青藏高原菊花山—唐古拉—类乌齐三叠纪火山岩浆弧—冈瓦纳与扬子板块的碰撞记录
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
菊花山-唐古拉-类乌齐火山岩浆弧沿龙木错-双湖-澜沧江板块缝合带分布,从藏北羌塘中部的冈玛错、菊花山,经唐古拉山,一直延伸到藏东类乌齐和吉塘地区。
     在藏北羌塘菊花山地区,菊花山-唐古拉-类乌齐火山岩浆主要表现为火山岩、花岗岩和闪长岩。其中,火山岩和闪长岩普遍具有Nb和Ti的负异常。在Nb-Y和Rb-Y+Nb图解上,样品投点几乎全部落入“火山弧花岗岩(VAG)”区,因而应当是形成于板块俯冲消减的环境。这些火山岩和闪长岩可以依据地球化学特征分为两类:埃达克岩(225~219Ma)和普通岛弧火山岩(217~205Ma),它们的岩浆源区和成因具有明显差别。埃达克岩主要包括宝户闪长岩(223Ma)和菊花山火山岩的一部分(225Ma、219Ma),这些样品普遍具有高的Sr含量(291~1367ppm,平均值为799ppm)以及低的Y含量(5.47~13.9ppm,平均值为10.2ppm)和Sr/Y比值(28~116,平均值为79)。在Sr/Y-Y图解上,样品投点落在埃达克岩区域。这些样品普遍具有富硅(SiO2=62.84~77.82wt.%)的特征,在MgO-SiO2图解上投点落入高SiO2埃达克岩(HSA)区域。在Sr/Y-La/Yb图解上,样品投点落入现代岛弧或陆缘弧的洋壳熔融成因埃达克岩区域,与青藏高原和大别地区的地壳增厚或拆离埃达克岩差别明显。因此,本文研究的埃达克岩与现代岛弧或陆缘弧埃达克岩类似,形成于俯冲大洋板片的部分熔融作用。这些埃达克岩同时具有正的锆石εHf(t)值(+3.2~+5.4)和负的全岩εNd(t)值(-2.6),表明它们形成于俯冲大洋板片与沉积物的部分熔融作用。羌塘菊花山地区的其他三叠纪火山岩显示出相对比较一致的地球化学特征。它们具有相对低的Sr含量(37~389ppm,平均值为186ppm)和Sr/Y比值(2~25,平均值为8)和变化的SiO2含量(60.30~80.90wt.%),同时还显示出高的初始87Sr/86Sr比值(0.708~0.714)和低的全岩εNd(t)值(-9.6~-7.9),可能是形成于羌北-昌都板块古老地壳物质的部分熔融作用。上述资料表明,在219Ma左右,羌塘菊花山地区火山岩有一个明显的地球化学特征变化,应当与俯冲大洋板片的断离有关。
     羌塘菊花山地区的花岗岩的研究程度较低,以219Ma为界可以分为两组。第一组为菊花山地区的绝大多数三叠纪花岗岩,形成时代为215~201Ma。其中,日湾茶卡东、果干加年山东和香桃湖地区的花岗岩为I型花岗岩,而本松错和戈木日地区的花岗岩为S型花岗岩。结合区域地质资料可知,这些三叠纪花岗岩与俯冲大洋板片的断离和软流圈上涌相关,代表了挤压环境向伸展环境的转化阶段。第二组仅包括果干加年山花岗闪长岩(225Ma),目前还没有可靠的地球化学资料,但是区域内已经识别出了同时代的埃达克质火山岩(225~219Ma),由此推测可能形成于俯冲消减环境。
     在藏东的唐古拉-类乌齐地区,菊花山-唐古拉-类乌齐火山岩浆主要表现为强变形的花岗岩,时代集中于251~236Ma。其中,吉塘和唐古拉地区的以及类乌齐地区的部分(241~236Ma)花岗岩为S型花岗岩,而察拉地区以及类乌齐地区的其余(249~244Ma)花岗岩为I型花岗岩。结合区域地质资料可知,这些花岗岩与羌塘菊花山地区的三叠纪花岗岩成因相似。沿板片断离窗上涌的软流圈地幔导致羌北-昌都板块的地壳物质发生广泛重熔,继而形成了该地区的三叠纪花岗质岩浆。其中,S型花岗岩的岩浆源区为羌北-昌都板块的古元古代地壳物质,而I型花岗岩具有相对年轻的火成岩源区,可能是新元古代新生地壳部分熔融的产物。
     综合前人报道和本文新测的年代学资料,菊花山-唐古拉-类乌齐火山岩浆弧的时代跨度为251~205Ma,主体为三叠纪,但是其年龄分布并不均一,具有西段年龄较年轻(225~205Ma)、东段年龄较古老(251~236Ma)的特点。由此推测龙木错-双湖-澜沧江洋的闭合时代应当具有穿时性特点。在羌塘中部地区,龙木错-双湖-澜沧江洋的俯冲消减一直持续到219Ma左右。随后发生俯冲板片断离,上涌的软流圈地幔导致羌北-昌都板块的地壳物质发生大规模重熔和高压变质岩石的折返。在藏东唐古拉-类乌齐地区,龙木错-双湖-澜沧江洋至少在早石炭世已经开始俯冲消减。羌南-保山板块在晚二叠世抵达海沟,俯冲板片断离可能发生在早-中三叠世。该地区251~236Ma的花岗岩应当是板片断离后软流圈地幔底侵的岩浆记录。
     与滇西昌宁-孟连板块缝合带的相关研究成果对比可知,滇西的临沧花岗岩基可能代表了菊花山-唐古拉-类乌齐火山岩浆弧的南向延伸,但是需要进一步研究工作来验证。
The distribution of the Juhuashan–Tanggula–Leiwuqi volcanic arc is along theLongmu Co–Shuanghu–Lancangjiang suture zone, extending from Gangmacuo andJuhuashan areas of central Qiangtang, to the Tanggula, Leiwuqi, and Jitang areas ofeastern Tibet.
     In the Juhuashan area of Qiangtang, the Juhuashan–Tanggula–Leiwuqi volcanicarc consists of arc volcanic rocks, granites and diorites. The arc volcanic rocks anddiorites exhibit strong negative Nb, Ti, and Eu anomalies. These rocks fall in the‘‘volcanic arc granite’’(VAG) field in the Nb versus Y and Rb versus Y+Nb tectonicdiscrimination diagrams, which are comparable to those formed in a volcanic arctectonic setting. The arc volcanic rocks and diorites can be devided into two groups.The older group (225–219Ma) have high Sr (291–1367ppm, averaging799ppm) andlow Y (5.47–13.9ppm, averaging10.2ppm) contents with high Sr/Y ratios (28–116,averaging79). They all plot in the adakite field in the Sr/Y versus Y diagram. Thehigh SiO2contents (62.84–77.82wt.%) suggests that these rocks belong to high-SiO2adakites (HSA). In the Sr/Y versus La/Yb diagram, these rocks show features of themodern arc adakite formed by slab melting. They are significantly different from theTibetan and Dabie adakites formed by partial melting of the lower crust. Collectively,these rocks have the geochemical characters similar to the modern adakite, a rock typeoriginally defined as felsic magma produced by partial melting of subducted oceaniccrust. The negative εNd(t) value (-2.6) and positive εHf(t) values (+3.2to+5.4)suggested that these rocks were generated by the melting of subducted oceanic crustand associated sediments. The younger group (217–205Ma) have relatively low Sr contents (37–389ppm, averaging186ppm) and Sr/Y ratios (2–25, averaging8) withvarying SiO2contents (60.30–80.90wt.%). Moreover, these rocks display high initial87Sr/86Sr ratios (0.708–0.714), and distinguished negative εNd(t) values (-9.6to-7.9),indicating that these rocks were probably derived from anatexis of ancient continentcrust of the Northern Qiangtang–Qamdo terrane. A slab break-off model waspresented to interpret the compositional transition from ‘‘adakitic’’ to ‘‘non-adakitic’’magmatism at ca.219Ma.
     The studying degree of the predecessor is low to the Triassic granites in the theJuhuashan area of Qiangtang. These Triassic granites can also be devided into twogroups. The younger group (215–201Ma) are in the majority. Thereinto, the granitesof eastern Riwanchaka, eastern Guoganjianian, and Xiangtaohu are I-type, and thegranites of Bensongcuo and Gemuri are S-type. The granites of the younger groupwere related to the slab break-off of the Longmu Co–Shuanghu–Lancangjiang ocean.The older group (225Ma) includes only the Guoganjianian granodiorite. Consideringthe contemporaneous adakites (225–219Ma), this granodiorite was related to asubduction setting.
     In the Tanggula–Leiwuqi area of eastern Tibet, the Juhuashan–Tanggula–Leiwuqi volcanic arc mainly consists of deformated granites which were comparableto the Triassic granites in the the Juhuashan area of Qiangtang. These granites can besubdivided into S-and I-types. The S-type granites were generated by the melting ofthe Paleoproterozoic continent crust of Northern Qiangtang-Qamdo terrane; the I-typegranites were probably derived from a relatively young source of Neoproterozoicjuvenile crust.
     Collectively, the currently available high-quality geochronological data revealthat the Juhuashan–Tanggula–Leiwuqi volcanic arc was formed during Triassic(251–205Ma); the western section (225–205Ma) is younger than the eastern section(251–236Ma). Therefore, the closure of the Longmu Co–Shuanghu–Lancangjiangocean is probably diachronous. In central Qiangtang area, the Southern Qiangtang–Baoshan collided with Northern Qiangtang–Qamdo terranes at ca.237~230Ma andthe time of the oceanic subduction ranges from237to219Ma. The oceanic slab wassubsequently detached at ca.219Ma. In the meantime, the break-off induced the hotasthenosphere to underplate the North–Qiangtang subterrane and caused crustalanatexis in the ancient basement. Futhermore, asthenosphere upwelling also led to theuplifting and exhumation of the High-pressure metamorphic belt. In the Tanggula–Leiwuqi area of eastern Tibet, the Southern Qiangtang–Baoshan collidedwith Northern Qiangtang–Qamdo terranes at Late Permian and the related oceanicslab was probably detached at Early–Middle Triassic.
     Triassic granites are widespread in the Lincang area of the Changning–Mengliansuture zone in western Yunnan of China. We proposed that these Triassic granites areprobably the sourthern extension of the Juhuashan–Tanggula–Leiwuqi volcanic arc,though additional investigations and data will be required to test our arguments.
引文
1. Andersen T.2002.Correction of common lead in U–Pb analyses that do not report204Pb[J].Chemical Geology,192:59-79.
    2. Belousova EA,Griffin WL,O’Reilly SY,et al.2002.Igneous zircon: trace elementcomposition as an indicator of source rock type[J].Contributions to Mineralogy andPetrology,143:602-622.
    3. Chappell BW,White AJR.1974.Two contrasting granite types[J].Pacific Geology,8:173-174.
    4. Chappell BW, White AJR.1992. I–and S–type granites in the Lachlan FoldBelt[J].Transactions of the Royal Society of Edinburgh: Earth Sciences,83:1-26.
    5. Defant MJ,Drummond MS.1990.Derivation of some modern arc magmas by melting ofyoung subducted lithosphere[J].Nature,347:662-665.
    6. Dong GC,Mo XX,Zhao ZD,et al.2013.Zircon U–Pb dating and the petrological andgeochemical constraints on Lincang granite in Western Yunnan, China: Implications for theclosure of the Paleo–Tethys Ocean[J].Journal of Asian Earth Sciences,62:282-294.
    7. Hennig D,Lemann B,Frei D,et al.2009.Early Permian seafloor to continental arcmagmatism in the eastern Paleo–Tethys: U–Pb age and Nd–Sr isotope data from the southernLancangjiang zone, Yunnan, China[J].Lithos,113:408-422.
    8. Hoskin PWO,Schaltegger U.2003.The composition of zircon and igneous and metamorphicpetrogenesis[J].Reviews in Mineralogy and Geochemistry,53:27-62.
    9. Hu PY,Li C,Wang M,et al.2013.Cambrian volcanism in the Lhasa terrane, southern Tibet:Record of an early Paleozoic Andean-type magmatic arc along the Gondwana proto-Tethyanmargin [J].Journal of Asian Earth Sciences,77:91-107.
    10. Hu ZC,Liu YS,Gao S,et al.2012.Improved in situ Hf isotope ratio analysis of zircon usingnewly designed X skimmer cone and Jet sample cone in combination with the addition ofnitrogen by laser ablation multiple collector ICP–MS[J].Journal of Analytical AtomicSpectrometry,27:1391-1399.
    11. Jian P,Liu DY,Sun XM,et al.2008.SHRIMP dating of the Permo–CarboniferousJinshajiang ophiolite, southwestern China: geochronological constraints for the evolution ofPaleo–Tethys[J].Journal of Asian Earth Sciences,32:371-384.
    12. Jian P,Liu DY,Kroner A,et al.2009a.Devonian to Permian plate tectonic cycle of thePaleo–Tethys Orogen in southwest China (I): geochemistry of ophiolites, arc/back–arcassemblages and within–plate igneous rocks[J].Lithos,113:748-766.
    13. Jian P,Liu DY,Kroner A,et al.2009b.Devonian to Permian plate tectonic cycle of thePaleo–Tethys Orogen in southwest China (II): insights from zircon ages of ophiolites,arc/back–arc assemblages and within–plate igneous rocks and generation of the EmeishanCFB province[J].Lithos,113:767-784.
    14. Kapp P,Yin A,Manning CE,et al.2000.Blueschist-bearing metamorphic core complexesin Qiangtang block reveal deep crustal structure of northern Tibet[J].Geology,28(1):19-22.
    15. Kapp P,Yin A,Manning CE,et al.2003.Tectonic evolution of the early Mesozoic blueschistbearing Qiangtang metamorphicbelt,central Tibet[J].Tectonics,22(4):1043-1053.
    16. Kay RW.1978.Aleutian magnesian andesites: melts from subducted Pacific ocean crust[J].Journal of Volcanology and Geothermal Research,4:117-132.
    17. Li C,Zhai QG,Dong YS,et al.2006.Discovery of eclogite and its significance from theQiangtang area,central Tibet[J].Chinese Science Bulletin,51(9):1095-1100.
    18. Li C,Zhai QG,Dong YS,et al.2009.High-Pressure Eclogite-Blueschist MetamorphicBelt and Closure of Paleo-Tethys Ocean in Central Qiangtang, Qinghai-TibetPlateau[J].Journal of Earth Science,20(2):27-37.
    19. Liu YS,Gao S,Hu ZC,et al.2010b.Continental and oceanic crust recycling–inducedmelt–peridotite interactions in the Trans–North China Orogen: U–Pb dating, Hf isotopes andtrace elements in zircons from mantle xenoliths[J].Journal of Petrology,51:537-571.
    20. Liu SA,Li SG,He YS,et al.2010b.Geochemical contrasts between early Cretaceousore-bearing and ore-barren high-Mg adakites in central-eastern China: implications forpetrogenesis and Cu–Au mineralization[J].Geochimica Et Cosmochimica Acta,74:7160-7178.
    21. Ludwig KR.2003.User's Manual for Isoplot3.00: A Geochronological Toolkit for MicrosoftExcel.Berkeley Geochronology Center Special Publication,Berkeley,No.4.70pp.
    22. Martin H, Smithies RH, Rapp R, et al.2005. An overview of adakite,tonalite–trondhjemite–granodiorite (TTG), and sanukitoid: relationships and someimplications for crustal evolution[J].Lithos,79:1-24.
    23. Metcalfe I.1996.Gondwanaland dispersion, Asian accretion and evolution of easternTethys[J].Australian Journal of Earth Sciences,43:101-118.
    24. Pearce JA,Harris NBW,Tindle AG.1984.Trace element discrimination diagrams for thetectonic interpretation of granitic rocks[J].Journal of Petrology,25:956-983.
    25. Pearce JA.1996.Sources and settings of granitic rocks[J].Episodes,19:120-125.
    26. Plank T.2005.Constraints from Thorium/Lanthanum on sediment recycling at subductionzones and the evolution of the continents[J].Journal of Petrology,46:921-944.
    27. Pullen A,Kapp P,Gehrels GE,et al.2008.Triassic continental subduction in central Tibetand Mediterranean-style closure of the Paleo-Tethys Ocean[J].Geology,36:351-354.
    28. Pullen A,Kapp P,Gehrels GE,et al.2011.Metamorphic rocks in central Tibet:lateralvariations and implications for crustal structure[J].Geological Society of America Bulletin,123:585-600.
    29. Ramos VA.1999.Plate tectonic setting of the Andean Cordillera[J].Episodes,22:183-190.
    30. Rickwood PC.1989.Boundary lines within petrologic diagrams which use oxides of majorand minor elements [J].Lithos,22:247-263.
    31. Shimoda G,Tatsumi Y,Nohda S,et al.1998.Setouchi high-Mg andesites revisited:geochemical evidence for melting of subducting sediments[J].Earth and Planetary ScienceLetters,160:479-492.
    32. Sylvester PJ.1998.Post-collision strongly peraluminous granites[J].Lithos,45:29-44.
    33. Sun SS, McDonough WF.1989. Chemical and isotopic systematics of oceanicbasalt:implications for mantle composition and processes.In:Saunders A D,Norry M J,eds[J].Magmatism in the Ocean Basins.London:Geol Soc Spec Pub,42:528-548.
    34. Sun WD,Ling MX,Chung SL,et al.2012.Geochemical constraints on adakites of differentorigins and copper mineralization[J].The Journal of Geology,120:105-120.
    35. Tatsumi Y.2001.Geochemical modeling of partial melting of subducting sediments andsubsequent melt-mantle interaction: generation of high-Mg andesites in the Setouchi volcanicbelt, southwest Japan[J].Geology,29:323-326.
    36. Von Blanckenburg F,Davies JH,1995.Slab breakoff: a model for syncollisional magmatismand tectonics in the Alps[J].Tectonics,14:120-131.
    37. Wiedenbeck M,Alle P,Corfu F,et al.1995.Three natural zircon standards for U–Th–Pb,Lu–Hf, trace element and REE analyses [J].Geostandards Newsletters,19:1-23.
    38. Wilde SA,Zhou XH,Nemchin AA,et al.2003.Mesozoic crust-mantle interaction beneaththe North China craton:a consequence of the dispersal of Gondwanaland and accre-tion ofAsia[J].Geology,31:817-820.
    39. Winchester JA,Floyd PA.1977.Geochemical discrimination of different magma series andtheir differentiation products using immobile elements[J].Chemical Geology,20:325-343.
    40. Woodhead J,Hergt J,Shelley M,et al.2004.Zircon Hf-isotope analysis with an excimerlaser,depth profiling,ablation of complex geometries,and concomitant age estimationChemical[J].Geology,209:121-135.
    41. Wu FY,Lin JQ,Wilde SA,et al.2005.Nature and significance of the Early Cretaceous giantigneous event in Eastern China[J].Earth and Planetary Science Letters,233:103-119.
    42. Wu RX,Zheng YF,WuYB,et al.2006.Reworking of juvenile crust: Element and isotopeevidence from Neoproterozoie granodiorite in South China [J].Precambrian Research,146:179-212.
    43. Xie LW,Zhang YB,Zhang HH,et al.2008.In situ simultaneous determination of traceelements, U–Pb and Lu–Hf isotopes in zircon and baddeleyite [J].Chinese Science Bulletin,53(10):1565-1573.
    44. Yang TN,Zhang HR,Liu YX,et al.2011.Permo-Triassic arc magmatism in central Tibet:Evidence from zircon U–Pb geochronology, Hf isotopes, rare earth elements, and bulkgeochemistry[J].Chemical Geology,284:270-282.
    45. Yuan HL,Gao S,Liu XM,et al.2004.Accurate U-Pb age and trace elment deteminationsof zircon by laser ablation-inductively coupled plasma-massspectrometry[J].Geostandards and Geoanlytical Research,11:357-370.
    46. Zhai QG,Li C,Wang J,et al.2009.SHRIMP U-Pb dating and Hf isotopic analyses of zirconsfrom the mafic dyke swarms in central Qiangtang area, Northern Tibet[J].Chinese ScienceBulletin,54:2279-2285.
    47. Zhai QG,Wang J,Li C,et al.2010.SHRIMP U–Pb dating and Hf isotopic analyses ofMiddle Ordovician meta–cumulate gabbro in central Qiangtang, northern Tibetanplateau[J].Science in China,Series D:Earth Sciences,53:657-664.
    48. Zhai QG,Zhang RY,John BM,et al.2011a.Triassic eclogites from central Qiangtang,northern Tibet,China:petrology,geochronology and metamorphic P–T path[J].Lithos,125:173-189.
    49. Zhai QG,Jahn BM,Zhang RY,et al.2011b.Triassic subduction of the Paleo-Tethys innorthern Tibet, China: evidence from the geochemical and isotopic characteristics ofeclogites and blueschists of the Qiangtang Block[J].Journal of Asian Earth Sciences,42:1356-1370.
    50. Zhai QG,Jahn BM,Su L,et al.2012.SHRIMP zircon U–Pb geochronology, geochemistryand Sr–Nd–Hf isotopic compositions of a mafic dyke swarm in the Qiangtang terrane,northern Tibet and geodynamic implications.Lithos,174:28-43.
    51. Zhai QG,John BM,Wang J,et al.2013a.The Carboniferous ophiolite in the middle of theQiangtang terrane,Northern Tibet:SHRIMP U–Pb dating,geochemical and Sr–Nd–Hfisotopic characteristics[J].Lithos,168-169:186-199.
    52. Zhai QG,Jahn BM,Su L,et al.2013b.Triassic arc magmatism in the Qiangtang area,northern Tibet:Zircon U–Pb ages,geochemical and Sr–Nd–Hf isotopic characteristics,andtectonic implications[J].Journal of Asian Earth Sciences,63:162-178.
    53. Zhang SB,Zheng YF,Wu YB,et al.2006a.Zircon U-Pb age and Hf-O isotope evidencefor Paleoproterozoic metamorphic event in South China[J].Precambrian Rsearch,151:265-288.
    54. Zhang KJ,Cai JX,Zhang YX,et al.2006b.Eclogites from central Qiangtang, northern Tibet(China) and tectonic implications[J].Earth and Planetary Science Letters,245:722-729.
    55. Zhu DC,Zhao ZD,Niu YL,et al.2012.Cambrian bimodal volcanism in the Lhasa Terrane,southern Tibet: Record of an early Paleozoic Andean-type magmatic arc in the Australianproto-Tethyan margin[J].Chemical Geology,328:290-308.
    56.鲍佩声,肖序常,王军,等.1999.西藏中北部双湖地区蓝片岩带及其构造涵义[J].地质学报,73(4):302-314.
    57.鲍佩声,肖序常,苏犁,等.2007.西藏洞错蛇绿岩的构造环境:岩石学、地球化学和年代学制约[J].中国科学(D辑),37(3):298-307.
    58.陈莉,徐军,苏犁.2005.场发射环境扫描电子显微镜上阴极荧光谱仪特点及其在锆石研究中的应用[J].自然科学进展,15(11):1403-1408.
    59.程立人,陈寿铭,张以春,等.2007.藏北羌塘南部发现早古生代地层及意义[J].地球科学,32(1):59-62.
    60.崔建堂,边小卫,王炬川,等.2006.西昆仑康西瓦南部甜水湖一带下志留统与中泥盆统不整合界面的发现[J].地质通报,25(12):1437-1440.
    61.邓万明,尹集祥,呙中平.1996a.羌塘茶布-双湖地区基性超基性岩和火山岩研究[J].中国科学(D辑:地球科学),26(4):296-301.
    62.邓万明,1996b.青藏古特提斯蛇绿岩带与“冈瓦纳古陆北界”.见:张旗.主编.蛇绿岩与地球动力学研究[M].北京:地质出版社,172~176.
    63.邓万明.1999.青藏高原北部新生代板内火山岩[M].北京:地质出版社.
    64.邓希光,丁林,刘小汉,等.2000.藏北羌塘中部冈玛日—桃形错蓝片岩的发现[J].地质科学,35(2):227-232.
    65.董永胜,张修政,施建荣,等.2009.藏北羌塘中部高压变质带中石榴子石白云母片岩的岩石学和变质特征[J].地质通报,28(9):1201-1206.
    66.付修根,王剑,汪正江,等.2008.藏北羌塘盆地菊花山地区火山岩SHRIMP锆石U–Pb年龄及地球化学特征[J].地质论评,54(2):232-242.
    67.付修根,王剑,陈文彬,等.2010.羌塘盆地那底岗日组火山岩地层时代及构造背景[J].成都理工大学学报(自然科学版),37(6):605-615.
    68.郭铁鹰,梁定益,张宜智,等.1991.西藏阿里地质[M].武汉:中国地质大学出版社.
    69.胡克,李才,程立人.1995.西藏冈玛错—双湖蓝片岩带及其构造意义[J].长春地质学院学报,23(3):268-274.
    70.胡培远,李才,杨韩涛,等.2010a.青藏高原羌塘中部果干加年山一代晚三叠世花岗岩的构造意义[J].地质通报,29(12):8-15.
    71.胡培远,李才,苏犁,等.2010b.青藏高原羌塘中部蜈蚣山花岗片麻岩锆石U-Pb定年——泛非与印支事件的年代学记录[J].中国地质,37(4):1050-1061.
    72.胡培远,李才,苏犁,等.2012.青藏高原羌塘中部蜈蚣山印支期花岗岩的地球化学特征和黑云母40Ar-39Ar年龄[J].地质通报,31(6):843-851.
    73.胡培远,李才,解超明,等.2013.藏北羌塘中部桃形湖蛇绿岩中钠长花岗岩——古特提斯洋壳消减的证据[J].岩石学报,29(12):4404-4414.
    74.黄会清,李献华,李武显,等.2008.南岭大东山花岗岩的形成时代与成因——SHRIMP锆石U-Pb年龄、元素和Sr-Nd-Hf同位素地球化学[J].高校地质学报,14(3):317-333.
    75.黄汲清,陈炳蔚.1987.中国及邻区特提斯海的演化[M].北京:地质出版社.
    76.黄继钧.2001a.藏北羌塘盆地构造特征及演化[J].中国区域地质,20(2):178-186.
    77.黄继钧.2001b.羌塘盆地基底构造特征[J].地质学报,75(3):333-337.
    78.黄小鹏,李才,翟庆国.2007.西藏羌塘中部玛依岗日地区印支期花岗岩的地球化学特征及其形成环境[J].地质通报,26(12):1646-1653.
    79.李彬,向树元,冯德新,等.2012.藏东察雅县察拉地区中生代花岗岩LA-ICP-MS锆石U-Pb年龄和构造环境[J].地质通报,31(5):698-706.
    80.李才.1987.龙木错-双湖-澜沧江板块缝合带与石炭二叠纪冈瓦纳北界[J].长春地质学院学报,17(2):155-166.
    81.李才,程立人,胡克,等.1995a.西藏龙木错—双湖古特提斯缝合带研究[M].北京:地质出版社.
    82.李才.1997.西藏羌塘中部蓝片岩青铝闪石40Ar/39Ar定年及其地质意义[J].科学通报,42(4):488.
    83.李才,李永铁,林源贤.2002.西藏双湖地区蓝片岩原岩Sm-Nd同位素定年[J].中国地质,29(4):355-359.
    84.李才.2003.羌塘基底质疑[J].地质论评,49(1):5-9.
    85.李才,程立人,张以春,等.2004.西藏羌塘南部发现奥陶纪—泥盆纪地层[J].地质通报,23(5-6):602-604.
    86.李才,翟庆国,程立人,等.2005.青藏高原羌塘地区几个关键地质问题的思考[J].地质通报,24(4):295-301.
    87.李才,黄小鹏,翟庆国,等.2006a.龙木错-双湖-吉塘板块缝合带与青藏高原冈瓦纳北界[J].地学前缘,13(4):136-147.
    88.李才,翟庆国,董永胜,等.2006b.青藏高原羌塘中部发现榴辉岩及其意义[J].科学通报,51(1):70-74.
    89.李才,翟庆国,陈文.2006c.青藏高原羌塘中部榴辉岩Ar-Ar定年[J].岩石学报,22(12):2843-2849.
    90.李才,翟庆国,董永胜.2007a.青藏高原龙木错—双湖板块缝合带与羌塘古特提斯洋演化记录[J].地质通报,26(1):13-21.
    91.李才,翟庆国,陈文.2007b.青藏高原龙木错-双湖板块缝合带闭合的沉积学证据——来自果干加年山蛇绿岩与流纹岩Ar-Ar和SHRIMP年龄制约[J].岩石学报,23(5):911-918.
    92.李才.2008.青藏高原龙木错-双湖-澜沧江板块缝合带研究二十年[J].地质论评,54(1):105-119.
    93.李才,董永胜,翟庆国,等.2008a.青藏高原羌塘中部早古生代蛇绿岩-堆晶辉长岩SHRIMP U-Pb定年及其构造意义[J].岩石学报,24(1):31-36.
    94.李才,谢尧武,沙绍礼,等.2008b.藏东八宿地区泛非期花岗岩锆石SHRIMPU-Pb定年[J].地质通报,27(1):64-68.
    95.李才,谢尧武,董永胜,等.2009a.北澜沧江带的性质——是冈瓦纳板块与扬子板块的界线吗?[J].地质通报,28(12):1711-1719.
    96.李才,谢尧武,董永胜,等.2009b.藏东类乌齐一带吉塘岩群时代讨论及初步认识[J].地质通报,28(9):1178-1180.
    97.李朋武,高锐,崔军文,等.2005.西藏和云南三江地区特提斯洋盆演化历史的古地磁分析[J].地球学报,26(5):387-404.
    98.李朋武,高锐,管烨,等.2009.古特提斯洋的闭合时代的古地磁分析:松潘复理石杂岩形成的构造背景[J].地球学报,30(1):39-50.
    99.李星学,姚兆奇,朱家楠,等.1982.西藏北部双湖地区晚二叠世植物群.西藏古生物(第五分册)[M].北京:科学出版社.
    100.李永铁,罗建宁,卢辉楠,等.2001.青藏高原地层[M].北京:科学出版社.
    101.李曰俊,吴浩若,李红生,等.1997.藏北阿木岗群,查桑群和鲁谷组放射虫的发现及有关问题讨论[J].地质论评,43(3):250-256.
    102.梁定益,聂泽同,郭铁鹰,等.1983.西藏阿里喀喇昆仑南部的冈瓦纳—特提斯相石炭—二叠系[J].地球科学,19(1):9-27.
    103.刘德利,刘继顺,张彩华,等.2008.滇西南澜沧江结合带北段云县花岗岩的地质特征及形成环境[J].岩石矿物学杂志,27(1):23-31.
    104.刘世坤.1992.藏东金沙江一带元古界的大地构造意义[J].西藏地质,1:16-21.
    105.刘文灿,梁定益,王克友,等.2002.藏南康马地区奥陶系的发现及其地质意义[J].地学前缘,9(4):247-248.
    106.陆济璞,张能,黄位鸿,等.2006.藏北羌塘中部红脊山地区蓝闪石+硬柱石变质矿物组合的特征及意义[J].地质通报,25(1-2):70-75.
    107.莫宣学.2011.岩浆作用于青藏高原演化[J].高效地质学报,17(3):351-367.
    108.聂泽同,宋志敏,姜建军,等.1993.滇西新冈瓦纳相生物群特征及地层时代的重新厘定[J].现代地质,7(4):384-393.
    109.潘桂棠,李兴振,王立全,等.2002.青藏高原及邻区大地构造单元初步划分[J].地质通报,21(11):701-707.
    110.潘桂堂,王立全,朱弟成.2004a.青藏高原区域地质调查中几个重大科学问题的思考[J].地质通报,23(1):12-19.
    111.潘桂堂,朱弟成,王立全,等.2004b.班公湖-怒江缝合带作为冈瓦纳大陆北界的地质地球物理证据[J].地学前缘,11(4):371-382.
    112.祁生胜,王毅智,何世豪,等.2009.唐古拉地区尕羊晚二叠世碰撞型花岗岩的确定和构造意义[J].西北地质,42(3):26-35.
    113.邱军强,强巴扎西,李虎.2011.澜沧江结合带中二叠世达弄岩片的发现及特征[J].地质调查与研究,34(4):258-267.
    114.时超,李荣社,何世平,等.2012.西藏类乌齐片麻状黑云二长花岗岩锆石U-Pb定年、地球化学特征及地质意义[J].新疆地质,30(4):456-464.
    115.孙金凤,杨进辉,吴福元.2009.原位微区同位素分析在花岗岩成因研究中的应用[J].地学前缘,16(2):129-139.
    116.陶琰,毕献武,李金高.2011.西藏吉塘花岗岩地球化学特征及成因[J].岩石学报,27(9):2763-2774.
    117.汪正江,王剑,谭富文.2008.青藏高原北羌塘盆地上三叠统那底岗日组火山岩的地球化学特征及其意义[J].地质通报,27(1):83-91.
    118.王保弟,王立全,强巴扎西,等.2011.早三叠世北澜沧江结合带碰撞作用:类乌齐花岗质片麻岩年代学、地球化学及Hf同位素证据[J].岩石学报,27(9):2752-2762.
    119.王成善,伊海生,李勇,等.2001.羌塘盆地地质演化与油气远景评价[M].北京:地质出版社.
    120.王根厚,贾建称,万永平,等.2006.藏东巴青县以北酉西岩组构造片理形成及构造意义[J].地学前缘,13(4):180-187.
    121.王国芝,王成善.2001.西藏羌塘基底变质岩系的解体和时代厘定[J].中国科学(D辑),31(增刊):77-82.
    122.王海然,赵红格,乔建新.2013.锆石U-Pb同位素测年原理及应用[J].地质与资源,22(3):229-242.
    123.王剑,付修根,陈文西,等.2008.北羌塘沃若山地区火山岩年代学及区域地球化学对比—对晚三叠世火山-沉积事件的启示[J].中国科学(D辑),38(1):33-43.
    124.王剑,汪正江,陈文西,等.2007.藏北北羌塘盆地那底岗日组时代归属的新证据[J].地质通报,26(4):404-409.
    125.王立全,潘桂棠,朱弟成,等.2006.藏北双湖鄂柔地区变质岩和玄武岩的40Ar/39Ar年龄及其意义[J].地学前缘,13(4):221-232.
    126.王明,李才,翟庆国,等.2009.藏北羌塘南部地区基性岩墙与玄武岩的岩浆同源性[J].地质通报,28(9):1281-1289.
    127.王明,李才,翟庆国,等.2010.青藏高原羌塘南部晚古生代地幔柱?——来自基性—超基性岩的地球化学证据[J].地质通报,29(12):1754-1772.
    128.王明.2013.藏北羌塘南部基性超基性岩的成因——晚古生代地幔柱?[D].长春:吉林大学.
    129.王权,董挨管,段春森,等.2004.西藏北部拉竹龙地区泥盆纪岩石地层划分与时代讨论[J].沉积与特提斯地质,24(3):30-37.
    130.王权,续世朝,魏荣珠,等.2006.青藏高原羌塘北部托和平错一带二叠系展金组火山岩的特征及构造环境[J].地质通报,25(1-2):295-301.
    131.吴彦旺.2013.龙木错-双湖-澜沧江洋历史记录——寒武纪-二叠纪的蛇绿岩[D].长春:吉林大学.
    132.西藏地质矿产局.1993.西藏自治区区域地质志[M].北京:地质出版社.
    133.西藏地质矿产局.1997.西藏自治区岩石地层[M].武汉:中国地质大学出版社.
    134.夏军,钟华明,童劲松,等.2006a.藏北龙木错东部三岔口地区下奥陶统与泥盆纪的不整合界面[J].地质通报,25(1-2):113-117.
    135.夏军,钟华明,童劲松,等.2006b.藏西北三岔口地区泥盆系生物礁特征及其意义[J].沉积与特提斯地质,26(2):34-40.
    136.熊兴国,岳龙,徐安全,等.2006.西藏羌塘达尔应强过铝花岗岩地球化学特征及地球动力学意义[J].沉积与特提斯地质,12(4):40-46.
    137.姚宗富.1992.青海玉树长青可地区元古界地层特征[J].西藏地质,1:1-6.
    138.翟庆国,李才,程立人,等.2004.西藏羌塘角木日地区二叠纪蛇绿岩地质特征及构造意义[J].地质通报,23(12):22-24.
    139.翟庆国,李才,程立人,等.2006.西藏羌塘中部角木日地区二叠纪玄武岩的地球化学特征及其构造意义[J].地质通报,25(12):1419-1427.
    140.翟庆国,李才.2007.藏北羌塘菊花山那底岗日组火山岩锆石SHRIMP定年及其意义[J].地质学报,81(6):795-800.
    141.翟庆国,李才,董永胜,等.2009.西藏羌塘中部荣玛地区蓝片岩岩石学、矿物学和Ar-Ar年代学.岩石学报,25(9):2281-2288.
    142.张修政,董永胜,施建荣,等.2010.羌塘中部龙木错-双湖缝合带中硬玉石榴石二云母片岩的成因及意义[J].地学前缘,1(1):93-103.
    143.张修政,董永胜,李才,等.2014.羌塘中部晚三叠世岩浆活动的构造背景及成因机制——以红脊山地区香桃湖花岗岩为例[J].岩石学报,30(2):547-564.
    144.赵靖,钟大赉,王毅.1994.滇西澜沧变质带的变质作用和变形的关系[J].岩石学报,10(1):27-40.
    145.赵政璋,李永铁,叶和飞,等.2001.青藏高原地层[M].北京:科学出版社.
    146.钟大赉.1998.滇川西部古特提斯造山带[J].北京:科学出版社.
    147.周志广,刘文灿,梁定益,等.2004.藏南康马奥陶系及其底砾岩的发现并初论喜马拉雅沉积盖层与统一变质基底的关系[J].地质通报,23(7):655-663.
    148.曾庆高,王保弟,强巴扎西.2010.藏东类乌齐地区花岗质片麻岩锆石Cameca U-Pb定年及其地质意义[J].地质通报,29(8):1123-1128.
    149.朱弟成,潘桂棠,王立全,等.2008.西藏冈底斯带侏罗纪岩浆作用的时空分布及构造环境[J].地质通报,27(4):458-468.
    150.朱弟成,莫宣学,王立全,等.2009.西藏冈底斯东部察隅高分异I型花岗岩的成因:锆石U-Pb年代学、地球化学和Sr-Nd-Hf同位素约束[J].中国科学(D辑),39(7):833-848.
    151.朱同兴,潘中习,庄忠海,等.2002.西藏北部双湖地区海相侏罗纪磁性地层学研究[J].地质学报,76(3):308-316.
    152.朱同兴,张启跃,董瀚.2006.藏北双湖才多茶卡地区构造混杂岩中新发现晚泥盆世和晚二叠世放射虫硅质岩[J].地质通报,25(12):1413-1418.
    153.朱同兴,张启跃,冯心涛.2010.西藏羌塘中部才多茶卡蓝闪石40Ar/39Ar年代学及地质意义[J].地质学报,84(10):1448-1456.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700