非血红素铁加氧酶模型配合物的合成与催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非血红素铁加氧酶的研究作为生物无机化学领域一个新兴的热点,吸引了众多的关注。基于非血红素铁加氧酶的仿生催化剂能够利用分子氧或H_2O_2等“绿色”氧化剂在温和条件下高效高选择性催化包括烷烃、烯烃、酚等在内的众多有机底物的氧化,对于开发绿色环保氧化工艺具有重要意义。近年来,生物学技术的发展以及众多模型配合物体系的开发使这个领域不断有新的突破。基于这样的研究背景,本论文对烷烃羟基化非血红素铁加氧酶(如铁博来霉素(FeBLM))和儿茶酚内裂解酶(如原儿茶酚3,4-双加氧酶(3,4-PCD))的活性中心进行了化学模拟,设计合成了一系列非血红素铁功能模型配合物,并重点考察所得铁配合物催化烷烃羟基化的性能和对3,5-二叔丁基邻苯二酚(H_2DBC)内裂解反应的活性。
     本文合成了具有灵活配位性质的N_4O配体N-(2-吡啶甲氧基乙基)-N,N-二(2-吡啶甲基)胺(L~1),晶体结构显示L~1可以在单核铁配合物中充当三齿或五齿配体,也可以和Fe(ClO_4)_3形成μ-oxo双核铁配合物。在温和条件下,以H_2O_2为氧化剂,[FeL~1Cl]PF_6(Fe2)为催化剂催化烷烃的羟基化反应,较好的模拟了FeBLM的功能,显示出高于以往N_5配体配位非血红素单核铁配合物的化学选择性(A/K=2.4),表明向配合物引入一个弱配位醚氧原子有利于基于金属氧化物种的反应途径。同样具有高选择性的fac-构型FeL~1Cl_3(Fe3)则显示了高于mer-构型N_3配位铁配合物的催化活性和选择性(A/K=2.3)。催化数据表明,在mCPBA体系中,N_4O和N_4O_2配位铁配合物以非血红素铁加氧酶基于金属的反应机理催化烷烃氧化,显示出高活性和高区域选择性(3°/2°=18.5-34.4)。此外,通过UV-Vis推测N_2O_2配体配合物[FeL~2](ClO_4)_2(Fe6,L~2=N,N-二(2-吡啶甲氧基乙基)-N-(2-吡啶甲基)胺)在H_2O_2体系中生成Fe~Ⅲ-OOH过氧中间物种。
     本论文将三角锥型N_3O配体配位μ-alkoxo双核Fe(Ⅲ,Ⅲ)配合物[FeL~8(NO_3)]_2(NO_3)_2(Fe11,HL~8=N,N-二(2-(吡啶甲基)-N-羟乙基胺)作为3,4-PCD活性中心的功能模型,对其进行了光谱学碱滴定,发现Fe11的烷氧基有效模拟了Tyr447分子内在碱的功能,与底物结合时能接受底物的质子,并从金属中心解离。动力学研究表明体系中只需加入少量的碱(0.8当量哌啶),就可以达到较高的儿茶酚1,2-双加氧酶内裂解活性(k=0.38 M~(-1)s~(-1))。此外,本文将含乙二胺骨架的不对称线型N_3O配体配位铁配合物FeL~(6a)Cl_2(Fe9a,HL~(6a)=N,N'-二甲基-N-(2-吡啶甲基)-N'-(2-羟基苯甲基)乙二胺)和FeL~(6b)Cl_2(Fe9b,HL~(6b)=N,N'-二甲基-N-(2-吡啶甲基)-N'-(2-羟基-5-氯-苯甲基)乙二胺)应用到3,4-PCD活性中心结构的模拟当中。由其晶体结构发现配合物的两个易变配位点处于相似的化学环境之中,从而降低了底物加合物的半醌自由基性质,导致对于H_2DBC的内裂解失去活性。
The research on non-heme iron oxygenases has emerged as a hot project in bioinorganic field, which has attracted much attention. Under mild conditions, the bio-inspired catalysts based on non-heme iron oxygenases can selectively and efficiently catalyze oxidation reactions of a large range of substrate such as alkanes, alkenes and phenols by using "green" oxidants. It may give a promising way to substitute present oxidation processes. In recent years, the development of biological techniques and biomimetic model systems has led to exciting breakthrough in the field of non-heme iron oxygenases. Encouraged by these achievments, in this thesis, the work focused on mimicking the function of non-heme iron oxygenases, especially those for alkane hydroxylation (iron bleomycin (FeBLM)) and catechol's intradiol cleavage dioxygenase (protocatechuic 3,4-dioxygenase (3,4-PCD)). A series of iron complexes were synthesized as functional models of non-heme iron oxygenases, their catalytic properties for the hydroxylation of alkanes and activities for the catechol intradiol-cleavage were investigated.
    A versatile ligand L~1 (N-(2-(pyridylmethoxyethyl)-N,N-bis(2-pyridylmethyl)amine) and its iron complexes were synthesized. The crystal structures of the iron complexes show that that L~1 can act as a tridentate or pentadentate ligand in monoiron complexes and μ-oxo dinuclear iron complex which was obtained from the reaction of L~1 with Fe(ClO_4)_3. Under mild conditions, the catalytic property of complex [FeL~1Cl]PF_6 (Fe2) was explored by using H_2O_2 as oxidant, which exhibited higher chemo-selectivity than previously reported N_5 ligand iron complexes (A/K = 2.4). The result manifests that the weak coordination of ether oxygen atom from L~1 benefits the metal-based oxidation pathway. Complex FeL~1Cl_3 (Fe3) with a fac-configuration showed a high selectivity in alkane hydroxidation as well as Fe2. The activity and selectivity of Fe3 are higher than the N_3-coordinate analogue with a mer-configuration (A/K = 2.3). While in mCPBA system, the complexes bearing N4O and N_2O_2 ligands exhibited high activities and high regioselectivities (3°/2° = 18.5-34.4). An Fe~(III)-OOH species was detected when the cyclohexane oxidation catalyzed by [FeL~2](ClO_4)_2 (Fe6, L~2 =N,N-bis(2-pyridylmethoxyethyl)-N-(2-pyridylmethyl)amine) containg an N_2O_2 ligand was monitored by UV-Vis spectrometry.
    The μ-alkoxo diiron(III,III) complex [FeL~8(NO_3)]_2(NO_3)~2 (Fe11, HL~8 = N,N-bis(2-pyridylmethyl)-N-hydroxylethylamine) containing tripodal N_3O ligand was
引文
[1] Lippard S J, Berg J M.著.席振峰译.生物无机化学原理.北京:北京大学出版社, 2000.
    
    [2] Holm R H, Kennepohl P, Solomon E I. Structural and functional aspects of metal site in biology. Chem. Rev., 1996, 96(7): 2239-2314.
    
    [3] a) Mansuy D, Battioni P. In: Reedi jk J, Bouwman E, ed. Bioinorganic catalysis, New York: Marcel Dekker Inc., 1999: 323-354. b) Sono M, Roach M P, Coulter E D et al. Heme containing oxygenase. Chem. Rev. 1996, 96(7): 2841-2887.
    
    [4] a) Poulos T L, Finzel B C, Gunsalus I C et al. The 2. 6 A crystal structure of Pesudomonas putida cytochrome P-450. J. Biol. Chem., 1985, 260(30):16122-16130. b) Poulos T L, Finzel B C, Howard A J. Crystal structure of substrate-free pseudomonas putida cytochrome P-450. Biochemistry, 1986, 25(18): 5314.
    
    [5] Ilme S, Joel B, Kelvin C et al. The Catalytic Pathway of Cytochrome P450cam at Atomic Resolution. Science, 2000, 287: 1615-1622.
    
    [6] a) Li H Y, Poulos T L. Structural variation in heme enzymes: a comparative analysis of peroxidase and P450 crystal structures. Structure, 1994, 2: 461-464.
    
    [7] a) Wallar B J, Lipscomb J D. Dioxygen activation by enzymes contaning binuclear Non-heme iron clusters. Chem. Rev. 1996, 96(7): 2625-2657. b) Feig A L, Lippard S J. Reactions of Non-heme iron (II) centers with dioxygen in biology and chemistry. Chem. Rev. 1994, 94(3): 759-805.
    
    [8] Gray H B, Ellis W R, Jr. In: Bertini I, Gray H B, Lippard S J, ed. Bioinorganic Chemistry. USA: University Science Books, Mill Valley, 1994: 315-364.
    
    [9] Broadwater J A, Achim C, Munck E, et al. Mossbauer studies of the formation and reactivity of a quasi-stable peroxo intermediate of stearoyl-acyl carrier protein Δ~9-Desaturase. Biochemistry, 1999, 38(38): 12197-12204.
    
    [10] Tshuva E Y, Lippard S J. Synthetic Models for Non-heme Carboxylate-Bridged Diiron Metalloproteins: Strategies and Tactics. Chem. Rev. 2004, 104(2): 987-1012.
    
    [11] a) Menage S, Brennan B A, Juarez-Garcia C, et al. Models for iron-oxo preoteins: dioxygen binding to a diferrous complex. J. Am. Chem. Soc. 1990, 112(17): 6423-6425.
    
    b) Ookubo T, Sugimoto H, Nagayama T, et al. cis-μ-1,2-Peroxo Diiron Complex: Structure and Reversible Oxygenation J. Am. Chem. Soc. 1996, 118(3): 701-702.
    
    c) Kim K, Lippard S J. Structure and Mossbauer Spectrum of a (μ-1, 2-Peroxo)bis (μ-carboxylato) diiron(III) Model for the Peroxo Intermediate in the Methane Monooxygenase Hydroxylase Reaction Cycle. J. Am. Chem. Soc. 1996, 118(20): 4914-4915.
    
    d) Dong Y, Zang Y, Shu Y, et al. 5-Alkylresorcinols from Hakea trifurcata, that cleave DNA. J. Am. Chem. Soc. 1995, 117(51): 12683-12690.
    
    e) Kodera M, Taniike Y, Itoh M, et al. A Mechanistic Study of the Reaction between a Diiron(II) Complex [FeII2(μ-OH)2(6-Me3-TPA)2]2+ and 02 to Form a Diiron(III) Peroxo Complex. Inorg. Chem. 2001, 40(10): 2220-2228.
    
    [12] Costas M, Rohde J-U, Stubna A, et al. Experimental Determination of Interaction Energies in a Porous Molecular Solid. J. Am. Chem. Soc. 2001, 123(51): 12931-12934.
    
    [13] a) Dong Y, Que L, Jr, Kauffmann K, et al. An Exchange-Coupled Complex with Localized High-Spin FeIV and FeIII Sites of Relevance to Cluster X of Escherichia coli Ribonucleotide Reductase. J. Am. Chem. Soc. 1995: 117, 11377-11378.
    
    b)Zang Y, Pan G, Que L, Jr, et al.First Diferric Complex with an Fe2(.mu.-O)(.mu.-OH) Core. Structure and Reactivity of [Fe_2(.mu.-O)(.mu.-OH)(6TLA)_2](C10_4)_3. J. Am. Chem. Soc. 1994, 116: 3653-3654.
    
    [14] a) Burger, R M. Cleavage of Nucleic Acids by Bleomycin. Chem. Rev. 1998, 98: 1153-1169.
    
    b) Stubbe, J, Kozarich J W. Mechanisms of bleomycin-induced DNA degradation. Chem. Rev. 1987, 87: 1107-1136.
    
    [15] Costas M, Mehn M P, Jensen M P, et al. Dioxygen Activation at Mononuclear Nonheme Iron Active Site: Enzymes, Models and Intermediates. Chem. Rev. 2004, 104: 939-986.
    
    [16] Sugiyama M, Kumagai T, HayashidaM. The 1. 6-A Crystal Structure of the Copper(II)-bound Bleomycin Complexed with the Bleomycin-binding Protein from Bleomycin-producing Streptomyces verticillus. J Biol. Chem. 2002. 227: 2311-2320.
    
    [17] a) Sam J W, Tang X-J, Peisach J. Electrospray Mass Spectrometry of Iron Bleomycin: Demonstration That Activated Bleomycin Is a Ferric Peroxide Complex. J. Am. Chem. Soc. 1994, 116: 5250-5256.
    
    b) Westre T E, Loeb K E, Zaleski J M, et al. Determination of the Geometric and Electronic Structure of Activated Bleomycin Using X-ray Absorption Spectroscopy. J. Am. Chem. Soc, 1995 117: 1309.
    
    [18] Roelfes G. Models for Nonheme Iron Containing Oxidation Enzymes: [dissertation]: Univ. of Groningen, 2000.
    
    [19] Que L Jr, Ho R Y N. Dioxygen Activation by Enzymes with Mononuclear Non-Heme Iron Active Sites. Chem. Rev., 1996, 96: 2607-2624.
    
    b) Solomon E I, Brunold T C, Davis M I. Geometric and Electronic Structure/Function Correlations in Non-Heme Iron Enzymes. Chem. Rev. 2000, 100: 235-250.
    
    [20] Ohlendorf D H, Lipscomb J D, Weber P C. Structure and assembly of protocatechuate 3,4-d ioxygena.se. Nature, 1988, 336(24): 403-405.
    
    [21] Han S, Eltis L D, Timmis K N et al. Crystal structure of biphenyl-cleaving extradiol dioxygenase from a PCD-degrading pseudomonad. Science, 1995, 270: 976-980.
    
    [22] Ohlendorf D H, Orville A M, Lipscomb J D. Structure of protocatechuate 3, 4dioxygenase from Pseudomonas aeruginosa at 2. 15 A resolution. J. Mol. Biol. 1994, 244: 586-608.
    
    b)Orville A M, Lipscomb J D, Ohlendorf D H. Crystal Structures of Substrate and Substrate Analog Complexes of Protocatechuate 3, 4-Dioxygenase: Endogenous Fe3+ Ligand Displacement in Response to Substrate Binding. Biochemistry, 1997, 36: 10052-10066.
    
    c) Vetting M W, Ohelendorf D H. The 1.8 A crystal structure of catechol 1,2-dioxygenase reveals a novel hydrophobic helical zipper as a subunit linker. Structure, 2000, 8: 429-440.
    [23] Que L Jr, Lipscomb J D, Munck E et al. Protocatechuate 3,4-Dioxygenase: Inhibitor Studies and Mechanistic Implications. Biochim. Biophys. Acta., 1977, 485: 60-74.
    [24] Yamahara R, Ogo S, Masuda H, et al. (Catecholato)iron(Ⅲ) complexes: structural and functional models for the catechol-bound iron(Ⅲ) form of catechol dioxygenases. J. Inorg. Biochem., 2002, 88: 284-294.
    [25] Riley D, Stern M, Ebner J, et al. In: Barton D H R, Martell A E, Sawyer D T. ed. The Activation of Dioxygen and Homogeneous Catalytic Oxidation. New York: Plenum, 1993.
    [26] Lange J P. Perspectives for Manufacturing Methanol at Fuel Value. Ind. Eng. Chem. Res., 1997, 36: 4282-4390.
    [27] Groves J T, Nemo T E. Hydroxylation and epoxidation catalyzed by iron-porphine complexes. Oxygen transfer from iodosylbenzene. J. Am. Chem. Soc. 1994, 101: 1032-1033.
    [28] 郭灿城,刘强,张小兵等.催化空气氧化烷烃和环烷烃的方法.CN 00113225.3.2000.
    [29] a) Brton D H R, Doller D. The selective functionalization of saturated hydrocarbons: Gif chemistry. Acc. Chem. Res., 1992, 25: 504-512.
    b) Barton D H R. On the mechanism of GIF reaction. Chem. Soc. Rev., 1996, 25: 237-239.
    c) Barton D H R. Gif chemistry: The present situation. Tetrahedron, 1998, 54: 5805-5817.
    [30] a) Sawyer D T, Sobkowiak A. Matsushita T. Metal [MLx; M=Fe, Cu, Co, Mn]/Hydroperoxide-Induced Activation of Dioxygen for the Oxygenation of Hydrocarbons: Oxygenated Fenton Chemistry. Acc. Chem. Res., 1996, 29: 409-416.
    b) Sawyer D T. Metal [Fe(Ⅱ), Cu(Ⅰ), Co(Ⅱ), Mn(Ⅲ)]/hydroperoxide-induced activation of dioxygen (O_2) for the ketonization of hydrocarbons: oxygenated Fenton Chemistry. Coord. Chem. Rev., 1997, 165: 297-313.
    [31] a) Leising R A, Norman R E, Que L Jr. Alkane functionalization by nonporphyrin iron complexes: mechanistic insights. Inorg. Chem., 1990, 29: 2553-2555.
    b) Leising R A, Kim J, Pérez M A et al. Alkane functionalization at (.mu.-oxo)diiron(Ⅲ) centers. J. Am. Chem. Soc., 1993, 115: 9524-9530.
    c) Ménage S, Vincent J-M, Lambeaux C et al. Alkane oxidation catalyzed by μ-oxo bridged diferric complexes: An overall mechanism. J. Mol. Catal. A: Chem., 1996, 113: 61-75.
    [32] Goldstein S, Meyerstein D. Comments on the Mechanism of the "Fenton-Like" Reaction. Acc. Chem. Res., 1999, 32: 547-550.
    [33] Ingold K U, MacFaul P A. In: Meunier B. ed. Biomimetic Oxidations Catalyzed by Transition Metal Complexes. London: World Scientific Publishing and Imperial College Pr. 2000.
    [34] Russell G A. Deuterium-isotope Effects in the Autoxidation of Aralkyl Hydrocarbons. Mechanism of the Interaction of PEroxy Radicals. J. Am. Soc. Chem., 1957, 79: 3871-3877.
    [35] Costas M, Chen K, Que L Jr. Biomimetic noheme iron catalysts for alkane hydroxylation. Coord. Chem. Rev., 2000, 200-202: 517-544.
    
    [36] Guajardo R J, Hudson S E, Brown S J et al. [Fe(PMA)]n+ (n = 1,2): good models of iron-bleomycins and examples of mononuclear non-heme iron complexes with significant oxygen-activation capabilities. J. Am. Chem. Soc, 1993, 115: 7971-7977.
    
    [37] Roelfes G, Lubben M, Chen K et al. Iron Chemistry of a Pentadentate Ligand That Generates a Metastable Fe~(III)-OOH Intermediate. Inorg. Chem., 1999, 38: 1929-1936.
    
    [38] Wada A, Ogo S, Wantanabe Y et al. Synthesis and Characterization of Novel Alkylperoxo Mononuclear Iron(III) Complexes with a Tripodal Pyridylamine Ligand: A Model for Peroxo Intermediates in Reactions Catalyzed by Non-Heme Iron Enzymes. Inorg. Chem. , 1999, 38: 3592-3593.
    
    [39] Colussi A J. Chemical kinetics of small organic radicals. Boca Raton: CRC Pr. , 1988.
    
    [40] Khenkin A M, Shilov A R. Alkane catalytic oxidation by an novel iron complex. New. J. Chem., 1989, 13: 659-667.
    
    [41] MacFaul P A, Ingold K U, Wayer D DM et al. A Putative Monooxygenase Mimic Which Functions via Well-Disguised Free Radical Chemistry. J. Am. Chem. Soc, 1997, 119: 10594-10598.
    
    [42] Burger R M, Peisach J, Horwitz S B et al. Mossbauer study of iron bleomycin and its activation intermediates. J. Biol. Chem., 1993, 258: 1559-1564.
    
    [43] Groves J T, McClusky Ga, White R E. Aliphatic hydroxylation by highly purified liver microsamal cytochrome P-450: Evidence for a carbon radical intermediate. Biochem. Biophys. Res. Commun., 1977, 76: 541-549.
    
    [44] Nesheim J C, Lipscomb J D. Large Kinetic Isotope Effects in Methane Oxidation Catalyzed by Methane Monooxygenase: Evidence for C-H Bond Cleavage in a Reaction Cycle Intermediate. Biochemistry, 1996, 35: 10240-10247.
    
    [45] Barton D H R, Beck A H, Taylor D K. he functionalization of saturated hydrocarbons. Part 31. The Fe(PA)3 - and [Fe(TPA)C12]C104 - catalyzed oxidations of saturated hydrocarbons by hydrogen peroxide: a comparative mechanistic study. Tetrahedron, 1995, 51: 5245-5254.
    
    [46] Okuno T, Ito S, Ohba S et al. μ -oxo brideged diiron(III) complexes and hydrogen peroxide: oxygenation and catalase-like activities. J. Chem. Soc Dalton Trans., 1997: 3547-3551.
    
    [47] Balogh-Hergovich E, Speier G, Reglier M et al. Synthesis, Structure, and Catalytic Activity of New μ -Oxo-Bridged Diiron(III) Complexes. Eur. J. Inorg. Chem., 2003: 1735-1740.
    
    [48] Kim J, Harrison RG, Kim C et al. Fe(TPA)-Catalyzed Alkane Hydroxylation. Metal-Based Oxidation vs Radical Chain Autoxidation. J. Am. Chem. Soc, 1996, 118: 4373-4379.
    
    [49] Rabion A, Bchanan R M, Seris J-L. Biomimetic oxidation studies, 10. Cyclohexane oxidation reactions with active site methane monooxygenase enzyme models and t-butyl hydroperoxide in aqueous micelles: Mechanistic insights and the role of t-butoxy radicals in the OH functionalization reaction. J. Mol. Catal. A: Chem., 1997, 116: 43-47.
    
    [50] Buchanan R M, Chen S, Richardson J F et al. Biomimetic Oxidation Studies. 8. Structure of a New MMO Active Site Model, [Fe20(H20)_2(tris((1-methylimidazol-2-yl) methyl)amine)_2](?), and Role of the Aqua Ligand in Alkane Functionalization Reactions. Inorg. Chem., 1994, 33: 3208-3209.
    
    [51] Kojima T, Leising R A, Yan S et al. Alkane functionalization at nonheme iron centers. Stoichiometric transfer of metal-bound ligands to alkane. J. Am. Chem. Soc, 1993, 115: 11328-11335.
    
    [52] Tetard D, Verlhac J-B. Alkane hydroxylation reactions catalysed by binuclear manganese and iron complexes. J. Mol. Catal. A: Chem., 1997, 113: 223.
    
    [53] Nguyen C, Guajardo R J, Mascharak P K. [Fe~(III)(PMA)]2+: A Mononuclear Non-Heme Iron Complex That Catalyzes Alkane Oxidation. Inorg. Chem., 1996, 35: 6273-6281.
    
    [54] Rowland J M, Olmstrad M, Mascharak P K. Synthesis, structures and reactivity of low spin iron(III) complexes containing a single carboxamido nitrogen in a [FeNsL] chromophore. Inorg. Chem., 2001, 40: 2810-2817.
    
    [55] Wang X, Wang S, Li L et al. Synthesis, structure and catalytic activity of mononuclear iron and ( μ -oxo)diiron complexes with the ligand 2,6-Bis(N-methylbenzimidazol- 2-yl)pyridine. Inorg. Chem., 2003, 42: 7799-7808.
    
    [56] Vincent J B, Huffman J C, Christou G et al. Modeling the dinuclear sites of iron biomolecules: synthesis and properties of Fe_2O(OAc)_2Cl_2(bipy)_2 and its use as an alkane activation catalyst. J. Am. Chem. Soc, 1988, 110: 6898.
    
    [57] Nagataki T, Tachi Y, Itoh S. Synthesis, characterization, and catalytic oxygenation activity of dinuclear iron(III) complex supported by binaphthol-contaning chiral ligand. J. Mol. Catal. A: Chem., 2005, 225: 103-109.
    
    [58] Kim C, Chen K, Kim J et al. Stereospecific Alkane Hydroxylation with H202 Catalyzed by an Iron(II)-Tris(2-pyridylmethyl)amine Complex. J. Am. Chem. Soc, 1997, 119:5964-5965.
    
    [59] Britovsek G J, England J, White A J P. Non-heme irn(II) complexes containing tripodal tetradentate nitrogen ligands and their application in alkane oxidation catalysis. Inog. Chem., 2005, 44: 8125-8134.
    
    [60] Klopstra M, Roelfes G, Hage R et al. Non-heme iron complexes for steroselective oxidation: Tuning of the selectivity in dihydroxylation using different solvent. Eur. J. Inorg. Chem., 2004: 846-856.
    
    [61] Tanase S, Foltz C, de Gelder R. Control of the catalytic oxidation s mediated by an oxo-bridged non-heme diiron complex: role of additives and reaction conditions. J. Mol. Catal. A: Chem., 2005, 225: 161-167.
    [62] Nishida Y, Okuno T, Ito S et al. Important Role of Tetrahydrofuran Ring in Activation of Hydrogen Peroxide in the Presence of Binuclear Iron(III) Complexes with Linear μ -Oxo Bridge. Chem. Lett., 1995: 885-887.
    
    [63] Chen K, Que L Jr. Evidence for the participation of a high-valent iron-oxo species in stereospecif ic alkane hydroxylation by a non-heme catalyst. J. Chem. Soc. , Chem. Commun. 1999: 1375-1376.
    [64] Britovsek G, England J, White A J P. Iron(II), manganese(II) and cobalt(II) complexes containing tetradentate biphenyl-bridged ligands and their application in alkane oxidation catalysis. J. Chem. Soc. Dalton Trans., 2006: 1399-1408.
    
    [65] Roelfes G, Lubben M, Hage R et al. Catalytic oxidation with a non-heme iron complex that generates a low-spin Fe~(III)OOH intermediate. Eur. J. Chem., 2000, 6: 2152-2159.
    
    [66] Sheu C, Sawyar D T. Activation of dioxygen by bis[(2-carboxy-6-carboxylato) pyridine]iron(II) for the bromination (via BrCCl_3) and monooxygenation (via PhNHNHPh) of saturated hydrocarbons: reaction mimic for the methane monooxygenase proteins. J. Am. Chem. Soc, 1990, 112: 8212-8214.
    
    [67] Duboc-Toia C, Menage S, Lambeaux C et al. m-oxo Diferric Complexes as Oxidation Catalysts with Hydrogen Peroxide and their Potential in Asymmetric Oxidation. Tetrahedron Lett., 1997, 38(21): 3727.
    
    [68] Balogh-Hergovich, SpeierG, Reglier M et al. Synthesis, structure and characterization of new complexes [Fe_2( μ -OMe)_2(PAP) (X)_4] and their oxidation catalysis. Inorg. Chim. Acta., 2004, 357: 3689-3696.
    
    [69] Fish R H, Konings M S, Oberhausen K J et al. Biomimetic oxidation studies. 5. Mechanistic aspects of alkane functionalization with iron and iron-oxygen (Fe20 and Fe402) complexes in the presence of hydrogen peroxide. Inorg. Chem., 1991, 30(15): 3002-3006.
    
    [70] a) Kim J, Larka E, Willkinson E C et al. An Alkylperoxoiron(III) Intermediate and Its Role in the Oxidation of Aliphatic C-H Bonds. Angew. Chem. Int. Ed. Engl., 1995, 34(18): 2048-2051. b) Kim J, Dong Y, Larka E C et al. Electrospray Ionization Mass Spectral Characterization of Transient Iron Species of Bioinorganic Relevance. Inorg. Chem., 1996, 35(8): 2369-2372.
    
    [71] Ho R Y N, Roelfes G, Feringa B L et al. Raman Evidence for a Weakened O-O Bond in Mononuclear Low-Spin Iron (III)-Hydroperoxides. J. Am. Chem. Soc, 1999, 121(1): 264-265.
    
    [72] Balland V, Mathieu D, Pons-Y-Moll N et al. Non-heme iron polyazadentate complexes as catalysts for oxidations by H_2O_2: particular efficiency in aromatic hydroxylations and beneficial effects of a reduxing agent. J. Mol. Catal. A: Chem., 2004, 215: 81-87.
    
    [73] a) Bernal I, Jensen I M, McKenzie K B et al. Ligands and an Exchangeable Sixth Ligand; Reactions with Peroxides. Crystal Structure of [Fe L1(H20)][PF6]2. H20 [ L1 = N,N'-bis-(6-methyl-2-pyridylmethyl)-N, N' -bis(2-pyridylmethyl)ethane-1, 2-diamine]. J. Chem. Soc. Dalton Trans., 1995: 3667-3675.
    
    b) Mialane P, Novorojkine A, Pratviel G et al. Structures of Fe(II) Complexes with N,N, N'-Tris(2-pyridylmethyl)ethane-1,2-diamine Type I.igands. Bleomycin-like DNA Cleavage and Enhancement by an Alkylammonium Substituent on the N' Atom of the Ligand. Inorg. Chem., 1999, 38(6): 1085-1092.
    
    [74] Balland V, Banse F, Anxolabehere-Mallart E et al. Fe(II) and Fe(III) mononuclear complexes with a pentadentate ligand built on 1,3-diaminoprpane unit. Structures and spectroscopic and electrochemical properties. Reaction with H_2O_2. Inorg. Chem., 2003, 42: 2470-2477.
    
    [75] Shan X P, Que L Jr. High-valent nonheme iron-oxo species in biomimetic oxidations. J. Inorg. Biochem., 2006, 100: 421-433.
    
    [76] Rohde J-U, In J-H, Lim M H et al. Crystallographic and spectroscopic characterization of a nonheme Fe(IV)=0 complex. Science, 2003, 299: 1037-1039.
    
    [77] Klinker E J, Kaizer J, Brennessel W W et al. Structures of Nonheme Oxoiron(IV) Complexes from X-ray Crystallography, NMR, and DFT Calculations. Angew. Chem., Int. Ed. 2005, 44: 3690-3694.
    
    [78] a) Kaizer J, Kinker E J, Oh N Y et al. Nonheme Fe~(IV)0 complexes that can oxidize the C-H bonds of cyclohexane at room temperature. J. Am. Chem. Soc, 2004, 126: 472-473. b) Jensen P, Costas M, Ho R Y N et al. High-valent nonheme iron. Two distinct iron(IV) species derived from a common iron(II) precursor. J. Am. Chem. Soc, 2005, 127: 10512-10525. c) Martinho M, Banse F, Bartoli J-F et al. New example of a non-heme mononuclear iron(IV) oxo complex. Spectroscopic data and oxidation activity. Inorg. Chem., 2005, 44: 9592-9596.
    
    [79] Funabiki T, Sakamoto H, Yoshida S et al. Oxidative aromatic ring cleavage of 3,5-ditertbutylcatechol with total insertion of molecular oxygen catalyzed by 2,2' -bipyridine-iron(II) complex. J. Soc. Chem., Chem. Commun., 1979: 754-755.
    
    [80] Funabiki T, Mizoguchi A, Sugimoto T et al. Oxygenase model reactions. 1. Intra- and extradiol oxygenations of 3,5-di-tert-butylcatechol catalyzed by (bipyridine)(pyridine)iron(III) complex. J. Am. Chem. Soc, 1986, 108(11): 2921-2932.
    
    [81] Heistand II R H, Roe A L, Que L Jr. Dioxygenase models. Crystal structures of [N,N'-(1,2-phenylene)bis(salicylideniminato)](catecholato-0) iron(III) and μ -(1, 4-benzenediolato-0, 0' )-bis[N,N'-ethylenebis(salicylideniminato)iron(III)]. Inorg. Chem., 1982, 21(2): 676-681.
    
    [82] Lauffer R B, Heistand II R H, Que L Jr. Dioxygenase models. Crystal structures of the 2,4-pentanedionato, phenanthrenesemiquinone, and catecholato complexes of N, N'-ethylenebis(salicylideneaminato)iron(III). Inorg. Chem., 1983, 22(1): 50-55.
    
    [83] Que L Jr, Kolanczyk R C, white L S Jr. Functional models for catechol 1, 2-dioxygenase. Structure, reactivity, and mechanism. J. Am. Chem. Soc, 1987, 109(18): 5373-5380.
    [84] Weller MG, Weser U. Ferric nitrilotriacetate: an active-center analog of pyrocatechase. J. Am. Chem. Soc, 1982, 104(13): 3752-3754.
    
    [85] Cox D D, Que L Jr. Functional models for catechol 1, 2-dioxygenase. The role of the iron(III) center. J. Am. Chem. Soc, 1988, 110(24): 8085-8092.
    
    [86] Cox D D, Benkovic S J, Bloom L M et al. Catecholate LMCT bands as probes for the active sites of nonheme iron oxygenases J. Am. Chem. Soc, 1988, 110(7): 2026-2032.
    
    [87] Jang H G, Cox D D, Que L Jr. A highly reactive functional model for the catechol dioxygenases. Structure and properties of [Fe(TPA)DBC]BPh_4. J. Am. Chem. Soc, 1991, 113(24): 9200-9204.
    
    [88] Funabiki T, Yamazaki T, Fukui A et al. Oxygenative Cleavage of Chlorocatechols with Molecular Oxygen Catalyzed by Non-Heme Iron(III) Complexes and Its Relevance to Chlorocatechol Dioxygenases. Angew. Chem., Int. Ed., 1998, 37: 513-515.
    
    [89] Hitomi Y, Higuchi M, Tanaka T et al. Electron spray ionization mass study on dioxygenation process in the reaction of catecholatoiron(III) complexes with molecular oxygen. Inorg. Chim. Acta., 2005, 358: 3465-3470.
    
    [90] Nishida Y, Shimo H, Kida S. An iron(III) comoplex with 2-[bis(2-pyridylmethyl)aminemethyl]-4-nitrophenol as an intradiol dixoygenase model compound. J. Chem. Soc, Chem. Commun., 1994: 1611-1622.
    
    [91] Velusamy M, Malimurugan R, Palaniandavar M. Iron(III) complexes of sterically hindered tetradentate monophenolate ligands as functional models for catechol 1, 2-dioxygenases: the role of ligand stereoelectronic properties. Inorg. Chem., 2004, 43(20): 6284-6293.
    
    [92] Viswanathan R, Palaniandavar M, Balasubramanian T et al. Functional Models for Catechol 1, 2-Dioxygenase. Synthesis, Structure, Spectra, and Catalytic Activity of Certain Tripodal Iron(III) Complexes. Inorg. Chem., 1998, 37(12): 2943-2951.
    
    [93] Velusamy M, Palaniandavar M, Gopalan R G et al. Novel iron(III) complexes of tripodal and linear tetradentate bis(phenolate) ligands: close relevance to intradiol-cleaving catechol dioxygenases. Inorg. Chem., 2003, 42(25): 8283-8293.
    
    [94] Pascaly M, Duda M, Rompel A et al. Novel iron(III) complexes with imidazole containing tripodal ligands as model systems for catechol dioxygenases. Inorg. Chim. Acta., 1999, 291(1-2): 289-299.
    
    [95] Pascaly M, Duda M, Schweppe F et al. The systematic influence of tripodal ligands on the catechol cleaving activity of iron(III) containing model compounds for catechol 1,2-dioxygenases. J. Chem. Soc, Dal ton Trans., 2001: 828-837.
    
    [96] Merkel M, Schnieders D, Baldeau S M et al. Structural snapshots of a dynamic coordination sphere in model complexes for catechol 1, 2-dioxygenases. Eur. J. Inorg. Chem., 2004: 783-790.
    [97] Merkel M, Pascaly, Krebs B et al. Chelate ring size variations and their effects on coordination chemistry and catechol dioxygenase reactivity of iron(III) complexes. Inorg. Chem., 2005, 44(21): 7582-7589.
    
    [98] Xu J-Y, AsTONer J, Walter 0 et al. Iron(III) complexes with the ligand N' , N' -bis[(2-pyridyl)-methyl]ethylenediamine (uns-penr) and its amide derivative N-acetyl-N, N' -bis[(2-pyridyl)methyl]ethlenediamine (acetyl-uns-penp). Eur. J. Inorg. Chem., 2006: 1601-1610.
    
    [99] Mialane P, Tcheranov L, Banse F et al. Aminopyridine iron catecholate complexes as models for intradiol catechol dioxygenases. Synthesis, structure, reactivity, and spectroscopic studies. Inorg. Chem., 2000, 39(12): 2440-2444.
    
    [100] Mialane P, Anxolabehere-Mallart E, Blondin G et al. Structure and electronic properties of (N, N' -bis(4-methyl-6-tert-butyl-2-methyl-phenolato)- N, N' -bismethyl- 1,2-diaminoethane) FeIII(DBSQ). Spectroelectrochemical study of the red-ox peroperties. Relevance to intradiol catechol dioxygenases. Inorg. Chim. Acta, 1997, 263: 367-378.
    
    [101] Yamahara R, Ogo S, Wantanabe Y et al. (Catecholato)iron (III) complexes with tetradentate tripodal ligands containing substituted phenol and pyridine units as structural and functional model complexes for the catechol-bound intermediate of intradiol-cleaving catechol dioxygenases. Inorg. Chim. Acta, 2000, 300-302: 587-596.
    
    [102] Fujii H, Funahashi Y. A Trigonal-Bipyramidal Ferric Aqua Complex with a Sterically Hindered Salen Ligand as a Model for the Active Site of Protocatechuate 3, 4-Dioxygenase. Angcw. Chem., Int. Ed., 2002, 41(19): 3638.
    
    [103] Koch W O, Kruger H-J. A Highly Reactive and Catalytically Active Model System for Intradiol-Cleaving Catechol Dioxygenases: Structure and Reactivity of Iron(III) Catecholate Complexes of N, N'-Dimethyl-2, 11-diaza[3. 3](2, 6)pyridinophane. Angew. Chem., Int Ed. Engl. , 1995, 34: 2671-2674.
    
    [104] Raffard N, Carina R, Simaam J et al. Biomimetic catalysis of catechol cleavage by accessibility of 02 to FeIII in 2, 11-diza[3, 3](2, 6)pyridinophane-type catalysts. Eur. J. Inorg. Chem., 2001: 2249-2254.
    
    [105] Viswanathan R, Palaniandavar M. Analogues of the iron-binding site in catechol 1, 2-dioxygenase: iron(III) complexes of benzimidazole and pyridine-containing tridentate ligands. J. Chem. Soc, Dalton Trans., 1995: 1259-1266.
    
    [106] Velusamy M, Mayilmurugan R, Palaniandavar M. Functional models for catechol dioxygenases: iron(III) complexes of cis-facially coordinating linear 3N ligands. Inorg. Biochem., 2005, 99: 1032-1042.
    
    [107] Merkel M, Felizitas K, Muller et al. Novel iron(III) complexes with phenolate containing tripodal tetradentate ligands as model systems for catechol 1, 2-dioxygenases. Inorg. Chim. Acta, 2002, 337: 308-316.
    [108] 程能林,溶剂手册(第三版).北京:化学工业出版社,2002.
    [109] Mukher jee J. Balamurugan V, Gupta R et al. Synthesis and properties of FeⅢ and CoⅢ complexes: structures of [(L~2)_2Fe(N_3)_3], [(L~2)_2Fe_2(μ-O_2CMe)_2][ClO_4]_2 ·2H_2O and [(L~2)_2Co_2(μ-OH)(μ-O_2CMe)_2][ClO_4]_3·MeCN [L~2= methyl[2-(2-pyridyl)ethyl] (2-pyridylmethyl) amiane]. J. Chem. Soc., Dalton Trans., 2003: 3686-3692.
    [110] Roseman S. The Characterization and Degradation of Isotopic Acetic and Lactic Acids. J. Am. Chem. Soc., 1953, 75(15): 3854-3856.
    [111] SMART and SAINT 软件包, Siemens Energy & Automation Inc., Madison, Wisconsin. 1996.
    [112] G. M. Sheldrick, SADABS 吸收校正程序, University of Gottingen, Germany, 1996.
    [113] Zang Y, Kim J, Dong Y et al. Models for Nonheme Iron Intermediates: Structural Basis for Tuning the Spin States of Fe(TPA) Complexes. J. Am. Chem. Soc., 1997, 119(18): 4197-4205.
    [114] a) Mandon D, Nopper A, Litrol T et al. Tridentate coordination of monosubstituted derivatives of the tris(2-pyridylmethyl)amine ligand to FeCl_3: structures and spectroscopic properties of ((2-bromopyridyl)methyl)bis(2-pyridylmethyl)amine Fe~ⅢCl_3 and (((2-p-methoxylphenyl)pyridyl)methyl)bis(2-pyridylmethyl)amine Fe~ⅢCl_3, and comparison with the bis(2-pyridylmethyI)amine Fe~ⅢCl_3 complex. Inorg. Chem., 2001, 40: 4803-4806.
    b) Mandon D, Machkour A, Goetz S et al. Trigonal bipyramidal geometry and tridentate coordination mode of the tripod in FeCl2 complex with tris(2-pyridylmethyl)amine derivatives bis-α-substituted with bulkyl groups. Structures and spectroscopic comparative studies. Inorg. Chem., 2002, 41: 5364-5372.
    [115] Patra A K, Olmstead M, Mascharak P K. Spontaneous Reduction of a Low-Spin Fe(Ⅲ) Complex of a Neutral Pentadentate N5 Schiff Base Ligand to the Corresponding Fe(Ⅱ) Species in Acetonitrile. Inorg. Chem., 2002, 41(21): 5403-5409.
    [116] Norman R T, Holz R C, Ménage S et al. Structures and properties of dibridged (μ-oxo)diiron(Ⅲ) complexes. Effects of the Fe-O-Fe angle. Inorg. Chem., 1990, 29(23): 4629-4637.
    [117] Hazell A, McKenzie L P, Nielsen S et al. Mononuclear non-heme iron(Ⅲ) peroxide complexes: syntheses, characterization, mass spectrometric and kinetic studies. J. Chem. Soc., Dalton Trans., 2002: 310-317.
    [118] Rodrigues M C. Lambert F, Morgenstern-Badarau I et al. Selective Metal-Assisted Oxidative Cleavage of a C-N Bond: Synthesis and Characterization of the Mononuclear lron(Ⅲ) [Fe(BPG)Cl_2] Complex and Its Two [Fe(BPA)Cl~3] and [Fe(BPE)Cl_3] Derivatives. Inorg. Chem., 1997, 36(16): 3525-3531.
    [119] Zalkin A, Templeton D H, Ueki T. Crystal structure of 1-tris(1,10- phenathroline) iron(Ⅱ) bis(antimony(Ⅲ) d-tartrate) octahydrate. Inorg. Chem., 1973, 12(7): 1641-1646.
    [120] Posse G M E, Juri M A, Aymonino P J et al. Synthesis, crystal and molecular structure, and spectroscopic properties of tris(2, 2' -bipyridyl)iron(II) nitroprusside tetrahydrate, [Fe(bpy)3][Fe(CN)5N0].4H20. Inorg. Chem., 1984, 23(7): 948-952.
    
    [121] Armstrong W H, Lippard S J. Convenient, high-yield synthesis of tetraethylammonium (n-oxo)bis[trichloroferrate(III)] (Et_4N)_2[Fe_2OCl_6]). Inorg. Chem., 1985, 24(6) : 981-982.
    
    [122] Pavl ishchuk V V, Addison W. onversion constants for redox potentials measured versus different reference electrodes in acetonitrile solutions at 25° C. Inorg. Chim. Acta, 2000, 298(1): 97-102.
    
    [123] Nivorozhkin A L, Anxolab e h e re-Mallart E, Mialane P et al. Structure and Electrochemical Studies of [(trispicMeen)ClFe~(III)OFe~(III)Cl(trispicMeen)]~(2+). Spectroscopic Characterization of the Mixed-Valence Fe~(III)OFe~(II) Form. Relevance to the Active Site of Dinuclear Iron-Oxo Proteins. Inorg. Chem., 1997, 36(5): 846-853.
    
    [124] Britovsek G, England J, Spitzmesser S K et al. Synthesis of iron(II), manganese (II), cobalt(II)and ruthenium(II) complexes containing tridentate nitrogen ligands andd their application in the catalytic oxidation of alkanes. J. Chem. Soc, Dalton Trans., 2005: 945-955.
    
    [125] a) Chen K, Costas M, Kim J. Olefin cis-dihydroxylation versus epoxidation by non-heme iron catalysts: two faces of Fe~(III)-OOH coin. J. Am. Chem. Soc, 2002,124: 3026-3035. b) White C, Doyle A G, Jacobsen E N. Synthetically useful, self-assembling MMO mimic system for catalytic alkene epoxidation with aqueous H_202. J. Am. Chem. Soc, 2001,123: 37194-7195.
    
    [126] Chen k, Que L Jr. Stereospecific Alkane Hydroxylation by Non-Heme Iron Catalysts: Mechanistic Evidence for an Fe~v=0 Active Species. J. Am. Chem. Soc, 2001,123(26): 6327-6337.
    
    [127] Berg T A, Boer J W, Browne W R et al. Enhanced selectivity in non-heme iron catalysed oxidation of alkane with peracids: evidence for involvement of Fe(IV)=0 species. J. Chem. Soc, Chem. Commun., 2004: 2550-2551.
    [128] Klopstra M, Hage R, Kellogg R M et al. Non-heme iron catalysts for the benzylic oxidation: a parallel ligand screening approach. Tetrhedron Lett., 2003, 44(24): 4581-4584.
    
    [129] Matinho M, Banes F, Bartoli J et al. New example of a non-heme mononuclear iron(IV) oxo complex. Spectroscopic data and oxidation activity. Inorg. Chem., 2005, 44: 9592-9596. J. Am. Chem. Soc, 1984, 106: 1676-1681.
    
    [130] Roe A L, Schneider D J, Mayer R J et al. X-ray asorption spectroscopy of iron-tyrosinate proteins.
    
    [131] Hormnirun P, Marshall E L, Gibson V C et al. Remarkable stereocontrol in the polymerization of racemic lactide using aluminum initiators supported by tetradentate aminophenoxide ligands. J. Am. Chem. Soc, 2004, 126(9): 2688.
    [132] Botha J M, Unakoshi K, Sasaki Y et al. Chelation processes to an oxohenium(Ⅴ) center by N, N, N, O-tetradentate and N, N, O-tridentate ligands as vertified by structural and mechanistic studies of intermediate species. Inorg. Chem., 1998, 37(7): 1609-1615.
    [133] O' Reily R K, Gibson V C, White A J P et al. Design of highly active iron-based catalysts for atom transfer radical polymerization: tridentate salicylaldiminato ligands affording near ideal Nernstian behavior. J. Am. Chem. Soc., 2003, 125(28): 8450-8451.
    [134] 朱红军.氮氧多齿配位锆络合物合成及催化乙烯齐聚研究:(博士学位论文).大连:大连理工大学,2006.
    [135] Ceccato A S, Neves A, de Brito M et al. Magneto-structural correlation for binuclear octahedral vanadium(Ⅳ)-oxo complexes. Synthesis, structure and magnetic properties of a V~ⅣO~2 complex with a new ligand derived from glycine. J. Chem. Soc., Dalton Trans., 2000: 1573-1577.
    [136] Nishida Y, Haga S, rokii r. Iron(Ⅱ) Complex with 1,3-Bis(2-benzimidazyl)-2-thiapropane as a Model Compound for Lipoxygenase. Chem. Lett., 1989: 169-172.
    [137] Ménage S, Que L Jr. A bis(μ-alkoxo)diiron complex with novel terminally ligand carboxylates. Inorg. Chem., 1990, 29(21): 4293-4297.
    [138] Pascaly M, Nazikkol C, Schweppe F et al. Structures and properties of novel mononuclear iron(Ⅲ) complexes with benzimidazole containing tripodal tetradentate ligadns. Z. Anorg. Allg. Chem., 2000, 626: 50-55.
    [139] a) Poussereau S, Blondin G, Cesario M et al. Synthesis, structure, and characterization of the new [L(OH)Fe(μ-0)Fe(OH2)L]3+ complex (L=N, N' -dimethyl-N, N' -bis(2-pyridylmethyl)ethane-1,2-diamine). Detection of an equilibrium with the protonated damond from [LFe(μ-0)(μ-OH)FeL]~3(?)) in acetonitrile. Inorg. Chem., 1998, 37(13): 3127-3132.
    b) Taktak S, Keyatov V, Rybak-Akimova E V. Reactivity of a (μ-Oxo)(μ-hydroxo)diiron(Ⅲ) diamond core with water, urea, substituted ureas, and acetamide. Inorg. Chem., 2004, 43(22): 7196-7209.
    [140] Ito S, Suzuki M, Kobayashi T et al. Formation and reactivity of a peroxide adduct of iron(Ⅲ) complexes containing substituted phenol detivatives. J. Chem. Soc., Dalton Trans., 1996: 2579-2580.
    [141] Solomon E R, Brunold T C, Davis M Z et al. Dioxygen Activation by Enzymes Containing Binuclear Non-Heme Iron Clusters. Chem. Rev., 1996, 96(7): 2625-2628.
    [142] Kisko J L, Torzilli M A, Liu K et al. An iron(Ⅲ) trichloride adduct of N-isopropylsalicylaldimine: preparation, X-ray structure and NMR spectroscopic characterization. Inorg. Chem. Commun., 2002, 5: 283-287.
    [143] Donaldo M, Kurtz Jr. Oxo- and Hydroxo-bridged diiron complexes: a chemical perspective on a biological unit. Chem. Rev., 1990, 90(4): 585-606.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700