贵金属与载体界面对三效催化性能的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以Pt、Rh、Pd等贵金属为活性组分的三效催化剂是目前控制汽车尾气污染最有效的手段。但随着燃油质量的改善,单Pd三效催化剂以其低廉的价格和高效的氧化活性得到普遍关注。同时,铈锆固溶体(CZ)在三效催化剂中的应用提高了催化剂的储放氧性能(OSC),有效地拓宽了三效催化剂的空燃比工作窗口,提高了传统氧化铝(A)载体的热稳定性。但在催化剂制备中,贵金属Pd与载体(CZ和A)之间的结合方式,以及结合方式对催化剂储放氧性能和催化活性的影响规律和机理还未有清楚认识。因此,系统而深入地研究贵金属与载体之间的相互作用以及其对催化性能的影响,对于汽车尾气净化催化剂的制备具有理论指导作用。
     本文以共沉淀法制备CZ和A,以CZ,A为载体采用等体积浸渍法制备负载量为1wt.%和0.5wt.%单Pd负载催化剂,并对新鲜样品进行水热老化处理。采用动态储放氧测试和模拟尾气催化剂评价等手段,考察贵金属与载体界面,贵金属负载量对催化剂储放氧性能和催化活性的影响。利用XRD,BET,H_2-TPR等表征手段对催化剂的晶相结构,比表面积,氧化还原性能等方面进行研究。
     储放氧性能测试表明Pd负载在CZ上极大地促进了样品的OSC性能和CO_2的生成速率,这是由于Pd-CZ界面有助于氧从CZ迁移到Pd上的反溢流过程,而Pd负载在A上则没有氧的反溢流作用。H2-TPR结果表明Pd-CZ界面的H2还原性能要好与Pd-A界面。对于催化活性来说,Pd-载体界面与催化活性有很好的对应关系,Pd-CZ界面有利于CO转化,良好的OSC性能有助于CO的催化转化,而Pd-A界面有利于HC,NO的转化。当Pd负载量从1wt.%减少到0.5wt.%时,催化剂的三效起燃温度T_(50)相差较小,说明Pd负载催化剂在保持一定催化活性的同时可以进一步减少贵金属Pd的负载量。
In recent years, typical three-way catalyst (TWC) formulations contain noble metal (such as platinum, palladium and rhodium) as the active components, but more attention has been paid to Pd as a single active metal component in TWC due to its low cost and low light-off temperature, particularly for HC conversion; other components of these systems have included alumina, which is employed as a high surface area support and ceria-zirconia solid solution, principally added as oxygen storage promoters. The research of the interaction between Pd and different support in application, resulting in changing in catalytic activity and oxygen storage capacity (OSC) performance is of important influence.
     In this paper, ceria-zirconia solid solution and alumina are prepared by co-precipitation method. Pd supported on CZ and Al_2O_3 are prepared by incipient wetness impregnation, which Pd loading is 1wt.% and 0.5wt.%. Both fresh and aged samples are tested on home-made dynamic OSC measure instrument and TWC measure equipment for their dynamic OSC and TWC performance. Structure analysis is also done by Brunnauer-Emmett-Teller (BET), X-ray diffraction (XRD) and Temperature-programmed reduction (TPR). Meanwhile, the effect of different Pd loading on catalytic activity is also investigated.
     OSC is greatly enhanced on Pd/CZ, Pd/CZ+Al_2O_3, Pd/CZ+Pd/Al_2O_3 sample showing as an obvious reduction peak by H2-TPR. In addition, DOSC shows greatly promotion when Pd supported on ceria-zirconia material. It can be concluded that interface between Pd-CZ is more favorable for OSC promotion due to oxygen back-spillover from ceria to the Pd metal. Contrastly, Pd/Al_2O_3 is inferior to Pd/CZ, ascribing to the absent of oxygen back-spillover process. As for catalytic activity we are concerned, direct relationship between interfaces of Pd-support and catalytic activity is found. By supported Pd on ceria-zirconia, high OSC contributes to the behavior CO oxidation, however, less effect on the HC and NO conversion. When Pd loading decreased from 1wt.% to 0.5wt.% , light-off temperature increased slightly.
引文
[1] Automotive Fuel’s for the 21st Century (IMechE Seminar Publication 1997-1)
    [2]韩一帆,汪仁,NO在铜离子交换型沸石上的催化分解,催化学报,1996
    [3] Jacques Barbier Jr., Daniel Duprez, Stem effects in three-way catalysis, Applied Catalysis B: Environmental, 1994, 6, 105~140.
    [4]朱振忠,田群,陈宏德,汽车尾气三效催化剂,中国环保产业,2002, 37(7), 34~36
    [5]H.S. Gandhi, G.W. Graham, R.W. McCabe, Automotive exhaust catalysis, Journal of Catalysis, 2003, 216, 433~442
    [6]P.Formasiero, G.Balducci, R.Di Monte, et al, Modification of the redox behaviour of CeO2 induced by structural doping with ZrO2, Journal of Catalysis, 1996, 164(1), 173~183
    [7]O.Masakuni, Role of cerium-zirconium mixed oxides as catalysts for car pollution: A short review, Journal of Alloys and Compounds, 1998, 275~277, 886~890
    [8]Masahiro Sugiura, Oxygen storage materials for automotive catalysts: ceria-zirconia solid solutions, Catalysis Surveys from Asia,2003, 7(1), 77~86
    [9]S.Rossignol, Y.Madier, D.Duprez, Preparation of zirconia-ceria materials by soft chemistry, Catalysis Today, 1999, 50, 261~270
    [10]H.Vidal, S.Bernal, J.Kaspar, et al, Influence of high temperature treatments under net oxidizing and reducing conditions on the oxygen storage and buffering properties of a Ce0.68Zr0.32O2 mixed oxide, Catalysis Today, 1999, 54, 93~100
    [11]Putna E S, Bunluesin T, Fan X L, et a1, Ceria films on zirconia substrates: models for understanding oxygen-storage properties, Catalysis Today, 1999, 50, 343~352
    [12]Colon G, Valdivieso V, Pijolat M, et a1, Textural and phase stability of CeXZr1-XO2 mixed oxides under high temperature oxidizing conditions, Catalysis Today, 1999, 50, 271~284
    [13]Cuif J P, Blanchard G, Touret O, et al, (Ce, Zr)OD2 solid solutions for three-way catalysts, SAE 970463, 1997
    [14]Monte R D, Fornasiero P, Kaspar J, et al, Stabilization of nanostructured Ce0.2Zr0.8O2 solid solution by impregnation on Al2O3: a suitable method for the production of thermally stable oxygen storage/release promoters for three-way catalysts, Chem. Commun., 2000, 2167~2178
    [15]Hori, Carla E., Permana, Haryani et al, Thermal stability of oxygen storage properties in a mixed CeO2-ZrO2 system, Applied Catalysis B: Environmental, 1998, 16(2), 105~117
    [16]Marta Boaro, Carla de Leitenburg, Giuliano Dolcetti et.al, The Dynamics of oxygen storage in ceria-zirconia model catalysts measured by CO oxidation under stationary and cycling feedstream compositions, Journal of Catalysis, 2000, 193, 338~347
    [17]Fornasiero P, Balducci G, et al, Modification of the redox behaviour of CeO2 induced by structural doping with ZrO2, Journal of Catalysis, 2001, 164(1), 173~183
    [18]S.Bernal, Some recent results on metal/support interaction effects in NM/CeO2(NM: noble metal) catalysts, Catalysis Today, 1999, 50, 175~206
    [19]Tadashi Suzuki, Akira Morikawa, Akihiko Suda, et al, Alumina-ceria-zirconia composite oxide for three-way catalyst, R&D Review of Toyata CRDL, 37(4), 28~33
    [20]周文龙,共沉淀法制备锆氧化铝复合氧化物的性能研究,硕士学位论文,天津大学,2007
    [21] Roberta Di Monte, Paolo Fornasiero, Stefano Desinan, Thermal stabilization of CexZr1-xO2 oxygen storage promoters by addition of Al2O3: effect of thermal agingon textural, structural, and morphological properties, Chem. Mater., 2004, 13, 115~130
    [22]Xiaodong Wu, Bing Yang, Duan Weng, Effect of Ce-Zr mixed oxides on the thermal stability of transition aluminas at elevated temperature, Journal of Alloys and compounds, 2004, 376(1-2), 241~245
    [23]M.Fernandez-Garc?a, Structural characteristics and redox behavior of CeO2–ZrO2/Al2O3 supports, Journal of Catalysis, 2000, 194, 385~392
    [24]Tauster S J, Fung S C, Garten R L, Strong metal-support interactions-group-8 noble-metals supported on TiO2, Journal of the American Chemical Society, 1978, 100(1), 170~175
    [25]Tauster S J, Strong metal-support interactions, Accornts of chemical research, 1987, 20(11), 389~394
    [26]M.G. Sanchez, J.L.Gazquea, Oxygen vacancy model in strong metal-support interaction, Journal of Catalysis, 1987, 104, 120~135
    [27]S.Bernal, Some recent results on metal/support interaction effects in NM/CeO2 (NM: noble metal) catalysts, Catalysis Today, 1999, 50, 175~206
    [28]L.F.Liotta, A.Longo, A.Macaluso, et al, Influence of the SMSI effect on the catalytic activity of a Pt(1%)/Ce0.6Zr0.4O2 catalyst: SAXS, XRD, XPS and TPR investigations, Applied Catalysis, 2004, 48, 133~149
    [29]朱凌云,锶掺杂的铈锆固溶体与贵金属相互作用的研究,硕士学位论文,天津大学,2006
    [30]朱保伟,陈宏德,铈锆固溶体载Pd催化剂的构造特性及其活性,环境化工,2004, 23(3), 241~246
    [31]Hu Z, Wan C Z, Lui Y K, et al, Design of a novel Pd three-way catalysts: integration of catalytic functions in three dimensions, Catalysis Today, 1996, 30, 83
    [32]G. Vlaic, P. Fornasiero, Morphology of rhodium particles in ex-chloride Rh/ Ce0.5Zr0.5O2 Catalyst, J. Catal, 2000, 190, 182~190
    [33]Meng-Fei Luo, Redox behavior and catalytic properties of Ce0.5Zr0.5O2- supported palladium catalysts, Appl.Catal.A, 1999, 189(1), 15~21
    [34]R.T.K.Baker, the interaction of palladium with alumina and titanium oxide supports, Journal of catalysis, 1984, 89, 422~432
    [35]C.Force, Metal sintering in Rh/Al2O3 catalysts followed by HREM, 1HNMR and H2 chemisorption, Langmuir, 2001, 17, 2720~2726
    [36]S.Penner, Platinum nanocrystals supported by silica, alumina and ceria: metal-support interaction due to high-temperature reduction in hydrogen, Surface Science, 2003, 532~535, 276~280
    [37]R.Burch, An Investigation of deactivation of Rh/alumina catalysts under strong oxidizing conditions, Applied Catalysis B: General, 1996, 147, 375~394
    [38]Suhonen S, Valden M, Hietikko, Effect of Ce-Zr mixed oxides on the chemical state of Rh in alumina supported automotive exhaust catalysts studied by XPS and XRD, Appl.Catal.B, 2001, 218, 151~167
    [39]N.Tsud, CO adsorption on palladium model catalysts: XPS Pd–Al_2O_3 interaction study, Surface Science 2000, 467, 169~176
    [40]A.Maroto-Valiente, Surface study of rhodium nanoparticles supported on alumina, Catalysis Today, 2004, 93~95, 567~574
    [41]T.E.Hoost, FTIR spectroscopy of nitric oxide adsorption on Pd/Al_2O_3: evidence of metal-support interaction, Journal of catalysis, 1995, 155, 303~311
    [42] P.Granger, Kinetics of the CO+NO Reaction over bimetallic platinum-rhodium on alumina: effect of ceria incorporation into noble metals, Journal of Catalysis, 2002, 207, 202~212
    [43]Huaqing Z, Zhangfeng Q, Wenjuan S, et al, Pd/CeO_2-TiO_2 catalyst for CO oxidation at low temperature: a TPR study with H2 and CO as reducing agents, Journal of Catalysis, 2004, 225, 267~277.
    [44]Geider Chen, Wen-tsae Chou, Chuin-tih Yeh, et al, The sorption of hydrogen on palladium in a flow system, Applied Catalysis, 1983, 8, 389~397
    [45]Boaro M, Giordano F, Recchia S, et al, On the mechanism of fast oxygen storage and release in ceria-zirconia model catalysts, Applied Catalysis B: Environmental, 2004, 5(2), 225~237
    [46]Claude Descorme,Rachid Taha, Najat Mouaddib-Moral, et al, Oxygen storage capacity measurements of three-way catalysts under transient conditions, Applied Catalysis A: General, 2002, 223, 287~299
    [47]C.N. Costa, S.Y. Christou, G. Georgiou, et al, Mathematical modeling of the oxygen storage capacity phenomenon studied by CO pulse transient experiments over Pd/CeO2 catalyst, Journal of Catalysis, 2003, 219, 259~276
    [48]E.S. Putna, R.J. Gorte, J.M. Vohs, et al, Evidence for Enhanced Dissociation of CO on Rh/Ceria, Journal of Catalysis, 1998, 178, 598~612
    [49]A. Holmgren, B. Andersson, D. Duprez, Interactions of CO with Pt/ceria catalysts, Applied Catalysis B: Environmental, 1999, 22, 215~231
    [50]X. Wang, R. J. Gorte, J. P. Wagner, et al, Deactivation mechanisms for Pd/Ceria during the water-gas-shift reaction, Journal of Catalysis, 2002, 212, 225~240
    [51] L.W.Jia, M.Q.Shen, T. Rao, et al, Dynamic oxygen storage and release over Mn0.1Ce0.9Ox and Mn0.1Ce0.6Zr0.3Ox complex compounds and structural characterization. J. Alloys Compd. 2007(accpeted)
    [52]J.C. Conesa, Computer Modeling of Local Level Structures in (Ce, Zr) Mixed Oxide, J. Phys. Chem. B, 2003, 107, 8840~8856
    [53]P.Formasiero, R.Di Monte, G.Ranga Rao, et al, Rh-loaded CeO_2-ZrO_2 solid solutions as highly effects oxygen exchanges: dependence of the reductions behavior and the oxygen storage capacity on the structural properties, Journal of Catalysis, 1995, 151(1), 168~177
    [54]A.Iglesias-Juez, A.Martínez-Arias, M. Fernández-García, et al, Metal–promoter interface in Pd/(Ce,Zr)Ox/Al2O3 catalysts: effect of thermal aging, Journal of Catalysis, 2004, 221, 148~161
    [55]M.Fernández-García, A.Martínez-Arias, A.Iglesias-Juez, et al, New Pd/CexZr1?xO2/Al2O3 three-way catalysts prepared by microemulsion: Part 1. Characterization and catalytic behavior for CO oxidation, Applied Catalysis B: Environmental, 2001, 31, 39~50
    [56]A.Martínez-Arias, M.Fernández-García, A. Iglesias-Juez, et al, Applied Catalysis B:Environmental, New Pd/CexZr1?xO2/Al2O3 three-way catalysts prepared by microemulsion: Part 2. In situ analysis of CO oxidation and NO reduction under stoichiometric CO+NO+O2, 2001, 31, 51~60
    [57]A.Martínez-Arias, A.B. Hungría, M. Fernández-García, et al, Light-off behaviour of PdO/γ-Al2O3 catalysts for stoichiometric CO-O2 and CO-O2-NO reactions: a combined catalytic activity–in situ DRIFTS study, Journal of Catalysis, 2004, 221, 85~93

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700