稀土掺杂复合氧化物纳米发光材料的制备与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米发光材料明显不同于体相发光材料的特性已经成为近年来的热点研究课题。含铝、锆复合氧化物具有良好的化学稳定性和热稳定性,是一类重要的光活性基质材料。目前,制备含铝、锆复合氧化物的主要方法还是传统的高温固相反应法,采用湿化学法制备的报道并不多。因此,在本论文中,我们采用溶胶-凝胶燃烧法制备了不同激活离子掺杂的含铝、锆复合氧化物纳米发光材料,并系统地研究了其发光特性,观察到了一些新的发光现象。另外,还制备了稀土掺杂的介孔SrAl_2O_4和CaAl_2O_4纳米颗粒,并进行了表征。
     在第一章中,我们对发光理论、稀土发光材料的发光机理、制备方法、表征手段及稀土纳米发光材料的性能特点等作了简单的介绍,并对含铝、锆复合氧化物发光材料的研究现状进行了总结。
     在第二章中,我们首次采用溶胶-凝胶燃烧法制备了CaAl_2O_4,BaAl_2O_4和SrAl_2O_4基纳米晶长余辉发光材料,并在其中引入了稀土激活离子Ln~(3+)(Ln=Eu、Dy、Nd、La),系统地研究了它们的光致发光性质及基质对稀土离子发光的影响。结果显示,600℃低炉温燃烧6 min便可制备较纯的CaAl_2O_4,BaAl_2O_4和SrAl_2O_4纳米晶,分别为正交晶系,六方晶系和单斜晶系,共掺的稀土激活离子并未改变晶体结构。SrAl_2O_4:Eu~(2+),D~(3+),BaAl_2O_4:Eu~(2+),Nd~(3+)和CaAl_2O_4:Eu~(2+),La~(3+)的发射光谱峰值分别为516 nm,500 nm和440 nm,对应发射光的颜色为黄-绿,蓝-绿和蓝-紫,相同的发光中心受晶体场的影响导致发射波长不同。我们认为,材料表现出长余辉特性的根源在于晶体中陷阱能级的存在。不同的共掺离子为Eu~(2+)在不同的晶体结构中创造合适的陷阱能级,其余辉时间和陷阱能级中储存的能量和电子数量有关;而余辉强度与电子从陷阱能级逃离的速度和能量传递的速度有关。实验中我们所得产物的余辉时间约为7 h,要略短于用固相烧结法所得产物的余辉时间。我们在没有任何模板或有机添加剂辅助的情况下,利用超声-燃烧法成功地制备出具有介孔结构的CaAl_2O_4:Eu~(2+),La~(3+)长余辉纳米发光颗粒,并对其进行了表征。N_2吸附-脱附等温曲线中有一明显的滞后环,这足以证明其介孔结构。介孔CaAl_2O_4:Eu~(2+),La~(3+)纳米颗粒的比表面积为20.30 m~2/g。孔的形成,是由于在超声过程中形成均匀胶粒并堆积,而在燃烧过程中失去水分所致。同样地,在没有任何模板或有机添加剂辅助的情况下,首次利用超声-燃烧法和回流-燃烧法成功地制备出具有介孔结构的SrAl_2O_4:Eu~(2+),La~(3+)长余辉纳米发光颗粒,并对回流-燃烧法所得产物进行了表征。其比表面积为13.45 m~2/g。孔的形成也是由于在回流过程中,堆积的胶粒间隙在燃烧过程中失去水分所致。
     在第三章中,我们首次采用柠檬酸盐溶胶-凝胶燃烧法制备了强红光发射荧光材料Li_(0.9)Y_((0.9-x-y))Zr_(0.1)O_2:Eu_x~(3+),R_y~(3+)(R=Ce,Bi,Dy)。其中Li_(0.9)Y_((0.9-x-y))Zr_(0.1)O_2:Eu_x~(3+),D_y~(3+)(x=0.02,y=0.016)的红光发射强度与日本商用粉Y_2O_2S:Eu~(3+)(Kasei OptonixLtd.,Japan)基本相同,且当掺杂离子浓度较高时,试样表现为全色发射。燃烧炉温为800℃,远远低于固相烧结法的1200℃。由XRD的结果决定前驱体溶液中须加入过量10mol%的Li,因为随着燃烧温度的增加,Li的挥发量也增加。室温下,产物表现出高显色指数的红光发射(激发波长395 nm)。周围低的对称性使得Eu~(3+)的电子跃迁辐射的能级简并度部分解除,提高发光强度,增强发光峰的劈裂程度,同时出现~5D_0→~7F_(1,2,3,4)跃迁发射峰,其中三个~5D_0→~7F_1发射峰,两个~5D_0→~7F_2发射峰。Ce和Bi作为敏化剂被分别加入到体系中,使得Eu~(3+)的发光强度得到了很大提高,从发光测试的结果看分别提高了900%和600%。说明敏化剂和发光中心之间的能量传递是有效的。Li_(0.9)Y_((0.9-x-y)Zr_(0.1)O_2:Eu_x~(3+),Dy~(3+)的发射光谱峰值仍位于613nm处,且当Eu和Dy的浓度增加到一定程度后,Eu~(3+)的发光强度降低,但同时在蓝光和绿光区域分别出现了发射峰,我们将其归因于产物中Dy~(3+)的~4F_(9/2)→~6H_(13/2)和Eu~(2+)跃迁辐射。荧光显微镜照片显示,呈现全光发射。
     我们采用柠檬酸盐溶胶-凝胶燃烧法和后续热处理两步合成法制备了Ba_2YZrO_(5.5)和Ba_2YZrO_(5.5):Eu纳米晶,并对其结构和发光性质进行了研究。结果显示,800℃燃烧后,产物结晶性能不好,1100℃热处理1 h后,产物结晶性变好。Ba_2YZrO_(5.5)属立方钙钛矿结构,其晶胞为理想钙钛矿结构的两倍。其发光峰位于468 nm,514 nm和637 nm,分别属于晶体的[ZrO_5-V(o|¨)-YO_6]基团的金属-配体电荷转移态跃迁,氧空位之间的电子跃迁和晶体表面态缺陷发光。Ba_2YZrO_(5.5):Eu表现出典型的Eu~(3+)的发光,发射峰位于615nm,属~5D_0→~7F_2跃迁。我们首次采用800℃柠檬酸盐溶胶-凝胶燃烧法制备了白光发射荧光材料Ba_2LaZrO_6:Ce,并对其结构和发光性质进行了研究。与Ba_2YZrO_(5.5)一样,属立方钙钛矿结构,其晶胞为理想钙钛矿结构的两倍。室温下,发射峰位于467 nm,535 nm和623 nm处。其中蓝光发射属于晶体的[ZrO_5-V(o|¨)-LaO_6]基团的金属-配体电荷转移态跃迁,535 nm处的发光对应Ce~(3+)的5d-4f跃迁,而红光发射是Ce~(3+)发射发生红移的结果。产物的CIE坐标为(0.298,0.317),可以看出其发射光位于白光区域。
     在第四章中,我们对本论文的工作进行了总结。
Nanoscaled luminescent materials have been the hot research because of their peculiar characteristics compared to bulk counterparts.Alkaline earth aluminates and zirconates have excellent thermal and chemical stability.They are an important kind of photoactived host materials.At present,solid state reaction method has been used to prepare alkaline earth aluminates and zirconates,while wet chemistry method is less reported.In this dissertation,alkaline earth aluminates and zirconates luminescent nanomaterials prepared by citrate sol-gel combustion method have been reported,and their photoluminescent properties were investigated systemically,some new luminescent phenomena were detected.In addition,mesoporous rare-earth(RE) ions-doped BaAl_2O_4 and CaAl_2O_4 nanoparticles were prepared and characterized.
     In Chapter 1,we briefly introduced the theory of luminescence,the luminescent mechanism,preparation methods,characterization means and properties of lanthanide luminescent materials.The research progress in the field of alkaline earth aluminates and zirconates luminescenct materials was also summarized.
     In Chapter 2,Eu~(2+),R~(3+) co-doped alkaline earth aluminates MAl_2O_4:Eu~(2+),R~(3+)(M = Sr,Ba and Ca;R = Dy,Nd and La) nanoparticles with high brightness and long afterglow have been prepared by solution-combustion synthesis at 600℃without a post-annealing process for the first time.We studied luminescent properties of the samples and influence of host on luminescent properties.The samples crystallized in monoclinic phase structure of SrAl_2O_4,the hexagonal phase structure of BaAl_2O_4 and the orthorhombic phase structure of CaAl_2O_4 respectively.The little amount of doped rare earth ions has nearly no effect on the phase structures.It's observed that from SrAl_2O_4:Eu~(2+),Dy~(3+) to BaAl_2O_4:Eu~(2+),Nd~(3+) and to CaAl_2O_4:Eu~(2+),La~(3+),the main peaks of emission spectra of the luminescent nanoparticles shift to shorter wavelength(from 516nm to 500nm and then to 440nm),and correspondingly,the luminescence changes from yellow-green to blue-green and then to blue-purple.This phenomenon is derived from the changing of the matrix crystal structure.The existence of trap level should answer for the properties of long-persistent luminescence.The appropriate trap level in different host was formed by different co-dopant ions for Eu~(2+).The lifetime of afterglow is related with the energy store in the trap level and the number of electrons which stay in the trap level.The intensity of afterglow is related with the velocity,including the velocity of electrons escape from the trap level and the velocity of energy transfer.The afterglow of phosphor nanoparticles,which allowed the time to be visually recognized (≥0.32mcd/m~2),lasted for over 7h after the excited source was cut off.In fact,the afterglow time of the samples is shorter than that of the powders prepared by the solid-state reaction method.Mesoporous CaAl_2O_4:Eu~(2+),La~(3+) long lifetime luminescence nanoparticles have been successfully prepared without using any templates or surfactants by sonication-combustion synthesis.The porous structure was confirmed by the hysteresis loop in the N_2 adsorption-desorption isotherm.The Brunauer-Emmett-Teller(BET) surface area is 20.30m~2/g.The uniform sol-granules were formed in the sonication progress and the accumulating of nanometer sized sol-granules created a network.The channels were filled with water.The pore formation is attributed to the loss of water molecules during the combustion process.Mesoporous SrAl_2O_4:Eu~(2+),Dy~(3+) long lifetime luminescence nanoparticles have been successfully prepared without using any templates or surfactants by sonication-combustion and refiuxing-combustion synthesises.The Brunauer-Emmett-Teller(BET) surface area is 13.45m~2/g.The mechanism of mesoporous SrAl_2O_4:Eu~(2+),Dy~(3+) made by sonication-combustion and refiuxing-combustion synthesises is similar to the one of CaAl_2O_4:Eu~(2+),La~(3+).
     In Chapter 3,we studied the preparation and luminescent properties of Li_(0.9)Y_((0.9-x-y))Zr_(0.1)O_2:Eu_x~(3+),Ry~(3+)(R=Ce,Bi,Dy) nanocrystals.Low temperature citrate sol-gel combustion method has been used to prepare the samples,and the combustion method has been confirmed to be an efficient method of preparing zirconates nanocrystals.A considerable loss of the lithium is induced at high temperature due to the evaporation,the amount of lithium loss being proportion to the firing temperature. So,amount of excess Li component was needed to obtain the composition close to the nominal one.In our experiments,the precursors contained excess 10 mol%amount of Li according to the stoichiometric amount.It can be seen that combustion the metal urea-citrate precursor at 800℃is sufficient for the formation of pure crystal phase from the data of XRD.Nevertheless,such a low reaction temperature is surprising because the product was formed at 1200℃when employed solid-state reaction. Li_(0.9)Y_((0.9-x))Zr_(0.1)O_2:Eu_x~(3+) nanopowders exhibit a strong red emission under 395 nm excited.The lower symmetry of the Eu~(3+) sites can increase the emission intensity and the extent of peak splitting of Eu~(3+).The emissions of Li_(0.9)Y_((0.9-x))Zr_(0.1)O_2:Eu_x~(3+) from the ~5D_0→~7F_(1,2,3,4) transitions of the Eu~(3+) ions were detected,including three ~5D_0→~7F_1 transitions and two ~5D_0→~7F_2 transitions.Ce and Bi were introduced into the system as co-activator as well as sensitizer of luminescence and the luminescence intensity of Li_(0.9)Y_((0.9-x-y))Zr_(0.1)O_2:Eu_x~(3+) were increased in 900%and 600%respectively.This observation unequivocally shows that the energy transfer from Bi~(3+) to Eu~(3+) is very efficient.Photoluminescence spectra of Li_(0.9)Y_((0.9-x-y))Zr_(0.1)O_2:Eu_x~(3+),Dy_y~(3+) samples indicated the dominant red emissions(613nm) at a single-wavelength ultraviolet excitation(395nm) due to ~5D_0→~7F_2 transition.When the concentration of Eu~(3+) and Dy~(3+) exceeded a critical amount(5mol%and 4mol%respectively),the red emission became lower coincidence with the appearance of blue and green emission which attribution to ~4F_(9/2)→~6H_(13/2) transition of Dy~(3+) and Eu~(2+) transition.Pure and Eu-doped Ba_2YZrO_(5.5) nanoparticles have been prepared by sol-gel combustion method and post-annealing process in this work.Photoluminescence properties and structure character were studied clearly.From XRD datas we could see that the samples have lower crystallinity after the combustion process at 800℃;and post-annealing process at 1100℃was necessary.The samples have the cubic perovskite structure with about double cell of ideal perovskite. Three emission bands centered at 468 nm,514 nm and 637 nm can be detected,and were ascribed to the metal-to-ligand charge-transfer transition(MLCT) in [ZrO_5-V(o|¨)-YO_6]groups,electrons transition between oxygen vacancies and the emission from surface state defects,respectively.Ba_2YZrO_(5.5):Eu indicated the dominant red emissions(615nm) at a single-wavelength ultraviolet excitation(395nm) due to ~5D_0→~7F_2 transition.Ba_2LaZrO_(5.5):Ce full-color-emitting phosphor has been prepared by sol-gel combustion method at 800℃.The structure character is similar to Ba_2YZrO_(5.5). Three emission bands centered at 467 nm,535 nm and 623 nm can be detected,and were ascribed to the metal-to-ligand charge-transfer transition(MLCT) in [ZrO_5-V(o|¨)-LaO_6]groups,the 5d-4f transition of Ce~(3+) and the redshift of Ce~(3+) emission. The chromaticity coordinate of Ba_2LaZrO_(5.5):Ce~(3+)0.03 was(0.298,0.317).
     In chapter 4,a concise summary of the contents was given.
引文
[1]化工百科全书第十四卷 第四部分 发光材料 化学工业出版社P2
    [2]Donald S.McClure,Luminescence and spectroscopy,Journal of Luminescence,100(2002) 47-55
    [3]高胜利,光致发光固体与夜光织物,光的世界,11[3](1993)21-22
    [4]高晓明,邱克辉,赵改青,傅茂媛,光致发光材料的研究与进展,科技进步与技术,2003:276-277
    [5]葛葆桂,电致发光原理及应用,测绘出版社(北京),1985
    [6]徐长远,王永生,黄最明,发光材料研究进展,光电子技术与信息,1997,10:8-12
    [7]刘祖武编著,现代无机合成,化学工业出版社P89
    [8]张立德,牟季美,纳米材料和纳米结构,科学出版社,2002.
    [9]杨剑,滕凤恩,纳米材料综述,材料导报,1997,11:6-32.
    [10]李维芬,纳米材料的性质,现代化工,1999,19:44-17.
    [11]张慰萍,尹民,稀土掺杂的纳米发光材料的制备和发光,2000,21:314-319.
    [12]B.M.Tissue,Synthesis and luminescence of lanthanide ions in nanoscale insulating hosts,Chem.Mater.1998,10:2837.
    [13]于江波,袁曦明,陈敬中,纳米发光材料的研究现状及进展,材料导报,2001,15:30-32.
    [14]刘维平,邱定蕃,卢惠民,纳米材料制备方法及应用领域,化Ⅰ矿物与加工,2003,12:1-5.
    [15]Y.Tan,X.Dai,Y.Li,D.Zhu,Preparation of gold,platinum,palladium and silver nanoparticles by the reduction of their salts with a weak reductant-potassium bitartrate,J.Mater.Chem.2003,13:1069-1075.
    [16]P.D.Cozzoli,M.L.Curri,A.Agostiano,G.Leo,M.Lomascolo,ZnO Nanocrystals by a Non-hydrolytic Route:Synthesis and Characterization,J.Phys.Chem.B 2003,107:4756-4762.
    [17]丁子上,翁文剑,溶胶-凝胶技术制备材料的发展,硅酸盐学报,1993,5:443-445
    [18]Y.Lu,Y Yin,B.T.Mayers,Y Xia,Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol-gel approach,Nano Lett.2002,2:183-186.
    [19]C.liu,B.Zhou,A.J.Rondinone,Z.J.Zhang.Sol-Gel synthesis of free-standing ferroelectric lead zirconate titanate nanoparticles,J.Am.Chem.Soc.2001,123:4344-4345.
    [20]施尔畏,夏长泰,王步国等,水热法的应用及发展,无机材料学报,1996,2:67-71.
    [21]Y.T.Qian,Y.Su,Y.Xie,Hydrothermal preparation and characterization of nanocrystalline powder of sphalerite,Mater.Res.Bull.1995,30:601-605.
    [22]A.Dias,V.T.L.Buono,J.M.C.Vilela,Particle size and morphology of hydrothermally processed MnZn ferrites observed by atomic force microscope,J.Mater.Sci.1997,32:4715-4718.
    [23]Q.Peng,Y.Dong,Z.Deng,X.Sun,Low-Temperature Elemental-Direct-Reaction Route to Ⅱ-Ⅵ Semiconductor Nanocrystalline ZnSe and CdSe,Inorg.Chem.2001,40:3840-3841.
    [24]X.Chen,R.Fan,Low-Temperature Hydrothermal Synthesis of Transition Metal Dichalcogenides,Chem.Mater.2001,13:802-805.
    [25]J.Yang,G.-H.Cheng,J.-H.Zeng,S.-H.Yu,X.-M.Liu,Y.-T.Qian,Shape Control and Characterization of Transition Metal Diselenides MSe_2(M = Ni,Co,Fe) Prepared by a Solvothermal-Reduction Process,Chem.Mater.2001,13:848-853.
    [26]殷声主编,燃烧合成,冶金工业出版社,2004.
    [27]刘晃清,王玲玲,高勇,陈芳芳,低温燃烧法制备Y2 O3:Eu纳米材料的研究进展,材料导报,2005,19:128-130.
    [28]李汶霞,殷声,低温燃烧合成陶瓷微粉,硅酸盐学报,1999,27:71-77.
    [29]T.Mimani,Instant synthesis of nanoscale spinel aluminates,J.Alloys Comp.2001,315:123-128.
    [30]L.E.Shea,J.M.Mckittrick,O.A.Lopez,E.Sluzky,Synthesis of red -emitting,small particle size oxide phosphors using an optimized combustion process,J.Am.Ceram.Soc.1996,79:3257-3265.
    [31]A.Feng,Z.A.Munir,Field-assisted self-propagating synthesis of SiC,J.Appl.Phys.1994,76:1927-1928.
    [32]T.V.Anuradha,S.Ranganathan,T.Mimanai,Combustion synthesis of nanostructured barium titanate,Scripta Mater.2001,44:2237-2241.
    [33]F.Gu,S.F.Wang,M.K.Lii,G.J.Zhou,D.Xu,D.R.Yuan,Structure evaluation and highly enhanced luminescence of Dy~(3+)-doped ZnO nanocrystals by Li~+ doping via combustion method,Langmuir 2004,20:3528-3531.
    [34]Z.Fu,S.Zhou,Combustion synthesis and luminescence properties of nanocrystalline monoclinic SrAl2O4:Eu~(2+),Chem.Phys.Lett.2004,395:285-289.
    [35]F.Li,K.Hu,J.Li,D.Zhang,G.Chen,Combustion synthesis of γ-lithium aluminate by using various fuels,J.Nuclear Mater.2002,300:82.
    [36]G.C.Kim,Emission color tuning from blue to green through cross-relaxation in heavily Tb~(3+)-doped YAlO_3,Mater.Res.Bull.2001,36:1603-1608.
    [37]Z.X.Yue,L.T.Li,J.Zhou,Preparation and characterization of NiCuZn ferrite nanocrystalline powders by auto-combustion of nitrate-citrate gels,Mater.Sci.Eng.B-solid.1999,64:68-72.
    [38]F.Gu,S.F.Wang,M.K.Lii,et al.,Combustion synthesis and luminescence properties of Dy~(3+)-doped MgO nanocrystals,J.Cryst.Growth.2004,260:507-510.
    [39]D.A.Fumo,M.R.Morelli,A.M.Segadaes,Combustion synthesis of calcium aluminates,Mater.Res.Bull.1996,31:1243-1255.
    [40]G.Tessari,M.Bettinelli,A.Speghini,Synthesis and optical properties of nanosized powders:lanthanide-doped Y_2O3,Appl.Surf.Sci.1999,144-145:686-689.
    [41]蒋绪川,软模板法硫化物纳米材料的合成研究,中国科学技术大学博士学位论文,2001.
    [42]宋彩霞,王德宝,古国华等,表面活性剂有序聚集体在纳米材料制备中的应用,材料导报,2002,16(9):56-590.
    [43]李玲,表面活性剂与纳米技术,化学工业出版社,2003.
    [44]王淑芬,几种氧(硫)化物纳米材料的制备及发光性质的研究,山东大学博士学位论文,2006,4.
    [45]X.M.Sun,X.Chen,Z.X.Deng,Y.D.Li,A CTAB-assisted hydrothermal orientation growth ofZnO nanorods,Mater.Chem.Phys.2002,78:99-104.
    [46]J.Lin,W.Zhou,C.J.O'Connor,Formation of ordered arrays of gold nanoparticles from CTAB reverse micelles,Mater.Lett.2001,49:282-286.
    [47]Z.Li,J.Zhang,J.Du,Preparation and self-assembly of nanostructured BaCrO_a from CTAB reverse microemulsions,Mater.Chem.Phys.2005,91:40-43
    [48]Y.Li,J.Wang,Z.Gu,Templated synthesis of CdS nanowires in hexagonal liquid crystal systems,Acta Physico-Chimica Sinica.1999,15:1-4.
    [49]S.Q.Qiu,J.x.Dong,G.X.Chen,Preparation of Cu nanoparticles from water-in-oil microemulsions,J.Colloid Interface Sci.1999,216:230- 234.
    [50]毛向辉,吴振国,廉世勋,公路标志用发光材料的研究,湖北师范大学自然科学学报,22[2](1999)59-61
    [51]中华人民共和国国家标准GB17733.1-1999地名标牌 城乡 国家质量技术监督局发布
    [52]张中太,张俊英,无机光致发光材料及应用,化学工业出版社,p254
    [53]Ian Ashdown,Glow and Behold,March 25,1999(www.duracorp.com/tech/ Glow And Behold.htm)
    [54]Ferd E.Williams.An Absolute Theory of Solid-State Luminescence,Journal of Chemical Physics,19[4](1951) 457-466
    [55]C.R.Ronda,T.Justel,H.Nikol,Rare earth phosphors:fundamentals and applications,Journal of Alloys and Compounds,275-277(1998),669-676
    [56]B.R.Judd,Optical Absorption Intensities of Rare-Earth Ions,Phys.Rev.,1962,127:750-761.
    [57]G.S.Ofelt,Intensities of Crystal Spectra of Rare-Earth Ions,J.Chem.Phys.,1962,37:511-520.
    [58]石士考,霍庆,无机粉末发光材料合成的新方法,无机盐工业,31[3](1999)20-22.
    [59]袁曦明,许永胜,于江波等,溶胶-凝胶法制备长余辉发光材料,SrAl_2O_4:Eu~(2+),Dy~(3+)的研究,稀土,23[4](2002)33-38.
    [60]Tianyou Peng,Huanping Yang,Xuli Pu,BinHu,Zucheng Jiang,Chunhua yan.J.Materials Letters 58(2004)352-356.
    [61]T.Zhang and Q.Su,Study on Strontium Aluminate Phosphors,J.Soc.Inform.Display,[8](2000) 27- 30.
    [62]林君,苏锵,溶胶.凝胶法及其在稀土发光材料合成中的应用,稀土,15[1](1994)42-45.
    [63]I-Cherng Chen and Teng-Ming Chen Effect of host compositions on the afterglow properties of phosphorescent strontium aluminate phosphors derived from the sol-gel method J.Mater.Res.,16[5](2001) 1293-1300.
    [64]Hankwon Chang,I.Wuled Lenggoro,Takashi Ogi,Kikuo Okuyama,Direct synthesis of barium magnesium aluminate blue phosphor particles via a flame route.J.Materials letters.59(2005)1183-1187.
    [65]翟玉春,张新,李建中,田彦文,碱土金属铝酸盐系列长余辉磷光体的制备研究,中国稀土学报,2004(4),Vol.21.No2.
    [66]康凯,庄卫东,何大伟,邓朝勇,黄小卫,铝酸盐绿色荧光粉制备工艺与发光性能关系的研究,中国稀土学报,2004(4),Vol.22.No2.
    [67]S.M.Alessandra,S.Roberval,A.K.Claudia,C.F.C.F.Maria,E.S.T.Ercules,F.B.Hermi,MgAl_2O_4:Eu,Dy:Luminescent nanoparticles of MgAl_2O_4:Eu,Dy prepared by citrate sol-gel method,Opti.Mater.,2008,31:440-444
    [68]D.Jia,W.M.Yen,Enhanced V_K~(3+) center afterglow in MgAl_2O_4 by doping with Ce~(3+),J.Lumin.,2003,101:115-121
    [69]P.Gtuchowski,R.Pazik,D.Hreniak,W.Strek,Luminescence studies of Cr~(3+)doped MgAl_2O_4 nanocrystalline powders,Chemical Physics,2009,358:52-56
    [70]V.Sing,h,R.ES.Chakradhar,J.L.Raoand,D.K.Kim,J.Solid State Chem.,Synthesis,characterization,photoluminescence and EPR investigations of Mn doped MgAl_2O_4 phosphors 2007,180:2067-2074
    [71]X.TENG,W.ZHUANG,H.HE,Influence of La~(3+) and Dy~(3+) on the properties of the long afterglow phosphor CaAl_2O_4:Eu~(2+),Nd~(3+),Rare Metals,2008,27:335-339
    [72]C.K.Lee,Y.J.Kim,Post-annealing effects on the recrystallization and optical properties of CaAl_2O_4:Eu~(2+) thin films,J.Cryst.Growth,2009,311:904-907
    [73]H.Ryu,K.S.Bartwal,Cr~(3+) doping optimization in CaAl_2O_4:Eu~(2+) blue phosphor,J.Alloy.Compd.,2008,464:317-321
    [74]H.Ryu,K.S.Bartwal,An efficient co-doping of Eu and Er in CaAl_2O_4 aluminate phosphor,Physica B:Condensed Matter,2008,403:3195-3198
    [75]X.Teng,W.Zhuang,Y.g Hu,C.Zhao,H.He,X.Huang,Effect of flux on the properties of CaAl_2O_4:Eu~(2+),Nd~(3+) long afterglow phosphor,J.Alloy.Compd.,2008,458:446-449
    [76]H.Ryu,K.S.Bartwal,Photoluminescent studies on Ti co-doped CaAl_2O_4:Eu~(2+),Ti~(3+)phosphor,Physica B:Condensed Matter,2008,403:1843-1847
    [77]R.Chen,Yi.Wang,Y.Hu,Z.Hu,C.Liu,Modification on luminescent properties of SrAl_2O_4:Eu~(2+),Dy~(3+) phosphor by Yb~(3+) ions doping,J.Lumin.,2008,128:1180-1184
    [78]H.Song,D.Chen,W.Tang,Y.Peng,Synthesis of SrAl_2O_4:Eu~(2+),Dy~(3+),Gd~(3+)phosphor by combustion method and its phosohorescence properties,J.Lumin.,2008,29:41-44
    [79]O.Arellano-Tanori,R.Melendrez,M.Pedroza-Montero,B.Casta(?)eda,V.Chernov,W.M.Yen and M.Barboza-Flores,Persistent luminescence dosimetric properties of UV-irradiated SrAl_2O_4:Eu~(2+),Dy~(3+) phosphor,J.Lumin.,2008,128:173-184
    [80]Zifeng Qiu,Yuanyuan Zhou,Mengkai L(u|¨)*,Aiyu Zhang,Qian Ma,"Combustion synthesis of long-persistent luminescent MAl_2O_4:Eu~(2+),R~(3+)(M = St,Ba,Ca,R = Dy,Nd and La) nanoparticles and luminescence mechanism research",Acta Mater.,2007,55:2615-2620.
    [81]V.Chemov,R.Melendrez,M.Pedroza-Montero,W.M.Yen,M.Barboza-Flores The behavior of thermally and optically stimulated luminescence of SrAl_2O_4:Eu~(2+),Dy~(3+)long persistent phosphor after blue light illumination,Radiation Measurements,2008,43:241-244
    [82]H.Song,D.Chen,W.Tang,Y.Peng,Synthesis of SrAl_2O_4:Eu~(2+),Dy~(3+),Gd~(3+)phosphor by combustion method and its phosphorescence properties,Displays,2008,29:41-44
    [83]H.Ryu,K.S.Bartwal,Investigations on luminescence characteristics of Eu and Cr codoped BaAl_2O_4,Mater.Chem.Phys.,2008,111:186-189
    [84]H.Ryu,B.K.Singh,K.S.Bartwa,Effect of Sr substitution on photoluminescent properties of BaAl_2O_4:Eu~(2+),Dy~(3+),Physica B:Condensed Matter,2008,403:126-130
    [85]M.Peng,G.Hong Reduction from Eu~(3+) to Eu~(2+) in BaAl_2O_4:Eu phosphor prepared in an oxidizing atmosphere and luminescent properties of BaAl_2O_4:Eu,J.Lumin.,2007,127:735-740
    [86]H.Aizawa,S.Komuro,T.Katsumata,S.Sato,T.Morikawa,Long afterglow phosphorescent characteristics of BaAl_2O_4:Eu,Dy films,Thin Solid Films,2006,496:179-182.
    [87]张天之,苏锵,王淑彬.MAl_2O_4:Eu(2+)、RE(3+)长余辉发光性质的研究发光学报,1999,20(2):170-175.
    [88]张玉军,稀土激活铝酸锶超长余辉发光材料微观结构和发光机理研究,山东大学博士学位论文,2003.
    [89]C.Liu,Y.Wang,Y.Hu,R.Chen,F.Liao,Adjusting luminescence properties of Sr_xCal-xAl_2O_4:Eu~(2+),Dy~(3+) phosphors by Sr/Ca ratio,J.Alloy.Compd.2009,470:473-476.
    [90]宋庆梅,陈暨跃.发光学报,铝酸锶铕的合成与发光的研究1991,12(2):144-149.
    [91]徐叙珞,苏勉曾,发光学与发光材料,化学工业出版社,2004,p.554.
    [92]于文惠,王达健,顾铁成,马亮,陆启飞,镝激活铝酸锶单基质白光磷光体的发光性质,天津理工大学学报,2008,24:13-16.
    [93]B.Liu,C.S.Shi,Z.M.Qi,White-light long-lasting phosphorescence from Tb~(3+)-activated Y_2 O_2 S phosphor,J.Phys.Chem.Solid.,2006,67(8):1674-1677.
    [94]B.Liu,C.S.Shi,Z.M.Qi,Potential white-light long-lasting phosphor:Dy~(3+)-doped aluminate,Appl.Phys.Lett.,2005,86(19):191-193.
    [95]B.Liu,L.J.Kong,C.S.Shi,White-light long-lasting phosphor Sr_2MgSi_2O_7:Dy~(3+),J.Lumin.,2007,122:121-124.
    [96]J.Y.Kuang,Y.L.Liu,J.X.Zhang,White-light-emitting long-lasting phosphorescence in Dy~(3+)-doped SrSiO_3.J.Solid.Stat.Chem.,2006,179(1):266-269.
    [97]Y.Kuang J.,Y.L.Liu,White-emitting long-lasting phosphor Sr_2SiO_4:Dy~(3+),Chem.Lett.,2005,34(4):598-599.
    [98]杨志平,刘玉峰,王利伟,余泉茂,熊志军,徐小岭,用于白光LED的单一基质白光荧光粉Ca_2SiO_3Cl_2:Eu~(2+),Mn~(2+),物理学报,2007,56:546-550.
    [99]J.S.Kim,P.E.Jeon,J.C.Choi,H.L.Parka,S.I.Mho,G.C.Kim,Warm-white-light emitting diode utilizing a single-phase full-colorBa_3MgSi_2O_8:Eu~(2+),Mn~(2+) phosphor,Appl.Phys.Lett.,2004,84:2931-1933.
    [100]Y.-H.Won,H.S.Jang,W.B.Ira,D.Y.Jeon,J.S.Lee,Tunable full-color-emitting La_(0.827)Al_(11.9)O_(19.09):Eu~(2+),Mn~(2+) phosphorfor application to warm white-light-emitting diodes,Appl.Phys.Lett.,2006,89:231909-1,2,3.
    [101]孙中新,柠檬酸配合法制备白光发射Ba_2TiP_2O_9荧光材料,无机化学学报,2006,22:1595-1599.
    [1]H.Chang,I.W.Lenggoro,T.Ogi,K.Okuyama,Direct synthesis of barium magnesium aluminate blue phosphor particles via a flame route,Mater.Lette.,2005,59:1183-1187.
    [2]D.Wang,Q.Yin,Y.Li,M.Wang,Concentration quenching of Eu~(2+) in SrO<    [3]T.Aitasalo,J.Holsa,H.Jungner,M.Lastusaari,J.Niittykoski,M.Parkkinen,R.Valtonen,Eu~(2+) doped calcium aluminates prepared by alternative low temperature routes,J.Opti.Mater.,2004,26:113-116.
    [4]M.Akiyama,C.-N.Xu,Y.Liu,K.Nonaka,Influence of Eu,Dy co-doped strontium aluminate composition on mechanoluminescence intensity,J.Lumin.,2002,97:13-18.
    [5]R.Sakai,T.Katsumata,S.Komuro,T.Morikawa,Effect of composition on the phosphorescence from BaAl_2O_4:Eu~(2+),Dy~(3+) crystals,J.Lumin.,1999,85:149-154.
    [6]T.Matsuzawa,Y.Aoki,N.Takeachi,Y.Marayama,A New Long Phosphorescent Phosphor with High Brightness SrAl_2O_4:Eu~(2+),Dy~(3+),J.Electrochem.Soc.,1996,143:2670-2673.
    [7]G.L.Messing,S.zhang,G.B.Jayanthi,Ceramic powder synthesis by spray pyrolysis,J.Am.Ceram.,1993,76:2707-2726.
    [8]Y.C.Kang,S.B.Park,I.W.Lenggoro,K.Okuyama,Morphology control of multicomponent oxide phosphor particles containing high ductility component by high temperature spray pyrolysis,J.Electrochem.Soc.,1999,146:2744.
    [9]高晓明,邱克辉,赵改青,傅茂媛,SrAl_2O_4:Eu~(2+)发光材料的制备工艺及发光性能的研究,涂料工业,2004,34:24-26
    [10]X.Zeng,J.Yuan,Z.Wang,L.Zhang,Nanosheet-Based Microspheres of Eu~(3+)-doped ZnO with Efficient Energy Transfer from ZnO to Eu~(3+) at Room Temperature,Adv.Mater.,2007,19:4510-4514.
    [11]K.Riwotzki,M.Haase,Wet-Chemical Synthesis of Doped Colloidal Nanoparticles:YVO_4:Ln(Ln = Eu,Sm,Dy),J.Phys.Chem.B,1998,102:10129-10135.
    [12]G.Pan,H.Song,X.Bai,Z.Liu,H.Yu,W.Di,S.Li,L.Fan,X.Ren,S.Lu,Novel Energy-Transfer Route and Enhanced Luminescent Properties in YVO_4:Eu~(3+)/YBO_3:Eu~(3+) Composite,Chem.Mater.,2006,18:4526-4532.
    [13]X.Wu,Y.Tao,C.Song,C.Mao,L.Dong,J.Zhu,Morphological Control and Luminescent Properties of YVO_4:Eu Nanocrystals,J.Phys.Chem.B,2006,110:15791-15796.
    [14]Y.Sun,H.Liu,X.Wang,X.Kong,H.Zhang,Optical Spectroscopy and Visible Upconversion Studies of YVO_4:Er~(3+) Nanocrystals Synthesized by a Hydrothermal Process,Chem.Mater.,2006,18:2726-2732.
    [15]L.Yu,H.Song,S.Lu,Z.Liu,L.Yang,X.Kong,Luminescent Properties of LaPO_4:Eu Nanoparticles and Nanowires,J.Phys.Chem.B,2004,108:16697-16702.
    [16]H.Meyssamy,K.Riwotzki,A.Kornowski,S.Naused,M.Haase,Wet-Chemical Synthesis of Doped Colloidal Nanomaterials:Particles and Fibers of LaPO_4:Eu,LaPO_4:Ce,LaPO_4:Ce,Tb,Adv.Mater.,1999,11(10):840-844.
    [17]于立新,宋宏伟,刘钟馨,杨林梅,吕少哲,郑著宏,LaPO_4:Ce~(3+)/Tb~(3+)纳米线的合成和发光特性,发光学报,2005,26(3):369-374.
    [18]C.Li,Z.Quan,J.Yang,P.Yang,J.Lin,Highly Uniform and Monodisperse β-NaYF_4:Ln~(3+)(Ln = Eu,Tb,Yb/Er,and Yb/Tm) Hexagonal Microprism Crystals:Hydrothermal Synthesis and Luminescent Properties,Inorg.Chem.,2007,26:6329-6337.
    [19]J.Zeng,J.Su,Z.Li,R.Yan,Y.Li,Synthesis and Upconversion Luminescence of Hexagonal-Phase NaYF_4:Yb,Er~(3+) Phosphors of controlled Size and Morphology,Adv.Mater.,2005,17:2119-2123.
    [20]S.Yu,Z.Lin,L.Zhang,G Wang,Preparation of Monodispersed Eu~(3+):CaMoO_4Nanocrystals with Single Quasihexagon,Cryst.Growth Des.,2007,7(12):2397-2399.
    [21]F.Gu,S.F.Wang,M.K.L(u|¨),G.J.Zhou,D.Xu,D.R.Yuan,Structure evaluation and highly enhanced luminescence of Dy~(3+)-doped ZnO nanocrystals by Li~+ doping via combustion method,Langmuir,2004,20:3528-3531.
    [22]F.Gu,S.F.Wang,M.K.L(u|¨),W.G.Zou,G.J.Zhou,D.Xu,D.R.Yuan,Combustion synthesis and luminescence properties of Dy~(3+)-doped MgO nanocrystals,J.Cryst.Growth,2004,260:507-510.
    [21]G.Tessari,M.Bettinelli,A.Speghini,Synthesis and optical properties of nanosized powders:lanthanide-doped Y_2O_3,Appl.Surf.Sci.,1999,144-145:686-689.
    [24]C.A.Kodaira,R.Stefani,A.S.Maia,M.C.F.C.Felinto,H.F.Brito,Optical investigation of Y_2O_3:Sm~(3+) nanophosphor prepared by combustion and Pechini methods,J.Lumin.,2007,127:616-622.
    [25]E.Zych,D.Hreniak,W.Strek,Spectroscopic Properties of Lu_2O_3/Eu~(3+)Nanocrystalline Powders and Sintered Ceramics,J.Phys.Chem.B,2002,106:3805-3812.
    [26]E.Zych,On the reasons for low luminescence efficiency in combustion-made Lu_2O_3:Yb,Opt.Mater.,2001,16:445-452.
    [27]J.Banga,M.Abboudi,B.Abrams,P.H.Holloway,Combustion synthesis of Eu-,Tb- and Tm- doped Ln_2O_2S(Ln = Y,La,Gd) phosphors,J.Lumin.,2004,106:177-185.
    [28]Z.Fu,S.Zhou,S.Zhang,Study on Optical Properties of Rare-Earth Ions in Nanocrystalline Monoclinic SrAl_2O_4:Ln(Ln = Ce~(3+),Pr~(3+),Tb~(3+)),J.Phys.Chem.B,2005,109:14396-14400.
    [29]G.C.Kim,Emission color tuning from blue to green through cross-relaxation in heavily Tb~(3+)-doped YAlO_3,Mater.Res.Bull.,2001,36:1603-1608.
    [30]Z.Qiu,Y.Zhou,M.Lu,A.Zhang,Q.Ma,Combustion synthesis of long- persistent luminescent MAl_2O_4:Eu~(2+),R~(3+)(M = Sr,Ba,Ca,R = Dy,Nd and La) nanoparticles and luminescence mechanism research,Acta Mater.,2007,55:2615-2620.
    [31]J.McKittrick,L.E.Shea,The influence of processing parameters on luminescent oxides produced by combustion synthesis,Displays,1999,19:169-172.
    [32]P.Yang,G.Q.Yao,J.H.Lin,Photoluminescence and combustion synthesis of CaMoO_4 doped with Pb~(2+),Inorg.Chem.Commun.,2004,7:389-391.
    [33]S.M.Wang,Z.L.Xiu,M.K.Lu,A.Y.Zhang,Y.Y.Zhou,Z.S.Yang,Combustion synthesis and luminescent properties of Dy~(3+)-doped La_2Sn_2O_7 nanocrystals,Mater.Sci.Eng.B,2007,143:90-93.
    [34]F.Pandozzi,F.Vetrone,J.C.Boyer,R.Naccache,J.A.Capobianco,A.Speghini,M.Bettinelli,A Spectroscopic Analysis of Blue and Ultraviolet Upconverted Emissions from Gd_3Ga_5O_(12):Tm~(3+),Yb~(3+) Nanocrystals,J.Phys.Chem.B,2005,109:17400-17405.
    [35]F.Vetrone,J.C.Boyer,J.A.Capobianco,Luminescence Spectroscopy and Near-Infrared to Visible Upconversion of Nanocrystalline Gd_3Ga_5O_(12):Er~(3+),J.Phys.Chem.B,2003,107:10747-10752.
    [36]J.Holsa,H.Jungner,M.Lastusaari,J.Niittykoski,Persistent luminescence of Eu~(2+)doped alkaline earth aluminates,MAl_2O_4:Eu~(2+) J.Alloy.Compd.,2001,323-324:326-330.
    [37]J.Holsa,T.Aitasalo,H.Jungner,M.Lastusaari,J.Niittykoski,G.Spano,Role of defect states in persistent luminescence materials,J.Alloy.Compd.,2004,374:56-59.
    [38]T.Peng,H.Yang,X.Pu,B.Hu,Z.Jiang,Chunhua Yan,Combustion synthesis and photoluminescence of SrAl_2O_4:Eu,Dy phosphor nanoparticles,Mater.Lett.,2004,58:352-356.
    [39]郭庆捷,徐明霞,曹佩玲,Eu~(2+)激活的碱土铝酸盐长余辉发光材料的研究现状,稀有金属材料与工程,2004,33:225-228
    [40]袁曦明,许永胜,于江波,田熙科,溶胶-凝胶法制备长余辉发光材料SrAl_2O_4:Eu~(2+),Dy~(3+)的研究,稀土,2002,23(4):33-38
    [41]W.Jia,H.Yuan,L.Lu,H.Liu,W.M.Yen,Phosphorescent dynamics in SrAl_2O_4:Eu~(2+),Dy~(3+) single crystal fibers J.Lumin.,1998,76-77:424-428.
    [42]S.B.Oadri,J.P.Yang,E.F.Skelton,B.R.Ratna,Evidence of strain and lattice distortion in lead sulfide nanocrystallites,Appl.Phys.Lett.,70(1997) 1020-1022.
    [43]F.Gu,S.F.Wang,M.K.Lu,G.J.Zhou,D.Xu,D.R.Yuan,Structure Evaluation and Highly Enhanced Luminescence of Dy~(3+)-Doped ZnONanocrystals by Li~+ Doping via Combustion Method,Langmuir,2004,20:3528-3531
    [44]J.S.Kim,Y.H.Park,J.C.Choi,H.L.Park,Gwang Kim,Joong Hak Yoo,Color tunability of nanophosphors by changing cations for solid-state lighting,Solid State Commun.,2006,137:187-190.
    [45]张玉军,稀土激活铝酸锶发光材料制备工艺及性能研究,山东大学博士学位论文,2003,p78.
    [46]Z.Pei,Q.Zeng,Q.Su,The application and a substitution defect model for Eu~(3+)→Eu~(2+) reduction in non-reducing atmospheres in borates containing BO_4 anion groups,J.Phys.and Chem.Solids,2000,61:9-12.
    [47]H.Yamamoto,T.Matsuzawa,Mechanism of long phosphorescence of SrAl_2O_4:Eu~(2+),Dy~(3+) and CaAl_2O_4:Eu~(2+),Nd~(3+),J.lumin.,1997,72-74:287-289.
    [48]A.Corma,From microporous to mesoporous molecular sieve materials and their use in catalysis,Chem.Rev.,1997,97:2373-2419.
    [49]X.Tang,S.Liu,Y.Wang,W.Huang,E.Sominski,O.Palchik,Y.Koltypin,A.Gedanken,Rapid snthesis of high quality MCM-41silica with ultrasound radiation,Chem Commun,2000,(21)2119-2120
    [50]N.Yao,G.Xiong,S.Sheng,M.He,W.Yang,X.Bao,Ultrasound as a tool to synthesize nano-sized silica-alumina catalysts with controlled mesoporous distribution by a novel sol-gel process,Cata.Lett.,2002,78:1-4.
    [51]E.J.Eisenbraun,K.W.Payne,J.S.Bymaster,A.lob,A.Apblett,Improved Method for Dehydrating Secondary Alcohols Using Inorganic Sulfates Supported on Silica in Refluxing Octane, Ind. Eng. Chem. Res., 41(2002)2611-2616.
    [52] X. Chen, Y.F. Shen, S.L. Suib, C.L. O'Young, ArticleCharacterization of Manganese Oxide Octahedral Molecular Sieve (M-OMS-2) Materials with Different Metal Cation Dopants ,Chem. Mater., 2002,14: 940-948.
    
    [53] X.H. Feng, W.F. Tan, F. Liu, J.B. Wang, H.D. Ruan, Synthesis of Todorokite at Atmospheric Pressure, Chem. Mater., 2004,16: 4330-4336.
    [54] V. Prevot, C. Forano, J. P. Besse, Hydrolysis in Polyol: New Route for Hybrid-Layered Double Hydroxides PreparationChem. Mater., 2005, 17:6695-6701.
    [1]M.Janse and H.P.Letschert,Inorganic yellow-red pigments without toxic metals,Nature(London),404:980-982.
    [2]K.Uneda,T.Endo,H.Tamane,M.Shimada,C.M.Wang,M.Mitomo Synthesis and luminescent property of Eu~(3+)-doped LaSi_3N_5 phosphor J.Lumin.,2000,87-89:967-969.
    [3]H.Yamarnoto T.Matsuzawa,Mechanism of long phosphorescence of SrAl_2O_4:Eu~(2+),Dy~(3+) and CaAl_2O_4:Eu~(2+),Nd~(3+) J.Lumin.,1997,72-74:287-289.
    [4]K.Sakuma,N.Hirosaki,R.J.Xie,Y.Yamamoto,T.Suehiro,Optical properties of excitation spectra of(Ca,Y)-α -SiAlON:Eu yellow phosphors,Phys.Stat.Sol.(c),3 2006,No.8 2701.
    [5]R.J.Xie,N.Hirosaki,M.Mitomo,Y.Yamamoto,T.Suehiro,K.Sakuma,Optical Properties of Eu~(2+) in α-SiAlON J.Phys.Chem.B,2004,108:12027-12031.
    [6]R.J.Xie,N.Hirosaki,M.Mitomo,K.Uheda,T.Suehiro,X.Xu,Y.Yamarnoto T.Sekiguchi,Strong Green Emission from α-SiAlON Activated by Divalent Ytterbium under Blue Light Irradiation,J.Phys.Chem.B,2005,109:9490-9494.
    [7]周立亚,王雷,魏建设,龚福忠,何熙璞,马震,白光LED用荧光粉CaMoO4:Eu~(3+)的制备及发光性能研究,化学研究与应用,2008,20:952-956
    [8]G.Pan,H.Song,X.Bai,Z.Liu,H.Yu,W.Di,S.Li,L.Fan,X.Ren,S.Lu,Novel Energy-Transfer Route and Enhanced Luminescent Properties in YVO_4:Eu~(3+)/YBO_3:Eu~(3+)Composite,Chem.Mater.,2006,18:4526-4532.
    [9]Z.Yu,X.Huang,W.Zhang,X.Cui,H.Li,Crystal structure transformation and luminescent behavior of the red phosphor for plasma display panels J.Alloys Compd.,2005,390:220-222.
    [10]Z.Wei,L.Sun,C.Liao,J.Yin,X.Jiang,C.Yan,Fluorescence intensity and color purity improvement in nanosized YBO_3:Eu,Appl.Phys.Lett.,2002,80:1447-1449.
    [11]Z.Wei,L.D.Sun,C.S.Liao,J.L.Yin,X.C.Jiang,Yan C.H.,Lu S., Size-Dependent Chromaticity in YBO_3:Eu Nanocrystals:Correlation with Microstructure and Site Symmetry J.Phys.Chem.B,2002,106:10610-10617.
    [12]Y.Zou,A.Petrie,Structure and conductivity of zirconium-doped polycrystalline lithium yttrium oxide,Mat.Res.Bull.,1993,28:1169-1175.
    [13]S.Ekambaram,K.C.Patil,M.Maaza,Synthesis of lamp phosphors:facile combustion approach,J.Alloy Compd.,2004,393:81-92.
    [14]S.H.Byeon,M.G.Ko,J.C.Park,D.K.Kim,Low-Temperature Crystallization and Highly Enhanced Photoluminescence of Gd_(2-x)Y_xO_3:Eu~(3+) by Li Doping,Chem.Mater.,2002,14:603-608.
    [15]M.Yu,J.Lin,J.Fang,Silica Spheres Coated with YVO_4:Eu~(3+) Layers via Sol-Gel Process:A Simple Method To Obtain Spherical Core-Shell Phosphors,Chem.Mater.,2005,17:1783-1791.
    [16]Y.Tao,G.Zhao,W.Zhang,S.Xia,Combustion synthesis and photoluminescence of nanocrystalline Y_2O_3:Eu phosphors,Mater.Res.Bull.,1997,32:501-506.
    [17]A.M.Pires,M.R.Davolos O.L.Malta,Eu~(3+)-O~(2-) associates luminescence in Ba_2SiO_4,J.Lumin.,1997,72-74:244-246.
    [18]C.Lin,H.Wang,D.Kong,M.Yu,X.Liu,Z.Wang,J.Lin,_Silica Supported Submicron SiO_2@Y_2SiO_5:Eu~(3+) and SiO_2@Y_2SiO_5:Ce~(3+)/Tb~(3+) Spherical Particles with a Core-Shell Structure:Sol-Gel Synthesis and Characterization,Eur:J.Inorg.Chem.,2006,18:3667-3675.
    [19]R.J.Xie,N.Hirosaki,T.Suehiro,F.F.Xu,M.Mitomo,A Simple,Efficient Synthetic Route to Sr_2Si_5N_8:Eu~(2+)-Based Red Phosphors for White Light-Emitting Diodes,Chem.Mater.,2006,18:5578-5583.
    [20]W.Chen,J-O.Bovin,A.G.Joly,S.Wang,F.Su,G.Li,Full-Color Emission from In_2S_3 and In_2S_3:Eu~(3+) Nanoparticles,J.Phys.Chem.B,2004,18:11927-11934.
    [21]M.Wang,X.Fan,G.Xiong,Luminescence of Bi~(3+) ions and energy transfer from Bi~(3+) ions to Eu~(3+) ions in silica glasses prepared by the sol-gel process,J.Phys.Solids.,1995,56:859-862.
    [22]R.B.Pode,S.Dhoble,Photoluminescence in CaWO4:Bi~(3+),Eu~(3+) Material,Phys.Stat.Sol.(b),1997,203:571-577.
    [23]A.A.Setlur,W.J.Heward,Y.Gao,A.M.Srivastava,R.G.Chandran,M.V.Shankar,Crystal Chemistry and Luminescence of Ce~(3+)-Doped Lu_2CaMg_2(Si,Ge)_3O_(12) and Its Use in LED Based Lighting,Chem.Mater.,2006,18:3314-3322.
    [24]R.Jayavel,T.Mochiku,S.Ooi,K.Hirata,Growth of bulk Pr_(2-x)Ce_xCuO_(4+δ) single crystals by B_2O_3 encapsulated flux technique,J.Crys.Grow.,2002,237-239:792-795.
    [25]M.P.Saradhi,U.V.Varadaraju,Photoluminescence Studies on Eu~(2+)-Activated Li_2SrSiO_4 a Potential Orange-Yellow Phosphor for Solid-State Lighting,Chem.Mater.,2006,18:5267-5272.
    [26]H.Lin,X.R.Liu,E.Y.B.Pun,Sensitized luminescence and energy transfer in Ce~(3+)and Eu~(2+) codoped calcium magnesium chlorosilicate,Opt.Mater.,2002,18:397-401.
    [27]K.S.Sohn,D.H.Park,S.H.Cho,J.S.Kwak,J.S.Kim,Computational Evolutionary Optimization of Red Phosphor for Use in Tricolor White LEDs,Chem.Mater.,2006,18:1768-1772.
    [28]G.A.Hirata,F.E.Ramos,J.Mckittrick,Development of luminescent materials with strong UV-blue absorption,Optical Mater.,2005,27:1301-1304.
    [29]K.S.Sohn,J.M.Lee,N.Shin,A Search for New Red Phosphors Using a Computational Evolutionary Optimization Process,Adv.Mater.,2003,15:2081-2084.
    [30]R.L.Toquin,A.K.Cheetham,Red-emitting cerium-based phosphor materials for solid-state lighting applications,Chem.Phys.Lett.,2006,423:352-356.
    [31]S.Neeraj,N.Kijima,A.K.Cheetham,Novel red phosphors for solid state lighting;the system Bi_xLn_(1-x)VO_4;Eu~(3+)/Sm~(3+)(Ln=Y,Gd),Solid State Commun.,2004,131:65-69.
    [32]X.Q.Zeng,S.J.Im,A.H.Jang,Y.M.Kim,etc.Luminescent properties of (Y,Gd)BO_3:Bi~(3+),RE~(3+)(RE=Eu,Tb) phosphor under VUV/UV excitation,J.Lumin.,2006,121:1-6.
    [33]O.M.Ntwaeaborwa,H.C.Swart,R.E.Kroon,P.H.Holloway,J.R.Botha,Hotoluminescence of cerium-europium doubly activated SiO_2 phosphors prepared by sol-gel method,Surf.Interface Anal.,2006,38:458-461.
    [34]A.A.Setlur,W.J.Heward,Y.Gan,A.M.Srivastave,R.G.Chandran,M.V.Shankar,Crystal Chemistry and Luminescence of Ce~(3+)-Doped Lu_2CaMg_2(Si,Ge)_3O_(12) and Its Use in LED Based Lighting Chem.Mater.,2006,18:3314-3322.
    [35]A.Patra,C.S.Friend,R.Kapoor,P.N.Prasad,Fluorescence Upconversion Properties of Er~(3+)-Doped TiO_2 and BaTiO_3 Nanocrystallites,Chem.Mater.,2003,15:3650-3655.
    [36]A.Y.Zhang,M.K.Lu,G.J.Zhou,S.M.Wang,Y.Y.Zhou,Combustion synthesis and photoluminescence of Eu~(3+),Dy~(3+)-doped La_2Zr_2O_7 nanocrystals,J.Phys.Chem.Solids,2006,67:2430-2434.
    [37]R.Jayavel,T.Mochiku,S.Ooi,K.Hirata,Growth of bulk Pr_2-xCe_xCuO_(4+δ) single crystals by B_2O_3 encapsulated flux technique,J.Crystal Growth,2002,237-239:792-795.
    [38]A.Nag,T.R.N.Kutty,Role of B_2O_3 on the Phase Stability and Long Phosphorescence of SrAl_2O_4,J.Alloys Compd.,2003,354:221-231.
    [39]C.F.Yang,C.M.Cheng,The influence of B_2O_3 on the sintering of MgO-CaO-Al_2O_3-SiO_2 composite glass powder,Ceram.International,1999,25:383-387.
    [40]K.V.Paulose,M.T.Sebastian,K.Ravindran Nair,J.Koshy,A.D.Damodaran.Synthesis of Ba_2YZrO_6:A new phase in YBa_2Cu_3O_7 --- ZrO_2 system and its suitability as a substrate material for YBCO films,Solid State Commun.,1992,83:985-988.
    [41]K.V.Paulose,M.K.Jayaraj,J.Koshy,A.D.Damodaran.Preparation and properties of Ba_2YZrO_6---YBa_2Cu_3O_7 composites,Solid State Commun.,1993,87:147-150.
    [42]A.T.de Figueiredo,V.M.Longo,S.de Lazaro,V.R.Mastelaro,F.S.De Vicente,A.C.Hernandes,M.S.Li,J.A.Varela,E.Longo.J.Lumin.,2007,126:403-407.
    [43]F.Gu,S.F.Wang,M.K.L(u|¨),G.J.Zhou,D.Xu,D.R.Yuan.Structure Evaluation and Highly Enhanced Luminescence of Dy~(3+)-Doped ZnO Nanocrystals by Li~+ Doping via Combustion Method,Langmuir,2004,20:3528-3531.
    [44]W.D.Fragoso,C.de Mello Donega,R.L.Longo,Luminescence and energy transfer in La_2O_3-Nb_2O_5-B_2O_3:M~(3+)(M = Bi,Eu,Dy) glasses,J.Lumin.,2003,105:97-103.
    [45]Nakajima,Y.,Toyama,H.,Kojima,A.,Koshida,N.A solid-state light-emitting device based on ballistic electron excitation using an inorganic material as a fluorescent film,Phys.Star.Sol.(a),2003,197:316 -320.
    [46]Anant A.Setlur,William J.Heward,Yan Gao,Alok M.Srivastava,R.Gopi Chandran,and Madras V.Shankar Crystal Chemistry and Luminescence of Ce~(3+)-Doped Lu_2CaMg_2(Si,Ge)_3O_(12) and Its Use in LED Based Lighting,Chem.Mater.,2006,18:3314-3322.
    [47]R.Kasuya,T.Isobe,H.Kuma,Glycothermal synthesis and photoluminescence of YAG:Ce~(3+) nanophosphors,J.Alloy.Compd.2006,408-412:820-823.
    [48]Z.Yang,X.Li,Y.Yang,X.Li,The influence of different conditions on the luminescent properties of YAG:Ce phosphor formed by combustion,J.Lumin.2007, 122-123:707-709
    [49]S.Okamot,K.Tanaka,Effect of deep traps on the optical properties of Tb~(3+) doped sol-gel silica Phys.Stat.Sol.(c)2006,4:1056-1059
    [50]Ho Seong Jang,Won Bin Im,Dong Chin Lee,Duk Yong Jeon,Shi Surk Kim,Enhancement of red spectral emission intensity of Y_3Al_5O_(12):Ce~(3+) phosphor via Pr co-doping and Tb substitution for the application to white LEDs,J.Lumin.2007,126:371-377
    [51]P.D.Rack,P.H.Holloway,The structure,device physics,and material properties of thin film electroluminescent displays,Mater.Sci.Eng.R 1998,21:171-219

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700