Ni/Ce_(0.5)Zr_(0.5)O_2催化剂在乙醇水蒸气重整过程中的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃料电池技术是未来首选的洁净、高效能源技术,其中燃料电池制氢技术是其技术核心。乙醇水蒸气重整反应展现了在制氢上的优越性,是未来主要的制氢技术之一。在乙醇重整反应中,镍系催化剂具有活性高、成本低等特点,但有氢气选择性较低,且易烧结,积碳导致稳定性不高的缺点。本论文探索开发了一种锆复合氧化物负载的镍催化剂,该催化剂在乙醇重整反应中展现了高活性、选择性和良好的抗积碳性能。我们研究和分析了制备因素对其催化性能和催化剂结构的影响。
     本实验分别采用共沉淀法、浸渍法和柠檬酸络合法制备了一系列Ni/ CexZr_(1-x)O_2催化剂。考察了制备条件(包括催化剂焙烧温度、柠檬酸和金属离子摩尔比以及活性组分含量)和反应条件(包括还原温度、反应空速)对Ni/ CexZr_(1-x)O_2催化剂用于乙醇水蒸气重整反应性能的影响,然后选出性能最好的催化剂进行了低温和高温下的稳定性测试。采用X射线衍射,程序升温还原和热重-差热等表征手段分析了催化剂的结构和性能。
     本工作得到以下主要实验结果:
     (1) Ni/Ce_(0.5)Zr_(0.5)O_2催化剂在以下制备条件下表现出最佳性能:柠檬酸络合法制备,焙烧温度750℃,载体金属离子和柠檬酸摩尔比为1:0.5,Ni含量20wt%;反应的预处理最佳还原温度为550℃。
     (2)20Ni/Ce_(0.5)Zr_(0.5)O_2-700催化剂在160,000ml?h-1?gcat-1高空速条件下仍能表现出很好的活性和选择性。
     (3)在整个反应温度测试范围内(350~700℃),20%Ni/Ce_(0.5)Zr_(0.5)O_2-700催化剂上乙醇的转化率都达到了100%。
     (4)对20%Ni/Ce_(0.5)Zr_(0.5)O_2催化剂分别在低温350℃和高温550℃进行了6h稳定性测试,6h内活性和选择性没有发生变化。对反应后的催化剂进行了TG-DTA测试,实验结果说明该催化剂在高温下有良好的抗积碳性能。
     (5)XRD实验结果表明,催化剂的主要物相组成为NiO和铈锆固溶体, NiO的分散程度,NiO和载体的相互作用对催化剂的性能有很大影响。
     (6)TPR实验结果表明,Ni/Ce_(0.5)Zr_(0.5)O_2催化剂上包括NiO和CeO2的还原,Ni0是催化剂的主要活性组分。
     (7)TG-DTA实验结果表明,20%Ni/Ce_(0.5)Zr_(0.5)O_2催化剂在550℃性能测试6小时后没有积碳现象,具有很好的稳定性。
Hydrogen is considered to be the energy carrier of the future. Ethanol steam reforming has many advantages over other ways for hydrogen production and will play an important role in producing hydrogen. Ni-based catalysts characterize with high activity and low cost. However, its selectivity towards H2 is relatively low, and catalyst stability is poor as the result of sintering and carbon deposition. In this paper, we used a new method to prepare Ni/Ce-Zr-O catalysts, which showed high activity and good stability for ethanol steam reforming.
     We investigated the effect of preparation method, calcination temperature, reduction temperature, the molar ratio of metal ion and citric, the content of active component on catalyst performance. We also examined catalyst activity with high space velocity. And the stability test of 20% Ni/Ce_(0.5)Zr_(0.5)O_2 catalysts after the reaction 6 hours separately at 350℃and 550℃was carried out. XRD and TPR have been used to investigate the structure and reduction behavior of the samples.TG-DTA has been used to investigate the carbon resistance of catalysts.
     The main results are as follows:
     (1)20wt%Ni/Ce_(0.5)Zr_(0.5)O_2-700 prepared by sol-gel method showed the best catalytic performance with the reduction temperature at 550℃and the molar ratio of (Ce4++Zr4+: citric acid ) 2:1.
     (2)The catalysts showed high activity and selectivity even at space velocity of 160,000ml/h.g.cat.
     (3)The ethanol conversion was 100% at the temperature from 350℃to 700℃over 20wt%Ni/Ce_(0.5)Zr_(0.5)O_2-700 catalyst.
     (4)The stability test is carried out for 6h over 20%Ni/Ce_(0.5)Zr_(0.5)O_2 catalyst separately at 350℃and 550℃There is no changes of activity and products selectivities were observed.
     (5)XRD results indicated that the catalyst include the phase of NiO and Ce0.5Zr0.5O2. Both the distribution of Ni species and the interaction between NiO and CeO2 affected catalysts performance.
     (6)The active component of Ni0 exists in different forms of catalysts with different preparation conditions. Meanwhile, the interaction between NiO and carrier will affect catalyst performance.
     (7)TG-DTA results showed no weight loss over 20%Ni/Ce_(0.5)Zr_(0.5)O_2 catalyst which is used for 6h at 550℃. So the 20%Ni/Ce_(0.5)Zr_(0.5)O_2 catalyst has better anti-carbon deposition property.
引文
[1] Flavin C., Dunn S., Reinventing the energy system. In: State of the World, Worldwatch Institute.Washington, DC, 1999: 22-35
    [2]徐超,氢能将是主宰未来世界的主要能源,东方经济,2004(6):20-28
    [3] Carrette L., Feiedrich K.A., Stimming U., Fuel cells-fundamentals and applications , Fuel Cells, 2001 (1): 5-39
    [4] Prater K.B., Solid polymer fuel cell development at Ballard, J Power Sources, 1992 (37): 181-188
    [5]宋文生,李磊,王宇新,燃料电池汽车氢源,汽车工程,2003(25):415-417
    [6] Hohlein B., Andrian S.V., Grube T., et al, Critical assessment of power trains with fuel cell system and different fuels, J Power Sources 2000, 86 (1) :243-249
    [7] Anca F.G. , Review of fuel processing catalysts for hydrogen production in PEM fuel cell systems , Current Opinion in Solid State and Materials Science, 2002, 5:389-399
    [8] Maggiog et al., Light alcohols/methane fuelled molten carbonate fuel cells: a comparative study , J Power Sources 1998, 74:17-23
    [9]亓爱笃,甲醇氧化重整制氢过程的研究,大连:中科院大连化学物理研究所1999.117
    [10] Laosiripojana N., Assabumrungrat S., Catalytic steam reforming of ethanol over high surface area CeO2:The role of CeO2 as an internal pre-reforming catalyst
    [11] Garcia, Laborde, J Hydrogen Energy 1991, 16:307-312
    [12] Vasueva K, Mitra N, Umasanker P, Dhingra S C, Int. J Hydrogen Energy, 1996, 21 (1): 13-18
    [13] Freni S, Maggio G, Cavallaro S, Ethanol steam reforming in a molten carbonate fuel cell: a thermodynamic approach J Power Sources, 1996, 62:67-73
    [14] Freni S, Maggio G,Int. J. Energy Res, 1997, 21:253
    [15] Ioannides T, Thermodynamic analysis of ethanol processors for fuel cell applications, J Power Sources, 2001, 92: 17-25
    [16] Haryanto A, Fernando S, Murali N., and Adhikari S., Current status of hydrogen production techinques by steam reforming of ethanol: a review, Energy & Fuels, 2005, 19, 2098-2106
    [17] Breen J P, Burch R, Coleman H M, Metal-catalysed steam reforming of ethanol in the production of hydrogen for fuel cell applications, Applied Catalysis B: Environmental, 2002, 39:65-74
    [18] Dimitris K, Liguras, Dimitris I, Kondarides, Xenophon E, Verykios, Production of hydrogen for fuel cells by steam reforming of ethanol over supported noble metal catalysts, Applied Catalysis B: Environmental, 2003, 43:345-354
    [19] Cavallaro S, Chiodo V, Vita V, Freni S, Hydrogen production by auto-thermal reforming of ethanol on Rh/Al2O3 catalyst, Journal of Power Sources, 2003, 123:10-16
    [20] Cavallaro S, Chiodo V, Freni S, Mondello S, Frusteri F, Performance of Rh/Al2O3 catalyst in the steam reforming of ethanol: H2 production for MCFC, Applied Catalysis A: General, 2003, 249:119-128
    [21] Cavallaro S, Ethanol Steam Reforming on Rh/Al2O3 Catalysts, Energy & Fuels, 2000, 14, 1195-1199
    [22] Diagne C, Idriss H, Kiennemann A, Hydrogen production by ethanol reforming over Rh/CeO2–ZrO2 catalysts, Catalysis Communications, 2002, 3:565-571
    [23] Jiang C J, Trimm D L, Wainwright M S. Applied Catalysis A, 1993, 97: 145-158
    [24] Huang T J, Wang S W, Applied Catalysis A, 1986, 24: 287-297
    [25] A lejo L, Lago R, Pena M A, et al, Partial oxidation of methanol to produce hydrogen over Cu-Zn-based catalysts, Applied Catalysis A, 1997, 162: 281-297
    [26]席靖宇(Xi J Y),王志飞(Wang Z F),吕功煊(Lu G X), Cu/Zn,Cu/Zn/Ni催化剂甲醇部分氧化制氢,物理化学学报(Acta Physico-Chimica Sinica) , 2001, 17 (7) : 655-658
    [27] Marino F J, Cerrella E G, Duhalde S, et al, Hydrogen from steam reforming of ethanol. Characterization and performance of copper-nickel supported catalysts, Int. J. Hydrogen Energy, 1998, 23 (12): 1095-1101
    [28] Marino F, Boveri M, Baronetti G, Laborde M, Hydrogen production from steam reforming of bioethanol using Cu/Ni/K/γ-Al2O3 catalysts Effect of Ni, Int. J. Hydrogen Energy, 2001, 26: 665-668
    [29] Luenga C A, Ciamp I G, CencigM O , et al, Int. J. Hydrogen Energy, 1992, 17 (9) : 677-681
    [30] Cavallaro S, Freni S, Ethanol steam reforming in a molten carbonate fuel cell. A preliminary kinetic investigation, Int. J. Hydrogen Energy, 1996, 21 (6): 465-469.
    [31] Comas J, Mari?o F, Laborde M, Amadeo N, Bio-ethanol steam reforming on Ni/Al2O3 catalyst, Chemical Engineering Journal, 2004, 98: 61-68
    [32] Freni S, Cavallaro S, Mondello N, Spadaro L, Frusteri F, Steam reforming of ethanol on Ni/MgO catalysts: H2 production for MCFC, Journal of Power Sources, 2002, 108:53-57
    [33] Frusteri F, Freni S, Chiodo V, Spadaro L, Bonura G, Cavallaro S, Potassium improved stability of Ni/MgO in the steam reforming of ethanol for the production of hydrogen for MCFC, Journal of Power Sources , 2004, 132 : 139-144
    [34] Srinivas D, Satyanarayana C V V, Potdar H S, Ratnasamy P, Structural studies on NiO-CeO2-ZrO2 catalysts for steam reforming of ethanol, Applied Catalysis A: General , 2003 , 246 : 323-334
    [35] Freni S, Rh based catalysts for indirect internal reforming ethanol applications in molten carbonate fuel cells, J Power Sources, 2001, 94:14-19
    [36] Haga F, Nakajima, Yamashita, et al [J] Nippon Kagaku Kaishi, 1997, 1:33-36
    [37] Haga F, Nakajima, Miyah, et al, Catalytic properties of supported cobalt catalysts for steam reformingof ethanol, [J] Catal Lett, 1997, 48: 223-227
    [38] Haga F, Nakajima, Yamashita, et al [J] Nippon Kagaku Kaishi, 1997, 11:758-762
    [39] Haga F, Nakajima, Yamashita, et al [J] Reaction Kinetics and Catal Lett, 1998, 63:253-259
    [40] Marcelo S, Batista, Rudye K.S. Santos, Elisabete M, Assaf, JoséM, Assaf, Edson A, Ticianelli, Characterization of the activity and stability of supported cobalt catalysts for the steam reforming of ethanol, Journal of Power Sources, 2003, 124:99-103
    [41] Marcelo S, Batista, Rudye K.S. Santos, Elisabete M, Assaf ,JoséM, Assaf , Edson A, Ticianelli, High efficiency steam reforming of ethanol by cobalt-based catalysts, Journal of Power Sources, 2004, 134:27-32
    [42] Llorca J., Homs N., Sales J., and Pilar R., Efficient Production of Hydrogen over Supported Cobalt Catalysts from Ethanol Steam Reforming, Journal of Catalysis, 2002, 209:306-317
    [43] Llorca J., Homs N., J. Sales, Fierro J.G.,and Pilar R., Effect of sodium addition on the performance of Co–ZnO-based catalysts for hydrogen production from bioethanol, Journal of Catalysis, 2004, 222:470-480
    [44] Llorca J., Homs N., Pilar R., In situ DRIFT-mass spectrometry study of the ethanol steam-reforming reaction over carbonyl-derived Co/ZnO catalysts, Journal of Catalysis, 2004, 227:556-560
    [45] Llorca J, Ramirez P, Sales J, et al, Chem. Commum, 2001, 7: 641-642
    [46] Yee A, Morrisons J, Idrissh, A Study of the Reactions of Ethanol on CeO2 and Pd/CeO2 by Steady State Reactions, Temperature Programmed Desorption, and In Situ FT-IR, [J] J.catal, 1999, 186:279-295
    [47] Yee A, Morrisons J, Idrissh, A Study of Ethanol Reactions over Pt/CeO2 by Temperature-Programmed Desorption and in Situ FT-IR Spectroscopy: Evidence of Benzene Formation, [J] J.catal, 2000, 191:30-45
    [48] Yee A, Morrisons J, Idrissh, The reactions of ethanol over M/CeO2 catalysts: Evidence of carbon–carbon bond dissociation at low temperatures over Rh/CeO2, [J] Catal Today, 2000, 63:327-335
    [49]金荣超,陈燕馨,李文钊等,甲烷催化部分氧化Ni催化剂及助剂的研究,物理化学学报,1998,14(8):737-741
    [50] Claridge J B, Green M L H, Ashcroft A T, et al., A study of carbon deposition on catalysts during the partial oxidation of methane to synthesis gas, Catal. Lett. 1993, 22: 299-305
    [51] Bharadwaj S. S., Schmidt L. D.,Synthesis Gas formation bu Catalytic Oxidation of Methane in Fluidized Bed Reactors. J. Catal. 1994,146:11-21
    [52] Hu, Hang Y., Ruckenstein, High-Resolution Transmission Electron Microscopy Study of Carbon Deposited on the NiO/MgO Solid Solution Catalysts. J. Catal. 1999,184: 298-302
    [53] Alessandro, Trovarelli. Design better cerium-based Oxidation catalysts. Chemtech, 1997,6: 32-37
    [54]肖莉林培琰,杨志柏等,Ce-Zr固溶体的纯度及其在三效催化剂中的作用,分子催化, 2000, 14(2): 81-86
    [55] Montoya J.A., Romero-Pascual E., et. al. Methane reforming with CO2 over Ni/ZrO2-CeO2 catalysts prepared by sol-gel. J.A. Montoya, E. Romen-Pascual, C. Gimon, P. Del Angel, A. Monzón. Catal. Today. 2000, 63: 71-85
    [56]Daturi M, Raman scattering study of cubic-tetragonal phasa transition in Ce1-xZrxO2 solid solution. Am. Ceram. Soc. 1994, 4: 1067-1071
    [57] More K., Zirconia-Ceria solid solution synthesis and the temperature-time transformation diagram for the 1:1 composition. Am. Ceram. Soc. 1993,7:1745-1750
    [58] Fornasiero P, Ka?par J, Sergo V, et al., Redox behavior of high-surface-area Rh-, Pt- and Pd-Loaded Ce0.5Zr0.5O2 mixed oxide. J. Catal. 1999,182: 56-69
    [59] Sánchez-Sánchez MC, et al. Ethanol steam reforming over Ni/M O–Al O .... Int J Hydrogen Energy (2006)x y 2 3
    [60] Schmal M., De Souza Monteiro R., Noronha, F.B. et al., Characterization of Pd-CeO2 interaction on alumina support and hydrogenation of 1,3-butadiene. Appl. Catal. A 1995, 131: 89-106
    [61] Tatsuya T, Shin-nosuke F, Masashi I. Hydrogen spillover from NiO to the large surface area CeO2–ZrO2 solid solutions and activity of the NiO/CeO2–ZrO2 catalysts for partial oxidation of methane. J. Catal. 2001, 202: 14–24
    [62] Srinivas D., Satyanarayana C.V.V., Potdar H.S., P. Ratnasamy Structural studies on NiO-CeO2-ZrO2 catalysts for steam reforming of ethanol. Appl. Catal. A 2003, 246: 323–334
    [63] Dong W.S., Roha H.S., Jun K.W., Park S.E., Sam Y. Oh Methane reforming over Ni/Ce-ZrO2 catalysts: effect of nickel content. Appl. Catal. A 2002, 226: 63–72
    [64]邓远富,罗春容,翁维正等,柠檬酸钛镍热分解制备系列镍钛复氧化物,石油化工,2004.33增刊,1213-1214
    [65] Biswas P., Kunzru D. Steam reforming of ethanol for production of hydrogen over Ni/CeO2ZrO2 catalyst: Effect of support and metal loading Int J Hydrogen Energy (2006)
    [66] Dong W.S., Roh H.S., Jun K.W., et al., Methane reforming over Ni/Ce-ZrO2 catalysts: effect of nickel content Appl. Catal. A 2002, 226: 63-72
    [67] Roh H.S., Dong W.S., Jun K.W., et al., Partial Oxidation of Methane over Ni Catalysts Supported on Ce-ZrO2 Mixed Oxide. Chem. Lett. 2001, 30: 88-89
    [68]Dias J A C,Assaf J M, The advantage of air addition on the methane steam reforming over Ni/γ-Al2O3, Jounud of Power Soroces, 2004, 137(1/2): 264~268

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700