴基催化剂性能的影响[J].催化学报,2002,23(2),118-120.
    [59]J.L. Zhang, J. Ren, J.G. Chen, Effect of manganese promoter on the performance of CO/Al2O3 catalysts for Fischer-Tropsch synthesis [J], Acta. Phys-Chim. Sin.,2002,18(6),260-265.
    [60]A. Bao, K. Liu, J. Li, Fischer-Tropsch synthesis on CaO-promoted CO/Al2O3 catalysts [J], J. Mol. Catal. A:Chem.,2009,304,47-51.
    [61]E. Van Steen, E.L. Viljoen, Van de J. Loosdrecht, etc. Evaluation of molybdenum-modified alumina support materials for Co-based Fischer-Tropsch catalysts [J], Appl. Catal. A:Gen.,2008, 335,56-63.
    [62]G.P. Hufman, N. Shah, J. Zhao, etc. In-situ XAFS investigation of K-promoted Co catalysts [J], J. Cata1.,1995,151(1),17-25.
    [63]张辉,储伟,贵金属助剂对费-托合成用钴基催化剂的促进作用[J],化学进展,2009,21(4),622-628.
    [64]D. Bazin, L. Guczi, A review of in situ XAS study on Co-based bimetallic catalysts relevant to CO hydrogenation [J], Stud. Surf. Sci. Catal.,2004,147,343-348.
    [65]D. Bazin, I. Kovacs, J. Lynch, etc. Ru-Co/NaY bimetallic catalysts:in situ EXAFS study at Co K-and Ru K-absorption edges [J], Appl. Catal. A:Gen.,2003,242,179-186.
    [66]L. Guczi, D. Bazin, I. Kovacs, etc. Relation between the structure and activity of Ru-Co/NaY catalysts studied by X-ray absorption spectroscopy (XAS) and co hydrogenation [J], Stud. Surf. Sci. Catal.,2001,136,111-116.
    [67]G. Jacobs, Y.Y. Ji, B.H. Davis, etc. Fischer-Tropsch synthesis:Temperature programmed EXAFS/XANES investigation of the influence of support type, cobalt loading, and noble metal promoter addition to the reduction behavior of cobalt oxide particles [J], Appl. Catal. A:Gen.,2007, 333,177-191.
    [68]B. Mierzwa, Z. Kaszkur, B. Moraweck, etc. In situ EXAFS study of the alloy catalyst Pd-Co (50%/50%)/SiO2 [J], J. Alloys Compd.,1999,286,93-97.
    [69]A.M Saib, A. Borgna, J. Van de Loosdrecht, etc. XANES study of the susceptibility of nano-sized cobalt crystallites to oxidation during realistic Fischer-Tropsch synthesis [J], Appl. Catal. A:Gen.,2006,312,12-19.
    [70]L.E.S. Rygh, C.J. Nielsen, Infrared study of CO adsorbed on a Co/Re/γAl2O3-based Fischer-Tropsch catalyst [J], J. Catal.,2000,194,401-409.
    [71]U. Bardi, B.C. Beard, P.N. Roos, CO chemisorption on the [111] and [100] oriented single crystal surfaces of the alloy CoPt3 [J], J. Catal.,1990,124,22-29.
    [72]N. Tsubaki, S.L. Sun, K. Fujimoto, Different functions of the noble metals added to cobalt catalysts for Fischer-Tropsch synthesis [J], J. Catal.,2001,199(2),236-246.
    [73]A. Kogelbauer, J.G. Goodwin, R. Oukaci, etc. Ruthenium promotion of CO/Al2O3 Fischer-Tropsch catalysts [J], J. Catal.,1996,160,125-133.
    [74]W. Chu, P.A. Chernavskii, L. Gengembre, etc. Cobalt species in promoted cobalt alumina-supported Fischer-Tropsch catalysts [J], J. Catal.,2007,252,215-230.
    [75]E. Iglesia, S.L. Soled, R.A. Fiato, etc. Bimetallic synergy in cobalt ruthenium Fischer-Tropsch synthesis catalysts [J], J. Catal.,1993,143(2),345-368.
    [76]B. Jongsomjit, J. Panpranot, J.G. Goodwin. Co-support compound formation in alumina-supported cobalt catalysts [J], J. Catal.,2001,204(1),98-109.
    [77]徐东彦,李文钊,段洪敏, Pt, Ru和Pd助剂对F-T合成中Co/γ-Al2O3催化剂性能的影响[J],催化学报,2005,26(9),780-784.
    [78]G. Jacobs, C. Mauro, W. Ribeiro, etc. Group Ⅱ (Cu, Ag, Au) promotion of 15% Co/Al2O3 Fischer-Tropsch synthesis catalysts [J], Appl. Catal.A:Gen.,2009,361,137-151.
    [79]A.L. Borer, C. Bronnimann, R. Prins. ZrO2-promoted Rh/SiO2 catalysts in CO hydrogenation and temperature-programmed reduction [J], J. Cata1.,1994,145(2),516-525.
    [80]K.J. Klabunde, Y. Imizu, Bimetallic solvated metal atom dispersed catalysts. New materials with low-temperature catalytic properties [J], J. Am. Chem. Soc.,1984,106(9),2721-2722.
    [81]L.A. Bruce, M. Hoang, A.E. Hughes, etc. Ruthenium promotion of Fischer-Tropsch synthesis over coprecipitated cobalt/ceria catalysts [J],Appl. Catal. A:Gen.,1993,100(1),51-67.
    [82]李强,沈师孔,Co-CeO2/SiO2催化剂上的费-托反应性能[J],催化学报,2002,23(6),513-516.
    [83]S. Vada, A.M. Kazi, F.K. Bedu-Addo, etc. La promotion of Co Fischer-Tropsch catalysts [J], Stud. Surf. Sci. Catal.,1994,81,443-448.
    [84]J.S. Ledford, M. Houalla, A. Proctor, etc. Influence of lanthanum on the surface structure and carbon monoxide hydrogenation activity of supported cobalt catalysts [J], J. P. Chem.,1989,93(18), 6770-6777.
    [85]M. Adachi, K. Yoshii, Y.Z. Han, etc. Fischer-Tropsch synthesis with supported cobalt catalyst. promoting effects of lanthanum oxide for cobalt/silica catalyst [J], Bull. Chem. Soc. Japan,1996, 69(6),1509-1516.
    [86]G. Haddad, B. Chen, J.G. Goodwin Jr., Effect of La3+ promotion of Co/SiO2 on CO hydrogenation [J], J. Catal.,1996,161(1),274-281.
    [87]G. Haddad, B. Chen, J.G. Goodwin Jr., Characterization of La3+ promoted Co/SiO2 catalysts [J], J. Cata1.,1996,160(1),43-51.
    [88]熊建民,丁云杰,王涛等,La203助剂对Co/AC催化剂上费-托合成反应性能的影响[J],催化学报,2005,26(10),874-878.
    [89]H. Yin, Y. Ding, H. Luo, etc. Influence of iron promoter on catalytic properties of Rh-Mn-Li/ SiO2 for CO hydrogenation [J], Appl. Catal. A:Gen.,2003,243(1),155-164.
    [90]J. Barrault, A. Guilleminot, J.C. Achard, etc. Hydrogenation of carbon monoxide on carbon-supported cobalt rare earth catalysts [J], Appli. Catal.,1986,21(2),307-31.2
    [91]J. Barrault, S. Probst, A. Alouche, etc. Characterization and catalytic properties of nickel oxides supported on rare earth oxides description of the metal-support interaction [J], Stud. Surf. Sci. Catal.,1991,61,357-365.
    [92]代小平,余长春,沈师孔,助剂Ce02对Co/Al2O3催化剂上F-T合成反应性能的影响[J],催化学报,2001,22(2),104-108.
    [93]代小平,余长春,李然家等,Co/SiO2催化剂催化费托合成中Ce02助剂的作用[J],催化学报,2006,27(10),904-910.
    [94]代小平,余长春,李然家.费托合成Ce02助Co/SiO2催化剂的失活[J],催化学报,2007,28(12),1047-1052.
    [95]B. Ernst, L. Hilaire, A. Kienmemann, Effects of highly dispersed ceria addition on reducibility, activity and hydrocarbon chain growth of a Co/SiO2 Fischer-Tropsch catalyst [J], Catal. Today, 1999,50(2),413^127.
    [96]G.R. Moradi, M.M. Basir, A. Taeb, etc. Promotion of Co/SiO2 Fischer-Tropsch catalysts with zirconium [J], Catal. Commun.,2003,4(1),27-32.
    [97]A. Guerrero-Ruiz, A. Sepulveda-Escribano, I. Rodriguez-Ramos, Carbon monoxide hydrogenation over carbon supported cobalt or ruthenium catalysts, promoting effects of magnesium, vanadium and cerium oxides [J], Appl. Catal. A:Gen.,1994,120(1),71-83.
    [98]W. Ma, Y. Ding, L. Lin. Fischer-Tropsch synthesis over activated-carbon-supported cobalt catalysts:effect of Co loading and promoters on catalyst performance [J], Ind. Eng. Chem. Res., 2004,43(10),2391-2398.
    [99]H. Su, S. Zeng, H. Dong, etc. Pillared montmorillonite supported cobalt catalysts for the Fischer-Tropsch reaction [J], Appli. Clay Sci.,2009,46,325-329.
    [100]董慧,曾尚红,苏海全等,铝柱撑蒙脱土的制备及其负载钴催化剂的费托反应性能[J],中国稀土学报,2009,27(1),14-18.
    [101]H. Ming, B.G. Baker. Characterization of cobalt Fischer-Tropsch catalysts I. Unpromoted cobalt-silica gel catalysts [J], Appl. Catal. A:Gen.,1995,123(1-2),23-36.
    [102]S.W. Ho, Y.S. Su, Effects of ethanol impregnation on the properties of silica-supported cobalt catalysts [J], J. Catal.,1997,168(1),51-59.
    [103]Y. Zhang, Y. Liu, G Yang, etc. Effects of impregnation solvent on CO/SiO2 catalyst for Fischer-Tropsch synthesis:a highly active and stable catalyst with bimodal sized cobalt particles [J], Appl. Catal. A:Gen.,2007,321(1),79-85.
    [104]A.A. Khassin, T.M. Yurieva, V.V.Kaichev, etc. Metal-support interactions in cobalt-aluminum co-precipitated catalysts:XPS and CO adsorption studies [J], J. Mol. Catal. A:Chem.,2001, 175(1-2),189-204.
    [105]K. Okabe, X.H. Li, M.D. Wei, Fischer-Tropsch synthesis over Co-SiO2 catalysts prepared by the sol-gel method [J], Catal. Today.,2004,89(4),431-438.
    [106]Y. Zhuang, M. Claeys, E. Van.Steen Novel synthesis route for egg-shell, egg-white and egg-yolk type of cobalt on silica catalysts [J]. Appl. Catal. A:Gen.,2006,301(2),138-142.
    [107]F. Kapteijn, R.M. De Deugd, J.A. Moulijn, Fischer-Tropsch synthesis using monolithic catalysts [J], Catal. Today,2005,105(3-4),350-356.
    [108]Roucoux A, Schulz J, Patin H. Reduced transition metal colloids:a novel family of reusable catalysts [J], Chem. Rev.,2002,102(10),3757-3778.
    [109]A. Dittmar, H. Kosslick, J.P. Muller, etc. Characterization of cobalt oxide supported on titania prepared by microwave plasma enhanced chemical vapor deposition [J].Surf. Coat. Tech.,2004, 182(1),35-42.
    [110]Dalai A K, Bakhshi N N, Esmail M N. Characterization studies of plasma-sprayed cobalt and iron catalysts[J]. Ind. Eng. Chem. Res,1992,31(6),1449-1457.
    [111]M. Niemela, A.O.I. Krause, T. Vaara, etc. The effect of the precursor on the characteristics of Co/SiO2 catalysts [J], Appl. Catal. A:Gen.,1996,147(2),325-345.
    [112]M. Niemela, A.O.I. Krause, T. Vaara, etc. Preparation and characterization of CO/SiO2, Co-Mg/SiO2 and Mg-Co/SiO2 catalysts and their activity in CO hydrogenation [J], Top. Catal.,1995, 2(1-4),45-57.
    [113]R. Moreno, J. Requena, J.S. Moya, Slip casting of yttria-stabilized tetragonal zirconia polycrystals [J], J. Am. Ceram. Soc.1988,71,1036-1040.
    [114]S. Ivanova, V. Pitchon, C. Petit, Application of the direct exchange method in the preparation of gold catalysts supported on different oxide materials [J], J. Mol. Catal. A:Chem.2006,256, 278-283.
    [115]R.J. O'Brien, L. Xu, R.L. Spicer, etc. Activity and selectivity of precipitated iron Fischer-Tropsch catalysts [J], Catal. Today,1997,36,325-334.
    [116]E. Iglesia, Design, synthesis, and use of cobalt-based Fischer-Tropsch synthesis catalysts [J], Appl. Catal. A:Gen.,1997,161(1-2),59-78.
    [117]K.S. Chung, F.E. Massoth, Sutdies on molybdena-alumina catyalsts:Ⅶ. effect of cobalt on catalyst states and reducibility [J], J. Catal.,1980,64(1),320-331.
    [118]A.R. Belambe, R.Oukaci, J.G.Goodwin Jr. Effect of preteratment on the activiyt of the Ru-promoted Co/Al2O3 Fischer-Torpsch catyalst [J], J. Catal.,1997,166(1),8-15.
    [119]A. Lipidus, A. Krylova, J. Radrousky, A. Zukal, M. Jancalkova. Hydrocarbon synthes from CO and hydrogen on impregnated cobalt cataylsts:Ⅱ activity of 10% Co/Al2O3 and 10% Co/SiO2 cataylsts in FT synthesis [J], Appl. Catal. A:Gen.,1992,80(1),1-11.
    [120]J. Van de Loosdrecht, S.Barradas, E.A. Caricato, etc. Calaination of Co-based Fischer-Tropsch synthesis catyalsts [J], Top. Catal.,2003,26(1-4),121-127.
    [121]J.H. Clark, D.Macquarrie, Catalysis of liquid phase organic reactions using chemically modified mesoporous inorganic solids [J], Chem.Commun.,1998, (8),853-860.
    [122]D. Teribile, A. Trovarelli, J. Llorca, The preparation of high surface area CeO2-ZrO2 mixed oxides by surfactant-assisted approach [J], Catal. Today,1998,43(1-2),79-88.
    [123]Y. Liu, K. Fang, J. Chen, etc. Effect of pore size on the performance of mesoporous zirconia-supported cobalt Fischer-Tropsch catalysts [J], Green Chem.2007,9,611-615.
    [124]M.J. Hudson, J.A. Knowles, Preparation and characterisation of mesoporous, high surface area zirconium (IV) oxide [J], J. Mater. Chem.,1996,6(1),89-95.
    [125]J.S. Reddy, A. Sayari, Nanoporous zirconium oxide prepared using the supramolecular templating approach [J], Catal. Lett.,1996,38(4),219-223.
    [126]F. Schuth, U. Ciesla, S Schachat, etc. Ordered mesoporous silicas and zirconias:control on length scales between nanometer and micrometer [J], Mater. Res. Bull.,1999,34(3),483-494.
    [127]H.R. Chen, J.L. Shi, Z.L. Hua, etc. Parameter control in the synthesis of ordered porous zirconium oxide [J], Mater. Lett.,2001,51(3),187-193.
    [128]J.L. Blin, R. Flamant, B.L. Su, Synthesis of nanostructured mesoporous zirconia using CTMABr-ZrOCl2-8H2O systems:a kinetic study of synthesis mechanism [J], Inter. J. Inorg. Mater., 2001,3(7),959-972.
    [129]M.S. Wong, D.M. Antonelli, J.Y. Ying, Synthesis and characterization of phosphated mesoporous zirconium oxide [J], Nano. Mater.,1997,9(2),165-168.
    [130]V.I. Parvulescu, H. Bonnemann, V. Parvulescu, etc. Preparation and characterisation of mesoporous zirconium oxide [J], Appl. Catal. A:Gen.,2001,214(2),273-287.
    [131]V.I.Parvulescu, V. Parvulescu, U. Endruschat, etc. Preparation and characterization of mesoporous zirconium oxide. Part 2. [J], Micropor. Mesopor. Mater.,2001,44-45,221-226.
    [132]G. Pacheco, E. Zhao, A. Garcia, etc. Syntheses of mesoporous zirconia with anionic surfactants [J], J. Mater. Chem.,1998,8,219-226.
    [133]赵军平,王树国,巩雁军等,超临界条件下合成晶型骨架的介孔氧化锆[J],高等学校化学学报,2000,21(12),1797-1800.
    [134]P. Yang, D. Zhao, D. Margolese, etc. Generallized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks [J], Nature,1998,396,152-155.
    [135]G. Pacheco, E. Zhao, A. Garcia,etc. Syntheses of mesoporous zirconia with anionic surfac-tants [J], J. Mater. Chem.,1998,8(1),219-226.
    [136]Y.-Y. Huang, T.J. McCarthy, W.M.H. Sachtler, Preparation and catalytic testing of mesoporous sulfated zirconium dioxide with partially tetragonal wall structure [J], Appl. Catal. A: Gen.,1996,148(1),135-154.
    [137]E. Zhao, S.E. Hardcastle, G. Pacheco, etc. Aluminum-doped mesoporous zirconia obtained from anionic surfactants [J], Micropor. and Mesopor. Mater.,1999,31(1),9-21.
    [138]陈航榕,施剑林,汪霖等,在介孔氧化锆中的液相移植[J],硅酸盐学报,2001,29(1),18-20.
    [139]P.D.L. Mercera, J.G. Van Ommen, E.B.M. Doesburg, etc. Stabilized tetragonal zirconium oxide as a support for catalysts evolution of the texture and structure on calcination in static air [J], Appl. Catal. A:Gen.,1991,78(1),79-96.
    [140]J. Kaspar, P. Fomasiero, M. Graziani, Use of CeO2-based oxides in the three-way catalysis [J], Catal. Taday,1999,50,113-126.
    [141]H.S. Gandhi, K. Otto, A.G. Piken, etc. Sulfate formation:catalyst and gas-phase composition effects in pulsators and comparison of three-way with oxidation catalysis [J], Envir. Sci. Tech., 1977,11(2),170-174.
    [142]H.S. Potdar, S.B. Deshpande, A.S. Deshpande, etc. Prepararion of ceria-zirconia (Ce0.75Zr0.25O2) powders by microwave-hydrothermal (MH) route [J], Mater. Chem. Phys.,2002,74, 306-312.
    [143]胡玉才,冯长根,王丽琼等,含CexZr1-xO2固溶体三效催化剂的制备及性能研究[J],精细化工,2003,20,72-73.
    [144]赵建军,刘源,汽车尾气净化催化剂用CexZr1-xO2固溶体的研究进展[J],中国稀土学报,2002,20(6),52-54.
    [145]肖莉,林培瑛,杨志柏等,Ce-Zr固溶体的纯度及其在三效催化剂中的作用[J],分子催化,2000,14(2),81-86.
    [146]A. Trovarelli, F. Zamar, J. Llorca, etc. Nanophase Fluorite-Structured CeO2-ZrO2 Catalysts prepared by High-Energy Mechanical Milling [J], J. Catal.,1997,169(2),490-502.
    [147]彭新林,龙志奇,崔梅生等,共沉淀法合成锆复合氧化物及表征[J],中国稀土学报,2002,20(23),104-107.
    [148]张磊,刘源,白雪等,大比表面积锆氧化物固溶体的制备[J],中国稀土学报,2002, 20(23),99-103.
    [149]H. Masanori, M. Toshio, M. Inagaki, Low-temperature direct synthesis of nanoparticles of fluorite-type ceria-zirconia solid solutions by "forced cohydrolysis" at 100 ℃ [J], J. Sol. Sta. Chem., 2001,158(1),112-117.
    [150]罗孟飞,林瑞,陈敏等,Ce-Zr固溶体的制备和表征[J],中国稀土学报,2000,18(1),35-37.
    [151]M. Alifanti, B. Baps, N. Blangenois etc.Characterization of CeO2-ZrO2 mixed oxides: comparison of the citrate and sol-gel preparation methods [J], Chem. Mater.,2003,15(2),395-403.
    [152]詹明军,吴介达,陆世鑫等,络合法制备CexZr1-xO2固溶体及其表征[J],同济大学学报(自然科学版),2001,29(11),1331-1334.
    [153]王丽,刘源,翟彦青,柠檬酸络合法制备锆氧化物固溶体及其表征[J],内蒙古工业大学学报(自然科学版),2001,20(3),161-165.
    [154]郑育英,黄慧民,邓淑华等,水热法制备高纯超细CeO2-ZrO2复合氧化物[J],无机化学学报,2005,21(8),1227-1230.
    [155]Y.A. An, L. Li, J Wang, etc. Preparation and characterization of CeO2-ZrO2 solid solution ultrafine particles using reversed microemulsion [J], J. Rare Ear.,2005,23(4),416-419.
    [156]P. Fornasiero, R. Dimonte, G.R. Rao, etc. Rh-Loaded CeO2-ZrO2 solid-solutions as highly efficient oxygen exchangers:dependence of the reduction behavior and the oxygen storage capacity on the structural properties [J], J. Catal.,1995,151(1),168-177.
    [157]M. Thammachart, V. Meeyoo, T. Risksomboon, etc. Catalytic activity of CeO2-ZrO2 mixed oxide catalysts prepared via sol-sel technique:CO oxidation [J], Catal. Today,2001,68,53-61.
    [158]P. Fornasiero, J. Kaspar, V. Sergo,etc. Redox behavior of high-surface-area Rh-Pt-and Pd-loaded Ceo.5Zro.502 mixed oxide [J], J. Catal.,1999,182,56-69.
    [159]F. Fischer, H.Tropsch, Conversion of methane into hydrogen and carbon monoxide [J], Brennstoff Chem.,1928,3(9),39-46.
    [160]L.V. Mattos, E.R. de Oliveira, P.D. Resende, etc. Partial oxidation of methane on Pt/Ce-ZrO2 catalysts [J], Catal. Today,2002,77(3),245-256.
    [161]S.M. Stagg-Williams, F.B. Noronha, G. Fendley, etc. CO2 reforming of CH4 over Pt/ZrO2 catalysts promoted with La and Ce oxides [J], J Catal.,2000,194(2),240-249.
    [162]F B. Noronha, E.C. Fendley, R.R. Soares, etc. Correlation between catalytic activity and support reducibility in the CO2 reforming of methane over Pt/CexZr1-xO2 catalysts [J], Chem. Eng. J.,2001,82(1-3),21-31.
    [163]H.-S. Roh, H.S. Potdar, K.-W. Jun, etc. Carbon dioxide reforming of methane over Ni incorporated into Ce-ZrO2 catalysts [J], Appl. Catal. A:Gen.,2004,276(1-2),231-239.
    [1]D. Schanke, S. Vada, E.A. Blekkan, etc. Study of Pt-promoted cobalt CO hydrogenation catalysts [J], J. Catal.,1995,156(1),85-95.
    [1]J.C. Vartuli, J.G. Santiesteban, P. Traverso, etc. Characterization of the acid properties of tungsten/zirconia catalysts using adsorption microcalorimetry and n-pentane isomerization activity [J], J. Catal.1999,187,131-138.
    [2]T.M. Miller, V.H. Grassian, Environmental catalysis:adsorption and decomposition of nitrous oxide on zirconia [J], J. Am. Chem. Soc.1995,117,10969-10975.
    [3]L. D'Souza, A. Suchopar, K. Zhu, etc. Preparation of thermally stable high surface area mesoporous tetragonal ZrO2 and Pt/ZrO2:An active hydrogenation catalyst [J], Micropor. Mesopor. Mater.2006,88,22-30.
    [4]Y. Liu, K. Fang, J. Chen, etc. Effect of pore size on the performance of mesoporous zirconia-supported cobalt Fischer-Tropsch catalysts [J], Green Chem.2007,9,611-615.
    [5]M. Arruebo, M. Galan, N. Navascues, etc. Development of magnetic nanostructured silica-based materials as potential vectors for drug-delivery applications [J], Chem. Mater.,2006,18, 1911-1919.
    [6]J. Li, Y. Xu, D. Wu, etc. Hollow mesoporous silica sphere supported cobalt catalysts for F-T synthesis [J], Catal. Today,2009,148,148-152.
    [7]X. Liu, Y. Wei, D. Jin, etc. Synthesis of mesoporous aluminum oxide with aluminum alkoxide and tartaric acid [J], Mater. Lett.,2000,42,143-149.
    [8]C. Sangwichien, G.L. Aranovich, M.D. Donohue, Density functional theory predictions of adsorption isotherms with hysteresis loops [J], Colloids Surf. A.2002,206,313-320.
    [9]H. Peng, J. Tang, L. Yang, etc. Responsive periodic mesoporous polydiacetylene/silica nanocomposites [J], J. Am. Chem. Soc.,2006,128,5304-5305.
    [10]N.K. Mal, M. Fujiwara, T. Tanaka, Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica [J], Nature,2003,421,350-353.
    [11]H. Che, S. Han, W. Hou, etc. Ordered mesoporous tin oxide with crystalline pore walls: Preparation and thermal stability [J], Micropor. Mesopor. Mater.,2010,130,1-6.
    [12]W. Li, A. Lu, C. Weidenthaler, etc. Hard-templating pathway to create mesoporous magnesium oxide [J], Chem. Mater.2004,16,5676-5681.
    [13]H. Li, L. Zhang, H. Dai, etc. Facile synthesis and unique physicochemical properties of three-dimensionally ordered macroporous magnesium Oxide, gamma-alumina, and ceria-zirconia solid solutions with crystalline mesoporous walls [J], Inorg. Chem.,2009,48,4421-4434.
    [14]H. Yan, C.F. Blanford, B.T. Holland, etc. General synthesis of periodic macroporous solids by templated salt precipitation and chemical conversion [J], Chem. Mater.,2000,12,1134-1141.
    [15]C. Yang, W. Schmidt, F. Kleitz, Pore topology control of three-dimensional large pore cubic silica mesophases [J], J. Mater. Chem.,2005,15,5112-5114.
    [16]D. Chen, Z. Li, Y. Wan, etc. Anionic surfactant induced mesophase transformation to synthesize highly ordered large-pore mesoporous silica structures [J], J.Mater. Chem.,2006,16, 1511-1519.
    [17]A.Y. Khodakov, R. Bechara, A. Griboval-Constant, Fischer-tropsch synthesis over silica supported cobalt catalysts:mesoporous structure versus cobalt surface density [J], Appl. Catal. A: Gen.,2003,254,273-288.
    [18]R. Moreno, J. Requena, J.S. Moya, Slip casting of yttria-stabilized tetragonal zirconia polycrystals [J], J. Am. Ceram. Soc.,1988,71,1036-1040.
    [19]S. Ivanova, V. Pitchon, C. Petit, Application of the direct exchange method in the preparation of gold catalysts supported on different oxide materials [J], J. Mol. Catal. A:Chem.,2006,256, 278-283.
    [20]N. Tsubaki, Y. Zhang, S. Sun, etc. A new method of bimodal support preparation and its application in Fischer-Tropsch synthesis [J], Catal. Commun.2001,2,311-315.
    [21]A.Y. Khodakov, A. Griboval-Constant, R. Bechara, etc. Pore-size control of cobalt dispersion and reducibility in mesoporous silicas [J], J. Phys. Chem. B,2001,105,9805-9811.
    [22]S. Storsaeter, B. T(?)tdal, J.C. Walmsley, etc. Characterization of alumina-, silica-, and titania-supported cobalt Fischer-Tropsch catalysts [J], J. Catal.,2005,236,139-152.
    [23]D.G. Castner, P.R. Watson, I.Y. Chan, X-ray absorption spectroscopy, x-ray photoelectron spectroscopy, and analytical electron microscopy studies of cobalt catalysts.1. Characterization of calcined catalysts [J], J. Phys. Chem..1989,93,3188-3194.
    [24]J.P. Bonnelle, J. Grimblot, A. D'huysser, Influence de la polarisation des liaisons sur les spectres esca des oxydes de cobalt [J], J. Electron Spectrosc. Relat. Phenom.,1975,7,151-162.
    [25]J.-S. Girardon, E. Quinet, A. Griboval-Constant, etc. Cobalt dispersion, reducibility, and surface sites in promoted silica-supported Fischer-Tropsch catalysts [J], J. Catal.,2007,248, 143-157.
    [26]D.G. Castner, P.R. Watson, I.Y. Chan, X-ray absorption spectroscopy, x-ray photoelectron spectroscopy, and analytical electron microscopy studies of cobalt catalysts.2. Hydrogen reduction properties [J], J. Phys. Chem.,1990,94,819-828.
    [27](?). Borg, S. Eri, E.A. Blekkan, etc. Fischer-Tropsch synthesis over y-alumina-supported cobalt catalysts:Effect of support variables [J], J. Catal.,2007,248,89-100.
    [28]A.Y. Khodakov, W. Chu, P. Fongarland, Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels [J], Chem. Rev., 2007,107,1692-1744.
    [29]G. Prieto, A. Martinez, P. Conception, etc. Cobalt particle size effects in Fischer-Tropsch synthesis:Structural and in situ spectroscopic characterisation on reverse micelle-synthesised Co/ITQ-2 model catalysts [J], J. Catal.,2009,266,129-144.
    [30]A. Martinez, G. Prieto, J. Rollan, Nanofibrous-Al2O3 as support for Co-based Fischer-Tropsch catalysts:Pondering the relevance of diffusional and dispersion effects on catalytic performance [J], J. Catal.,2009,263,292-305.
    [31]D. Song, J. Li, Effect of catalyst pore size on the catalytic performance of silica supported cobalt Fischer-Tropsch catalysts [J], J. Mol. Catal. A:Chem.,2006,247,206-212.
    [32]X. Liu, W. Linghu, X. Li, etc. Effects of solvent on Fischer-Tropsch synthesis [J], Appl. Catal. A:Gen.,2006,303,251-257.
    [1]L.V. Mattos, E.R. de Oliveira, P.D. Resende, etc. Partial oxidation of methane on Pt/Ce-ZrO2 catalysts [J], Catal Today,2002,77(3),245-256.
    [2]F B. Noronha, E.C. Fendley, R.R. Soares, etc. Correlation between catalytic activity and support reducibility in the CO2 reforming of methane over Pt/CexZr1-xO2 catalysts [J], Chem. Eng. J.,2001, 82(1-3),21-31.
    [3]S. Bessel, Support effects in cobalt-based Fischer-Tropsch catalysts [J], Appl. Catal. A:Gen., 1993,96,253-268.
    [4]张俊岭,赵红霞,陈建刚等,锆改性钴基费-托合成催化剂催化性能的研究[J],催化学报,2002,23(6),530-534.
    [5]B.Q. Xu, T. Yamaguchi, K. Tanabe, Characteristic action of zirconium dioxide in the decomposition of alkylamines [J], Appl. Catal. A:Gen.,1990,64,41-54.
    [6]P.D.L. Mercera, J.G. Van Ommen, E.B.M. Doesburg, etc. Zirconia as a support for catalysts evolution of the texture and structure calcination in air [J], Appl. Catal. A:Gen.,1990,57,127-148.
    [7]Y. Liu, K. Fang, J. Chen, etc. Effect of pore size on the performance of mesoporous zirconia-supported cobalt Fischer-Tropsch catalysts [J], Green Chem.2007,9,611-615.
    [8]X. Zhang, H. Su, X. Yang, Catalytic performance of a three-dimensionally ordered macroporous Co/ZrO2 catalyst in Fischer-Tropsch synthesis [J], J. Mol. Catal. A:Chem.,2012,320,16-25.
    [9]M. Pijolat, M. Prin, M. Soustelle, etc. Surface area stability of lanthanum-doped ceria [J], Solid State Ionics,1993,63-65,781-785.
    [11]R. Zhang, W.Y. Teoh, R. Amal, etc. Catalytic reduction of NO by CO over Cu/CexZr1-xO2 prepared by flame synthesis [J], J. Catal.,2010,272,210-219.
    [12]F.B. Passos, E.R. de Oliveira, L.V. Mattos, etc. Partial oxidation of methane to synthesis gas on Pt/CexZr1-xO2 catalysts:the effect of the support reducibility and of the metal dispersion on the stability of the catalysts [J], Catal. Today,2005,101(1),23-30.
    [13]I. Atribak, A. Bueno-Lopez, A. Garcia-Garcia, Combined removal of diesel soot particulates and NOx over CeO2-ZrO2 mixed oxides [J], J. Catal.,2008,259,123-132.
    [14]S. Zeng, L. Zhang, X. Zhang, etc. Catalytic performance of Ni/CexZr1-xO2 catalysts for carbon dioxide reforming of methane [J], J. Chin. Rare Earth Soc.,2011,29(4),422-427.
    [15]N. Wang, W. Chu, L.Q. Huang, etc. Effects of Ce/Zr ratio on the structure and performances of Co-Ce1-xZrxO2 catalysts for carbon dioxide reforming of methane [J], J. Nat. Gas Chem.,2010,19, 117-22.
    [16]H.S. Roh, H.S. Potdar, K.W. Jun, Carbon dioxide reforming of methane over co-precipitated Ni-CeO2, Ni-ZrO2 and Ni-Ce-ZrO2 catalysts [J], Catal. Today,2004, (93-95),39-44.
    [17]J.A. Montoya, E. Romero-Pascual, C. Gimon, etc. Methane reforming with CO2 over Ni/ZrO2-CeO2 catalysts prepared by sol-gel [J], Catal. Today,2000,63,71-85.
    [18]H. Peng, J. Tang, L. Yang, etc. Responsive periodic mesoporous polydiacetylene/silica nanocomposites [J], J. Am. Chem. Soc.,2006,128,5304-5305.
    [19]R. Zhang, W.Y. Teoh, R. Amal, etc. Catalytic reduction of NO by CO over Cu/CexZr1-xO2 prepared by flame synthesis [J], J. Catal.,2010,272,210-219.
    [20]O. Levenspiel, Chemical Reaction Engineering,2nd ed., Wiley, NewYork,1972, p.496.
    [21]Y. Zhang, M. Shinoda, N. Tsubaki, Development of bimodal cobalt catalysts for Fischer-Tropsch synthesis [J], Catal. Today,2004,93-95,55-63.
    [22]A.Y. Khodakov, W. Chu, P. Fongarland, Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels [J], Chem. Rev.,2007, 107,1692-1744.
    [23]S. Storsaeter, B. T(?)tdal, J.C. Walmsley, etc. Characterization of alumina-, silica-, and titania-supported cobalt Fischer-Tropsch catalysts [J], J. Catal.,2005,236,139-152.
    [24]D.G. Castner, P.R. Watson, I.Y. Chan, X-ray absorption spectroscopy, x-ray photoelectron spectroscopy, and analytical electron microscopy studies of cobalt catalysts.1. Characterization of calcined catalysts [J], J. Phys. Chem.,1989,93 (4),3188-3194.
    [25]J.P. Bonnelle, J. Grimblot, A. D'huysser, Influence de la polarisation des liaisons sur les spectres esca des oxydes de cobalt [J], J. Electron. Spectrosc. Relat. Phenom.1975,7,151-162.
    [26]T. Mochizuki, T. Hara, N. Koizumi, etc. Surface structure and Fischer-Tropsch synthesis activity of highly active Co/SiO2 catalysts prepared from the impregnating solution modified with some chelating agents [J], Appl. Catal. A:Gen.,2007,317,97-104.
    [27]J.-S. Girardon, E. Quinet, A. Griboval-Constant, etc. Cobalt dispersion, reducibility, and surface sites in promoted silica-supported Fischer-Tropsch catalysts [J], J. Catal.,2007,248, 143-157.
    [28]E. Iglesia, S.C. Reyes, R.J. Madon, etc. Advanced in catalysis. Academic Press:New York, 1993,39,221.
    [29]E. Iglesia, S.L. Soled, R.A. Fiato, Fischer-Tropsch synthesis on cobalt and ruthenium. Metal dispersion and support effects on reaction rate and selectivity [J], J. Catal.,1992,137,212-224.
    [30]D. Song, J. Li, Effect of catalyst pore size on the catalytic performance of silica supported cobalt Fischer-Tropsch catalysts [J], J. Mol. Catal. A:Chem.,2006,247,206-212.
    [31]X. Liu, W. Linghu, X. Li, etc. Effects of solvent on Fischer-Tropsch synthesis [J], Appl. Catal. A:Gen.,2006,303,251-257.
    [32]G.L. Bezemer, J.H. Bitter, H.P.C.E. Kuipers, etc. Cobalt particle size effects in the Fischer-Tropsch reaction studied with carbon nanofiber supported catalysts [J], J. Am. Chem. Soc.,2006, 128(12),3956-3964.
    [33]G. Prieto, A. Martinez, P. Concepcion, etc. Cobalt particle size effects in Fischer-Tropsch synthesis:Structural and in situ spectroscopic characterisation on reverse micelle-synthesised Co/ITQ-2 model catalysts [J], J. Catal,2009,266,129-144.
    [34]J.W. Bae, S.-M. Kim, S.-J. Park, etc. Highly active and stable catalytic performance on phosphorous-promoted Ru/Co/Zr/SiO2 Fischer-Tropsch catalyst [J], Catal. Commun.,2010,11, 834-838.
    [1]A. L. Borer, C. Bronnimann, R. Prins, ZrO2-promoted Rh/SiO2 catalysts in CO hydrogenation and temperature-programmed reduction [J], J. Catal.,1994,145(2),516-525.
    [2]Klabunde K J, Imizu Y. Bimetallic solvated metal atom dispersed catalysts. New materials with low-temperature catalytic properties [J]. J. Am. Chem. Soc.,1984,106(9),2721-2722.
    [3]L.A. Bruce, M. Hoang, A.E. Hughes, etc. Ruthenium promotion of Fischer-Tropsch synthesis over coprecipitated cobalt/ceria catalysts [J], Appl. Catal. A:Gen.,1993,100(1),51-67.
    [4]李强,沈师孔,Co-Ce02/Si02催化剂上的费-托反应性能[J],催化学报,2002,23(6),513-516.
    [5]代小平,余长春,沈师孔,助剂Ce02对Co/Al2O3催化剂上F-T合成反应性能的影响[J],催化学报,2001,22(2),104-108.
    [6]代小平,余长春,李然家等,Co/SiO2催化剂催化费托合成中Ce02助剂的作用[J],催化学报,2006,27(10),904-910.
    [7]代小平,余长春,李然家,费托合成Ce02助Co/SiO2催化剂的失活[J],催化学报,2007,28(12),1047-1052.
    [8]B. Ernst, L. Hilaire, A. Kienmemann, Effects of highly dispersed ceria addition on reducibility, activity and hydrocarbon chain growth of a Co/SiO2 Fischer-Tropsch catalyst [J], Catal. Today, 1999,50(2),413-427.
    [9]G.R. Moradi, M.M. Basir, A. Taeb, etc. Promotion of Co/SiO2 Fischer-Tropsch catalysts with zirconium [J], Catal. Commun.,2003,4(1),27-32.
    [10]A. Guerrero-Ruiz, A. Sepulveda-Escribano, I. Rodriguez-Ramos, Carbon monoxide hydrogenation over carbon supported cobalt or ruthenium catalysts. Promoting effects of magnesium, vanadium and cerium oxides [J], Appl. Catal. A:Gen.,1994,120(1),71-83.
    [11]W. Ma, Y. Ding, L. Lin. Fischer-Tropsch Synthesis over activated-carbon supported cobalt catalysts:Effect of Co loading and promoters on catalyst performance [J], Industry & Engineering Chemical Research,2004,43(10),2391-2398.
    [12]H. Su, S. Zeng, H. Dong, etc. Pillared montmorillonite supported cobalt catalysts for the Fischer-Tropsch reaction [J], Appl. Clay Sci.,2009,46,325-329.
    [13]董慧,曾尚红,苏海全等,铝柱撑蒙脱土的制备及其负载钻催化剂的费托反应性能[J],中国稀土学报,2009,27(1),14-18.
    [14]E. Lira, C.M. Lopez, F. Oropeza, etc. HMS mesoporous silica as cobalt support for the Fischer-Tropsch Synthesis:Pretreatment, cobalt loading and particle size effects [J], J. Mol. Catal. A:Chem.,2008,281,146-153.
    [15]A.Y. Khodakov, R. Bechara, A. Griboval-Constant, Fischer-Tropsch synthesis over silica supported cobalt catalysts:Mesoporous structure versus cobalt surface density [J], Appl. Catal. A: Gen.,2003,254,273-288.
    [16]X. Liu, Y. Wei, D. Jin, etc. Synthesis of mesoporous aluminum oxide with aluminum alkoxide and tartaric acid [J], Mater. Lett.,2000,42,143-149.
    [17]H. Peng, J. Tang, L. Yang, etc. Responsive periodic mesoporous polydiacetylene/silica nanocomposites [J], J. Am. Chem. Soc.,2006,128,5304-5305.
    [18]N.K. Mal, M. Fujiwara, T. Tanaka, Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica [J], Nature,2003,421,350-353.
    [19]H. Che, S. Han, W. Hou, etc. Ordered mesoporous tin oxide with crystalline pore walls: Preparation and thermal stability [J], Micropor. Mesopor. Mater.2010,130(1-3),1-6.
    [20]A. Lapidus, A. Krylova, V. Kazanskii, etc. Hydrocarbon synthesis from carbon monoxide and hydrogen on impregnated cobalt catalysts Part I. Physico-chemical properties of 10% cobalt/alumina and 10% cobalt/silica [J], Appl. Catal. A:Gen.,1991,73(1),65-81.
    [21]A.Y. Khodakov, A. Griboval-Constant, R. Bechara, etc. Pore-size control of cobalt dispersion and reducibility in mesoporous silicas [J], J. Phys. Chem. B,2001,105,9805-9811.
    [22]R. Bechara, D. Balloy, J.-Y. Dauphin,etc. Influence of the characteristics of y-aluminas on the dispersion and the reducibility of supported cobalt catalysts [J], Chem. Mater.,1999,11, 1703-1711.
    [23]D.G. Castner, P.R. Watson, I.Y. Chan, X-ray absorption spectroscopy, x-ray photoelectron spectroscopy, and analytical electron microscopy studies of cobalt catalysts.2. Hydrogen reduction properties [J], J. Phys. Chem.,1990,94,819-828.
    [24]A.Y. Khodakov, J. Lynch, D. Bazin, etc. Reducibility of cobalt species in silica-supported Fischer-Tropsch catalysts [J], J. Catal.,1997,168,16-25.
    [25]B. Ernst, A. Bensaddik, L. Hilaire, etc. Study on a cobalt silica catalyst during reduction and Fischer-Tropsch reaction:In situ EXAF compared to XPS and XRD [J], Catal. Today,1998,39, 329-341.
    [26]Y. Liu, K. Fang, J. Chen, etc. Effect of pore size on the performance of mesoporous zirconia-supported cobalt Fischer-Tropsch catalysts [J], Green Chem.2007,9,611-615.
    [27]W. Chu, P.A. Chernavskii, L. Gengembre, etc. Cobalt species in promoted cobalt alumina-supported Fischer-Tropsch catalysts [J], J. Catal.,2007,252(2),215-230.
    [28]A.M. Hilmen, D. Schanke, K.F. Hanssen, etc. Study of the effect of water on alumina supported cobalt Fischer-Tropsch catalysts [J], Appl. Catal. A:Gen.,1999,186,169-188.
    [29]A. Martinez, C. Lopez, F. Marquez, etc. Fischer-Tropsch synthesis of hydrocarbons over mesoporous Co/SBA-15 catalysts:the influence of metal loading, cobalt precursor, and promoters [J], J. Catal.,2003,220(2),486-499.
    [30]J.-S. Girardon, E. Quinet, A. Griboval-Constant, etc. Cobalt dispersion, reducibility, and surface sites in promoted silica-supported Fischer-Tropsch catalysts [J], J. Catal.,2007,248, 143-157.
    [31]A.Y. Khodakov, W. Chu, P. Fongarland, Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels [J], Chem. Rev.,2007, 107,1692-1744.
    [32]E. Iglesia, Design, synthesis, and use of cobalt-based Fischer-Tropsch synthesis catalysts [J], Appl. Catal. A:Gen.,1997,161 (1-2),59-78.
    [33]A. Tavasoli, R.M.M. Abbaslou, A.K. Dalai, Deactivation behavior of ruthenium promoted Co/y-Al2O3 catalysts in Fischer-Tropsch synthesis [J], Appl. Catal. A:Gen.,2008,346,58-64.
    [34]D.J. Moodley, J. Van de Loosdrecht, A.M. Saib, etc. Carbon deposition as a deactivation mechanism of cobalt-based Fischer-Tropsch synthesis catalysts under realistic conditions [J], Appl. Catal. A:Gen.,2009,354,102-110.
    [35]J.W. Bae, S.-M. Kim, S.-J.Park, etc. Highly active and stable catalytic performance on phosphorous-promoted Ru/Co/Zr/SiO2 Fischer-Tropsch catalyst [J], Catal. Commun.,2010,11, 834-838.
    [1]黄传敬,王冬杰,齐共新等,甲烷二氧化碳转化钴催化剂及贵金属助剂的研究Ⅰ.Pt-Co/Al2O3催化剂的制备与性能[J],石油化工,2000,29,323-326.
    [2]魏永刚,王华,何方等,甲烷与二氧化碳催化重整制取合成气的研究进展[J],应用化工,2005,(12),721-725.
    [3]金涌,魏飞,循环经济与生态工业工程[J],西安交通大学学报(社会科学版),2003,23, 7-16.
    [4]M. Halmann, A. Steinfeld, Fuel saving, carbon dioxide emission avoidance, and syngas production by tri-refoming of flue gases from coal and gas-fired power stations, and by the carbon themic reduction of iron oxide[J], Energy,2006,31,3171-3185.
    [5]S.M. Stagg, E. Romeo, D.E. Resasco, etc., Effect of Promotion with Sn on Supported Pt Catalysts for CO2 Reforming of CH4 [J], J. Catal.,1998,178(1),137-145.
    [6]F.B. Noronha, E.C. Fendley, D.E. Resasco, etc. Correlation between catalytic activity and support reducibility in the CO2 reforming of methane over Pt/CexZr1-xO2 catalysts [J], Chem. Eng. J.,2001,82(1-3),21-31.
    [7]J. Chen, C. Yao, Y. Zhao, etc., Synthesis gas production from dry reforming of methane over Ceo.75Zro.2502-supported Ru catalysts [J], Int. J. Hyd. Energ.,2010,35,1630-1642.
    [8]H.C. Yao, Y.F. Yao, Ceria in automotive exhaust catalysts:I. Oxygen storage [J], J. Catal.,1984, 86 (2),254-265.
    [9]叶青,徐柏庆,Ce1-xZrxO2的氧化还原性能及其对CO2重整CH4反应的影响,催化学报,2006,27(2),151-156.
    [10]Kuznetsova T G, Sadykov V A, Specific features of the defect structure of metastable nanodisperse ceria, zirconia, and related materials [J], Kinet. Catal.,2008,49 (6),840-858.
    [11]H.Q. Su, S.H. Zeng, H. Dong, etc. Pillared Montmorillonite Supported Cobalt Catalysts for the Fischer-Tropsch Reaction, Appl. Clay Sci.,2009,46,325-329.
    [12]何余生,李忠,奚红霞等,气固吸附等温线的研究进展[J],离子交换与吸附,2004,20(4),376-384.
    [13]N.Wang, W. Chu, L. Huang, etc. Effects of Ce/Zr ratio on the structure and performances of Co-Ce1-xZrxO2 catalysts for carbon dioxide reforming of methane [J], J. Nat. Gas Chem.,2010,19, 117-122.
    [14]J. Zhang, H. Wang, A.K. Dalai, Development of stable bimetallic catalysts for carbon dioxide reforming of methane [J], J. Catal.,2007,249(2),300-310.
    [15]D. Liu, R. Lau, A. Borgna, etc. Carbon dioxide reforming of methane to synthesis gas over Ni-MCM-41 catalysts [J], Appl. Catal. A:Gen.,2009,358,110-118.
    [16]J.A. Montoya, E. Romero-Pascual, C. Gimon, etc. Methane reforming with CO2 over Ni/ ZrO2-CeO2 catalysts prepared by sol-gel [J], Catal. Today,2000,63(1),71-85.
    [17]Y. Liu, T. Hayakawa, T. Ishii, etc. Methanol decomposition to synthesis gas at low temperature over palladium supported on ceria-zirconia solid solutions [J], Appl. Catal. A:Gen., 2001,210,301-314.
    [18]K. Tomishige, O. Yamazaki, Y. Chen, etc. Development of ultra-stable Ni catalysts for carbon dioxide reforming of methane [J], Catal. Today,1998,45,35-39.
    [19]白凤华,费托合成反应的催化剂制备和性能研究及其对生态环境的影响[D],博士学位论文,呼和浩特,内蒙古大学,2008年.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700