从单一孔到等级孔孔材料的合成与设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要致力于控制合成单一孔和等级孔孔材料的研究工作。论文分为两大部分,第一部分为单一孔介孔分子筛材料的结构控制合成,第二部分为由沸石分子筛组成的等级孔催化剂材料的控制合成。
     第一部分包括本论文的第二章和第三章,主要是通过对介观相的控制和孔径的控制合成具有不同孔道结构和孔径大小的介孔分子筛材料。论文第二章中,我们通过简单微调合成体系中酸量或者盐量,实现相控制合成二维六方和三维立方结构的介孔二氧化硅材料;并利用TEM表征手段展现了介观结构的转变过程。在第三章工作中,通过孔径控制合成出具有超大孔径的介孔二氧化硅材料;和传统的利用有机大分子作为合成大孔介孔材料的添加剂不同的是,我们利用有机小分子作为添加剂也可以实现超大孔径介孔材料的合成;我们通过控制体系中有机分子添加剂种类和表面活性剂大小合成孔径在20nm到40nm期间的超大孔径介孔二氧化硅材料;此外我们还对系列超大孔介孔材料进行了蛋白质选择性吸附的尝试研究。
     第二部分包括第四章、五和第六章。我们设计在甘油体系下,通过转晶的方法,首次合成出由微孔沸石分子筛组成的具有微孔-介孔-大孔三级复合孔的等级孔筛催化剂材料。第四章中,主要介绍了由硅铝分子筛Beta组成的微孔-介孔-大孔等级孔材料的合成与表征。第五章我们对TS-1分子筛组成的微孔-介孔-大孔等级孔材料的合成以及等级孔结构表征展开工作;并仔细考察了TS-1分子筛组成的等级孔材料的生长机制,得到了一些知道合成意义的结果。第六章主要讲含杂原子Zr的Silicate-1分子筛组成的微孔-介孔-大孔多级孔的合成、结构表征。本论文中等级孔沸石分子筛材料的成功合成为大分子多步裂化一步催化反应器的实现提供了更大可能,推进了等级催化概念真正实现的可能性,拓宽等级催化的实际应用。
“No materials, no progress”means that science of materials is very important for the modern science and technology and also for the development of the society. The research of new materials with novel structures and outstanding properties is also a hot research subject for materials scientists. For all of the material researchers, tremendous efforts have been made in developing porous materials for their potential applications as advanced catalysts, adsorbents, sensors, optical waveguides, dielectrics, and bioreactors. The main works of my thesis are devoted to the design, syntheses, and characterization of porous materials with single-sized and/or hierarchical pores and their significant properties.
     As we know, porous materials contain normal materials with the unique pores of single-size and hierarchical porous materials. Unique porous materials with single pore sizes, such as zeolite A, X, ZSM-5 et al, have been researched for about two hundreds years and have been applied to manufacturing production in industry. Although the mesoporous materials which are also one of the important unique porous materials with single pore sizes, have been investigated for only 20 years, this kind of materials have been attracted much attentions due to their novel features, such as high regularity and unique tunable nanometer pore sizes, high surface areas, large pore volumse, and tailorable surface chemical properties. The main contents of mesoporous molecular sieves range from synthesis, morphology, modification, and assembly, and great progress have been made in the field of catalysis, adsorption, separation, purification, optics, preparation of nano-materials et al. Now, a lot of mesoporous materials with different pore structures have been prepared, but the methods to synthesize different meso-structures by controlling the formation of meso-structure phases are not fully-fledged and difficult to be achieved. The current situation seriously limits the application of mesoporous materials in industry. Furthermore, the pore sizes of the current mesoporous materials are a limitation for their application to bio-chemistry, especially for bio-molecules with macro-size. Thus, mesoporous materials with ultra-large pores are always greatly expected. Some strategies have been reported to obtain large-pore materials, but it is still a big challenge to develop a facile method to control the pore sizes of the porous materials between 20nm and 50nm. In the first part of my thesis, due to the problems existed that are mentioned above for mesoporous materials, we obtained mesoporous silicate with different pore structure by controlling of mesostructure phases with a very simple method, and by controlling the pore size method, we synthesized a series of mesoporous silica with ultra-large pores.
     With the development of society and the investigation of the porous materials, the materials with only one pore-size could just acted as an appointed role in the multi-applications due to the unique pore-size, which hinders the application in hierarchical catalysis. In the second part of the thesis, great efforts were made on the design and syntheses of hierarchically porous zeolite catalysts. We have firstly succeeded to obtain different kinds of hierarchically porous catalysts with micro-meso-macro pores system constructed by different.
     The thesis contains two parts. The first part is the design and synthesis of porous silica with different pore structure and ultra-large pore system respectively(Chapter two and Chapter three). The second part is the design and syntheses of hierarchical porous matetials constructed by different zeolites (Chapter four, Chapter five and Chapter six).
     For the first part, Chapter one is the control and synthesis of mesoporous silica with Ia3d structure using P123 as template under HNO3 condition. Interestingly, we found that only by changing the quantity of acid added in the starting gel, the meso-phases of the obtained sample could change from 2D hexagonal phase to 3D cubic phase. Then we got the mesoporous silica with different meso-structures. XRD and TEM were used for characterizing the process of the mesostructure phase changes. Furthermore, by change the quantity of the salt added in the starting gel, the mesostructure phases of our samples could also be controlled. In chapter two, we present a facile, reproducible, high-yield synthesis of mesoporous silica biomaterials with uniform and tunable pores of 20 to 40 nm in a neutral pH system of Brij-Ester-APS-H2O-SiO2 (Brij-n polyethylene alkyl ether, APS, 3-aminopropyl- trimethoxy silane) at room temperature. Here, we find the mesoporous materials with ultra-large pore can also be obtained when using small organic molecule (ethyl acetate) as additive. By using different templates and additives, mesoporous silica with ultra-large pore size, 20nm, 33nm, and 40nm respectively, were synthesized. We have explored the potential applications of our new materials in selective adsorption of biomacromolecules by the mesopore space limitation. The products have shown efficient performance of size selective adsorption of biomacromolecules, demonstrating great potentials in biomacromolecular separation.
     The second part of the thesis is the design and syntheses of hierarchically porous materials constructed by zeolites. In this part, we design a novel system using glycerin as medium, to make a transformation from the amorphous nanoparticles of the meso-macro hierarchically porous materials to crystalline zeolite nanoparticles by a transfer crystallization process. The transfer crystallization process has been investigated. Interestingly, the micro-meso-macro hierarchical porous materials composed of zeolites are synthesized for the first time.
     Micro-meso-macro hierarchically porous material constructed by Beta zeolite was synthesized in Chapter four. By the transfer crystallization process, we have success to transfer the amorphous nanoparticles of meso-macro hierarchical porous aluminosilicates to crystalline Beta zeolite. In chapter five, we design and synthesis of micro-meso-macro hierarchically porous constructed by TS-1 zeolite. The strategy is similar as the synthesis of micro-meso-macro hierarchical porous Beta. Moreover, micro-meso-macro hierarchically porous constructed by TS-1 zeolite with twin crystal structure and single crystal structure respectively were obtained by change the quantity of zeolite seed solution. The last chapter describes the design and synthesis of micro-meso-macro hierarchical porous composed of Zr-Silicalite-1. Using the similar strategy, it is the first time we get the hierarchically porous with micro-meso-macro pore structure constructed by Zr-Silicalite-1.
引文
[1] Sun, J. Y. Ying, Nature 1997, 389, 704-706.
    [2] W. H. Baur, Nature Materials 2003, 2, 17-18.
    [3] G. Wirnsberger, P. Yang, B. J. Scott, B. F. Chmelka, G. D. Stucky, Spectro-chim.ActaA 2001, 57,2049.
    [4] M. E. Davis, Nature, 2002, 417, 813.
    [5] N. R. Champness, M. Schroder, Current Opinion in Solid State & MaterialsScience, 1998,3,419.
    [6] C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck: Nature1992, 359, 710-712.
    [7] J. S. Beck, J. C. Vartuli, W. J. Roth , M. E. Leonowicz, C. T. Kresge, K. D.Schmitt, C. T. W. Chu, D. H. S. B. McCullen, J. B. Higgins, J. L.Schlenker, J.Am. Chem. Soc. 1992, 114, 10834-10843.
    [8] Velev, O. D.; Jede T. A.; Lobo, R. T.; Lenhoff, A. M. Chem. Mater. 1998, 10,3597.
    [9] Wijnhoven, J.; Vos, W. J. Science, 1998, 281, 802.
    [10] Davis, S. A.; Burkett, S. L.; Mann, S. Nature, 1997, 385, 420.
    [11]阳晓宇,吉林大学,博士毕业论文,2007。
    [12] Lu, G D.; Zhao, X. S.《Nanoporous Materials Science and Engineering》2004, l,pp.l-14.
    [13]徐如人,庞文琴,屠昆岗《沸石分子筛的结构与合成》吉林大学出版社,长春,1987;徐如人,庞文琴《分子筛与多孔材料化学》人民教育出版社,2001
    [14] Breck, D. W.; New York, 1974
    [15] Meier, W. M; Molecular Sieves, Soc. of Chem. and Ind. London, 1968, 10-27.
    [16] Meier,W. M; Olson, D. H.; Butterw orths, London, 1987, 5.
    [17] Smith,J, V; Chem. Rev.; 1988, 88, 149.
    [18] Baerlocher,Ch.; Meier,W. M; Olson, D. H.; Elsevier, 2001.
    [19] McCusker,L. B.; Baerlocher, Ch. Zeolite Structure, 37-56, Studies in Surfaceand Catalysis, 2001 (137), H.Van. Bekkum, E. M. Flanigen, P. A. Jacobs, J. C.Jansen (Eds.), Elsevier, 2001.
    [20] Barer R. M.; J. Chem. Soc; 1948, 10, 2158.
    [21] Corma, A. Chem. Rev. 1995, 95, 559
    [22] Barrer R. M; Denny P. J.; J. Chem. Soc; 1961, 971.
    [23] (a) MiltonR. M; U. S. Pat, 1959, 2, 82, 243. (b) Breck D. W.; U. S. Pat, 1964,3, 130, 007. (c) Breck D. W.; U. S. Pat, 1965, 3, 216, 789. (d) Sand L. B.; U. S.Pat, 1969, 3, 436, 174.
    [24] Yang. P.; Deng. T.; Zhao. D.; Feng. P.; Pine. D.; Chmelka.B. F.; Whitesides G.M; Stucky. G. D.; Science, 1998, 282, 2244.
    [25] Antonietti M; Berton B.; Go" ltner C; Hentze. H.; Adv. Mater.; 1998, 10, 154.
    [26] B. Lebeau, C. E. Fowler, S. Mann, C. Farcet, B. Charleux and C. Sanchez, J.Mater. Chem.; 2000, 10, 2105.
    [27] Daibin Kuang, Torsten Brezesinski, and Bernd Smarsly J. Am. Chem. Soc.2004, 126, 10534-10535.
    [28] Wilson, S. T.; Lok, B. M; Flanigen, E. M. U.S. patent 4, 1982. 310,440.
    [29] Davis, M. E., Saldarriaga, C; Montes, C; et al. Nature, 1988, 331, 698.
    [30] Huo QS, Xu RR, Li SG, et al. Chippindale AM. J. Chem. Soc- Chem.Commum., 1992 12: 875-876.
    [31] Huo QS, Xu RR, Li SQ et al, Proc. from the Ninth Intl. Zeolite Conference, R.Von Ballmoos, J. B. Higgins, M. M. J. Treacy (Eds.) Butterworth-Heinemann1992: 279-286.
    [32] H. L. Li, M. Eddaoudi, M. O'Keeffe, O. M. Yaghi, Nature, 1999, 402, 276.
    [33] M. Eddaoudi, J. Kim, N. Rsi, D. Vodak, J. Wachter, M. O'Keeffe, O. M. Yaghi,Science, 2002, 295, 469.
    [34] Breck, D. W.; Flanigen, E. M. Molecular Sieves, 1968, 49.
    [35] McNicol, B. D. Adv. Chem. Ser. 1973, 121, 152.
    [36] McNicol, B. D. J. Phys. Chem. 1972, 76, 3388.
    [37] Xu Wengyang, Li Jianquan, Li Wenyuan, Zeolites, 1989, 9, 468.
    [38] Kerr, G T. J. Phys. Chem. 1966, 70, 1047.
    [39] Ciric, J. J. Colloid Inter/. Sci. 1968, 28, 315.
    [40] Zhdanov, S. P. Adv. Chem. Series 101 Washington D. C.1971, 20.
    [41] Angell C L. ACS Symposium Series 1977. 40: 194.
    [42] Honssian C J Y, Mojet b L, Kirschhock C E A, et al. Stud. Surf. Sci. Catal.,2001 135: 140(02-0-01).
    [43] Carlsson K A, Warzywoda J, Sacco Jr , Stud. Surf. Sci. Catal.,2001 135: 188(02-9-16).
    [44] Smaihi M, Kallus S, Ramsay J D F. Stud. Surf. Sci. Catal, 2001. 135:189(02-9-18).
    [45] Bronic J, Frontera P, Testa F, et al. Stud. Surf. Sci. Catal., 2001.135:192(02-P-29).
    [46] Grizzetti R, Artionli G Microp., Mesop. Mater, 2002 54: 105-112.
    [47] Gabelica, Z. Appl. Catal.; 1980, 1, 201.
    [48] Iton L E, Trouw F, Rum T O, et al. Langmuir 1992 8: 1045-1048.
    [49] Grieken R Van, Sotelo J L, Menendez J M, et al. Microp. Mesop. Mater., 2000.39: 135-149.
    [50] V Chiola, J E Ritsko, C D Vanderpool. US Patent 3,556,725 1971.
    [51] F DiRenzo, H Cambon, R Dutartre. Microporous Mater. 1997, 10, 283.
    [52] T Yanagisawa, T Shimizu, K Kuroda, C Kato, Bull Chem Soc Jp 1990, 63, 988.
    [53] S Inagaki, Y Fukushima, K Kuroda: J Chem. Soc. Chem. Commim. 1993, 680.
    [54] Monnier A., Schuth F., Huo Q., Kumar D., Margolese D., Maxwell R., StuckyG., Krishnamurty M., Petroff P., Firouzi A., Janicke M., Chmelka B., Science1993, 261, 1299.
    [55] Huo Q., Margolese D., Ciesla U., Feng P., Gier T., Sieger P., Leon R., PetroffP., Schuth F., Stucky G., Nature 1994, 368, 317.
    [56] Huo Q., Margolese D., Stucky G., Chem. Mat. 1996, 8, 1147.
    [57] Collart O., Van Der Voort P., Vansant E., Desplantier D., Galarneau A., DiRenzo F., Fajula F., J. Phys. Chem. B 2001, 705, 12771.
    [58] Zhao D., Feng J., Huo Q., Melosh N., Fredrickson G., Chmelka B., Stucky G.,Science 1998, 279, 548.
    [59] Zhao D., Huo Q., Feng J., Chmelka B., Stucky G., J. Am. Chem. Soc. 1998,120, 6024.
    [60] Inagaki S., Fukushima Y., Kuroda K., J. Chem. Soc-Chem. Commim. 1993,680.
    [61] Huo QS, Leon R, Petroff PM, Stucky GD, Science 1995, 268, 1324-1327.
    [62] Zhao D., Huo Q., Feng J., Kim J., Han Y., Stucky G., Chem. Mater. 1999, 77,2668.
    [63] S. A. Bagshaw, E. Prouzet, T. J. Pinnavaia, Science 1995, 267, 865.
    [64] R. Ryoo, J. M. Rim, C. H. Ko, C. H. Shin, J. Phys. Chem. B 1996, 100,17718-17724.
    [65] S.Che, A. Garcia-Bennett, T. Yokoi, K. Sakamoto, H. Kunied, O. Terasaki, T.Tatsumi, Nature, 2003, 2, 801-805.
    [66] J. Fan, C. Yu, F. Gao, J. Lei, B. Tie, L. Wang, Q. Luo, B. Tu, W. Zhao, D. Zhao,Angew. Chem. Int. Ed. 2003, 42, 3146-3150.
    [67] C. Yu, Y Yu, D. Zhao, Chem. Commim, 2000, 575-576.
    [68] S. Che, Z. Liu, T. Ohsuna, K. Sakamoto, O. Terasaki, T. Tatsumi,Nature 2004,429, 281-284.
    [69] Lin W., Cai Q., Pang W., Yue Y., Chem. Commun. 1998, 2473.
    [70] Cai Q., Wei C, Xu Y., Pang W., Zhen K.,高等学校化学学报. 1999, 20, 344.
    [71] Dai L., Tabata K., Suzuki E., Tatsumi T., Chem. Mater. 2001, 13, 208.
    [72] Vinu A., Dedecek J., Murugesan V., Hartmann M, Chem. Mater. 2002, 14,2433.
    [73] Hartmann M, Vinu A., Elangovan S., Murugesan V., Bohlmann W., Chem.Commun. 2002, 1238.
    [74] Corma A., Navarro M, Pariente J. J. Chem. Soc-Chem. Commun. 1994, 147.
    [75] Feng X, Fryxell GE, Wang LQ, Kim AY, Liu J, Kemner KM, Science 1997,276, 923-926.
    [76] Anpo M., Yamashita H., Ikeue K., Fujii Y., Zhang S., Ichihashi Y., Park D.,Suzuki Y., Koyano K., Tatsumi T., Catal. Today 1998, 44, 327.
    [77] Tanev P., Chibwe M., Pinnavaia T. Nature 1994, 368, 321.
    [78] Xiao F., Han Y., Yu Y., Meng X., Yang M., Wu S., J. Am. Chem. Soc. 2002,124, 888.
    [79]朱金华,沈伟,徐华龙等,化学学掘2003,61,202.
    [80] Chen C. Y., Li H. X., Davis M. E., Microporous Mater. 1993, 2, 17.
    [81] Anwander R., Chem. Mater. 2001, 13, 4419.
    [82]石方,孙鹤,王榕树,化学通报网络版,1999,No99005
    [83] Maschmeyer T., Rey F., Sankar G., Thomas J., Nature 1995, 378, 159
    [84] N. K.Mai, M. Fujiwara, Y Tanaka, Nature 2003, 421,350 - 353.
    [85] N. K. Mai, M. Fujiwara, Y Tanaka, T. Taguchi, M. Matsukata,Chem. Mater. 2003, 15,3385 - 3394
    [86]蔡晓惠,吉林大学博士论文“硅(铝)孔材料的制备和功能化”第一章1.21.
    [87] Schuth F., Chem. Mater. 2001, 13, 3184.
    [88] Zhao D., Luan Z , Kevan L., Chem. Commun. 1997, 1009.
    [89] Feng P., Xia Y., Feng J., Bu X., Stucky G., Chem. Commun. 1997, 949.
    [90] Cabrera S., Ei Haskouri J., Guillem C, Beltran-Porter A., Beltran-PorterD.,Mendioroz S., Marcos M., Amoros P., Chem. Commun. 1999, 333.
    [91] Doi T., MiyakeT., Chem. Commun. 1996, 1635.
    [92] Mizuno N., Hatayama H., Uchida S., Taguchi A., Chem. Mater. 2001, 13, 179.
    [93] Ciesla U., Schacht S., Stucky G., Unger K., Schuth F., Angew. Chem-Int.Edit.Engl. 1996,35,541.
    [94] Jimenez-Jimenez J., Maireles-Torres P., Olivera-Pastor P.,Rodriguez-Castellon E., Jimenez-Lopez A., Jones D., Roziere J., Adv. Mater.1998, 10, 812.
    [95] Guo X., Ding W., Wang X., Yan Q., Chem. Commun. 2001, 709.
    [96] NenoffT., Thoma S., Provencio P., Maxwell R., Chem. Mater. 1998, 10, 3077.
    [97] Mai N., Ichikawa S., Fujiwara M., Chem. Commun. 2002, 112.
    [98] Serre C, Auroux A., Gervasini A., Hervieu M., Ferey G., Angew. Chem-Int.Edit. 2002, 41, 1594.
    [99] Bagshaw S., Prouzet E., Pinnavaia T., Science 1995, 269, 1242.
    [100]Vaudry F., Khodabandeh S., Davis M., Chem. Mater. 1996, 8, 1451.
    [101]程虎民,马玉荣,廖复辉等,物理纪学学掘2003,326.
    [102]乐英红,马臻,华伟明等,纪学学掘2000,58,777.
    [103]Yada M., Takenaka H., Machida M., Kijima T., J. Chem. Soc-Da/ton.Trans. 1998, 1547.
    [104]Tian Z., Tong W., Wang J., Duan N., Krishnan V., Suib S., Science. 1997, 276,926.
    [105]Srivastava D., Perkas N., Gedanken A., Felner I.,J. Phys. Chem. B. 2002, 106,1878.
    [106]Katou T, Lu D., Kondo J., Domen K.,J. Mater. Chem. 2002, 12, 1480.
    [107]Braun P., Osenar P., Stupp S., Nature 1996, 3S0, 325.
    [108]Osenar P., Braun P., Stupp S., Adv. Mater. 1996, 8, 1022.
    [109]Tohver V., Braun P., Pralle M., Stupp S., Chem. Mater. 1997, 9, 1495.
    [110] Braun P., Osenar P., Tohver V., Kennedy S., Stupp S.,J. Am. Chem. Soc. 1999,121, 7302.
    [111]Bonnehomme F., Kanatzidis M., Chem. Mater. 1998, 10, 1153.
    [112]Wachhold M., Rangan K., Lei M., Thorpe M, Billinge S., Petkov V.,Heising J., Kanatzidis M,J. Solid State Chem. 2000, 152, 21.
    [113]Rangan K., Trikalitis P., Kanatzidis M.,J. Am. Chem. Soc. 2000, 122, 10230.
    [114]Rangan K., Billinge S., Petkov V., Heising J., Kanatzidis M., Chem. Mater.1999, 11,2629.
    [115]MacLachlan M., Coombs N., Ozin G., Nature 1999, 397, 681.
    [116]MacLachlan M., Coombs N., Bedard R., White S., Thompson L., Ozin G.,J.Am. Chem. Soc. 1999, 121, 12005.
    [117]Warnheim T., Jonsson A.,J. Colloid Interface Sci. 1988, 125, 627.
    [118]Trikalitis P., Bakas T., Papaefthymiou V., Kanatzidis M, Angew. Chem., Int.Ed. 2000, 39, 4558.
    [119] Attard G., Bartlett P., Coleman N., Elliott J., Owen J., Wang J., Science. 1997,278, 838.
    [120] Attard G., Goltner C, Corker J., Henke S., Templer R., Angew Chem-Int EditEngl 1997, 36, 1315.
    [121]Lee K., Kim Y., Han S., J. Am. Chem. Soc. 2003, 125, 6844.
    [122]Kaneda M, Tsubakiyama T., Carlsson A., Skamoto Y., Ohsuna T., Teresaki O.,Joo S., Ryoo R., J. Phy.s Chem. B 2002, 106, 1256.
    [123]Ryoo R., Joo S., Kruk M., Jaroniec M.,Adv. Mater. 2001, 13, 677.
    [124] Jun S., Joo S., Ryoo R., Kruk M., Jaroniec M, Liu Z , Ohusuna T.,Terasaki O.,J. Am. Chem. Soc. 2000,122, 10712.
    [125]Joo S., Choi S., Oh I., Kwak J., Liu Z , Terasaki O., Ryoo R., Nature. 2001,412, 169.
    [126]Lee JS, Joo SH, Ryoo R, J Am Chem Soc 2002, 124, 1156-1157.
    [127]Zhang WH, Liang CH, Sun HJ, Shen ZQ, Guan YJ, Ying PL, Li C,Adv.Mater. 2002, 14, 1776-1778.
    [128]Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD. ChuCTW, Olson DH, Sheppard EW, McCullen SB, Higgins JB, Schlenker JL, J AmChem Soc 1992, 114:10834-10843
    [129]Monnier A, Schuth F, Huo Q, Kumar D, Margolese D, Maxwell RS, StuckyGD, Krishnamurty M, Petroff P, Firouzi A, Janicke M, Chmelka BF, Science1993,261:1299-1303
    [130]Huo QS, Margolese DI, Ciesla U, Feng PY, Gier TE, Sieger P, Leon R, PetroffPM, Schuth F, Stucky GD, Nature 1994, 368:317-321
    [131]Huo QS, Margolese DI, Ciesla U, Demuth DG, Feng PY, Gier TE, Sieger P,Firouzi A, Chmelka BF, Schuth F, Stucky GD, Chem Matl994, 6:1176-1191
    [132] Firouzi A, Kumar D, Bull LM, Besier T, Sieger P, Huo Q, Walker SA,Zasadzinski JA, Glinka C, Nicol J, Margolese D, Stucky GD, Chmelka BF,Science 1995, 267:1138-1143
    [133]Choi, K.; Gardner, D.; Bein, T. Angew. Chem. Int. Ed. 1999, 38, 2891.
    [134]Wijnhoven, J.; Vos, W. J. Science, 1998, 281, 802.
    [135]Davis, S. A.; Burkett, S. L.; Mann, S. Nature, 1997, 385, 420.
    [136]Liu, H.; Li, Y; Zhu, D.; Yu, D.; Xu, J.; Xiang, B. J. Am. Chem. Soc. 2003.
    [137]Davis, K. E.; Russel, W. B.; Glantschnig, W. J. Science 1989, 245, 507. [138]vanBlaaderen, A.; Ruel, R.; Wiltzius P. Nature 1997, 385, 321.
    [139]Holland, B. T.; Blanford, C. F.; Stein, A. Science 1998, 281, 538.
    [140]Velev, O. D.; Jede, T. A.; Lobo, R. F.; Lenhoff, A. M. Nature 1997, 389, 447. [141]Velev, O. D.; Jede, T. A.; Lobo, R. T.; Lenhoff, A. M. Chem. Mater. 1998, 10,3597.
    [142]Caruso, F.; Caruso, R. A.; Mohwald, H. Science 1998, 282, 1111.
    [143]王策,张亚红,董林等.高等学校化学学报1999,20:824—826.
    [144]齐凯,杨振忠,刘正平等.科学通报2000,45:992—994.
    [145] Jean-Luc Blin, Alexandre Leonard, Zhong-Yong Yuan, Laurent Gigot,Aurelien Vantomme, Anthony K. Cheetham, and Bao-Lian Su, Angew.Chem. Int.Ed. 2003,42,2872-2875.
    [146]Imhof, A.; Pine, D. J. Nature 1997, 389, 948.
    [147]Davis, S. A.; Burkett, S. L.; Mann, S. Nature 1997, 385, 420.
    [148]Ogasawara, W.; Shenton, W.; Davis, S. A.; Mann, S. Chem. Mater. 2000, 12,2835.
    [149]De Vos, R. M.; Verweij, H. Science, 1998, 279, 1710.
    [150]王亚军,胡建华,唐颐,杨武利,柯琛,王星东,化学学报2001,59,1084.
    [151]柯琛,杨武利,倪铮,唐颐,高滋,化学学报,2001,59,1961.
    [152]Van Der Voort, P.; Ravikovitch, P. I.; De Jong, K. P.; Neimark, A. V.;Janssen, A. H.; Benjelloun, M.; Van Bavel, E.; Cool, P.; Weckhuysen, B. M;Vansant, E. F. Chem. Commun. 2002, 1010
    [153]C. Jacobsen, C. Madsen, J. Houzvicka, I. Schmidt, A. Carlsson. J.Am.Chem.Soc. 2000, 122,7116.
    [154] Y. Tao, H. Kanoh, K. Kaneko. J. Am. Chem.Soc. 2003, 125, 6044.
    [155] S. Kim, H. Shah, T. Pinnavaia. Chem. Mater. 2003, 15, 1664.
    [156]I. Schmidt, A. Boisen, E. Gustavsson, K. Stahl, S. Pehrson, S. Dahl, A.Carlsson, C. Jacobsen. Chem. Mater. 2001, 13, 4416.
    [157]A. Sakthivel, A. Huang, W. Chen, Z. Lan, K. Chen, T. Kim, R. Ryoo, A.Chiang, S. Liu. Chem. Mater. 2004, 16, 3168.
    [158]A. Dong, Y. Wang, Y Tang, Y Zhang, N. Ren, Z. Gao. Adv. Mater. 2002,14,1506.
    [159]F. Xiao, L. Wang, C. Yin, K. Lin, Y Di, J. Li, R. Xu, D. Su, R. Schlogl, T.Yokoi, T. Tatsumi. Angew. Chem. Int. Ed. 2006, 45, 3090.
    [160]M. Choi, H. Cho, R. Srivastava, C. Venkatesan, D. Choi, R. Ryoo.NatureMaterials .2006, 5, 718.
    [161]Brian T. Holland, Lloyd Abrams, and Andreas Stein, J. Am. Chem.Soc, Vol,1999. 121, No. 17,4309
    [162] Limin Huang, Zhengbao Wang, Jinyu Sun, Lei Miao, Quanzhi Li, YushanYan, and Dongyuan Zhao, J. Am. Chem. Soc, Vol. 2000,122, No. 14, 3531
    [163]Guangshan Zhu, Shilun Qiu, Osamu Terasaki, J. Mater. Chem., 2001, 11,1687-1693
    [164] A. Dong, Y. Wang, Y. Tang, Y. Zhang, N. Ren, Z. Gao, Adv. Mater. 2002, 14,1506-1510.
    [165]P Yang, T. Deng, D. Zhao, P. Feng, D. Pine, B. Chmelka, G Whitesides, GStucky. Science 1998, 282, 2244.
    [166]B. Holland, L. Abrams, A. Stein. J. Am. Chem. Soc. 1999, 121, 4308.
    [167]B. Lebeau, C. Fowler, S. Mann, C. Farcet, B. Charleux, C. Sanchez. J.Mater.Chem. 2000, 10,2105.
    [168]Q. Luo, L. Li, B. Yang, D. Zhao. Chem. Lett. 2000, 378. 24.
    [169]Z. Yang, K. Qi, J. Rong, L. Wang, Z. Liu.; Y Yang. Chin. Sci. Bull. 2001, 46,1785 .
    [170]G Gundiah, Bull. Mater. Sci. 2001, 24, 211.
    [171] S. Vaudreuil, M. Bousmina, S. Kaliaguine, L. Bonneviot. Adv. Mater.2001, 13, 1310.
    [172]R. Caaiso, M. Antonietti. Adv. Fund. Mater. 2002, 12, 307.
    [173]T. Sen, G. Tiddy, J. Casci, M. Anderson. Microporous Mesoporous Mater. 2005,78, 255.
    [174]C. Oh, Y. Baek, S. Ihm. Adv. Mater. 2005, 17, 270.
    [175]C. Danumah, S. Vaudreuil, L. Bonneviot, M. Bousmina, S. Giasson, S.Kaliaguine. Microporous Mesoporous Mater. 2001, 44, 241.
    [176]Zhong-Yong Yuan and Bao-Lian Su. J. Mater. Chem., 2006, 16, 663-677
    [177]T. Sen, G Tiddy, J. Casci, M. Anderson. Angew. Chem., Int. Ed. 2003, 42,4649.
    [178]T. Sen, G Tiddy, J. Casci, M. Anderson. Chem. Mater. 2004, 16, 2044.
    [179]D. B. Kuang, T. Brezesinski and B. Smarsly, J. Am. Chem. Soc, 2004, 126,10534.
    [180] A. Vantomme, Zhong-Yong Yuan and Bao-Lian Su, New J. Chem., 2004, 28,1083-1085.
    [1]徐如人,庞文琴,屠昆岗《沸石分子筛的结构与合成》吉林大学出版社,长春,1987;徐如人,庞文琴《分子筛与多孔材料化学》人民教育出版社, 2001
    [2]曲风玉,吉林大学博士论文,第一章.
    [3] B. T. Holland, P. K. Isbester, C. F. Blanford, E. J. Munson, A. Stein, J. Am. Chem. Soc. 1997, 119, 6796-6803.
    [4] Q. Huo, D. I. Margolese, G. D. Stucky, Chem. Mater. 1996, 8, 1147-1160.
    [5] Q. S. Huo, D. L. Margolese, U. Ciesla, P. Y. Feng, T. E. Gier, P. Sieger, R. Leon, P. M. Petroff, F. Schuth, G. D. Stucky, Nature 1994, 368, 317-321.
    [6] Q. S. Huo, D. L. Margolese, U. Ciesla, D. G. Demuth, P. Y. Feng, T. E. Gier, P. Sieger, A. Firouzi, B. F. Chmelka, F. Schuth, G. D. Stucky, Chem. Mater. 1994, 6, 1176-1191.
    [7] S. Che, Z. Liu, T. Ohsuma, K. Sakamoto, O. Terasaki, T. Tatsumi. Nature, 2004, 429, 281-284.
    [8] A. E. Garcia-Bennett, O. Terasaki, S. N. Che, T. Tatsumi, Chem. Mater. 2004, 16, 813-821.
    [9] S. Che, A. E. Garcia-Bennett, T. Yokoi, K. Sakamoto, H. Kunieda, O. Terasaki, T. Tatsumi, Nature Mater. 2003, 2, 801-805.
    [10] P. T. Tanev, M. Chibwe, T. J. Pinnavaia, Nature 1994, 368, 321-323.
    [11] S. A. Bagshaw, E. Prouzet, T. J. Pinnavaia, Science, 1995, 269, 1242-1244.
    [12] Tanev, P. T.; Pinnavaia, T. J. Science 1995, 267, 865-867.
    [13] P. T. Tanev, T. J. Pinnavaia, Science 1996, 271, 1267-1269.
    [14] D. M. Antonelli, J. Y. Ying, Angew. Chem. Int. Ed. Engl. 1996, 35, 426-430.
    [15] D. M. Antonelli, A. Nakahira, J. Y. Ying, Inorg. Chem. 1996, 35, 3126-3136.
    [16] D. M. Antonelli, J. Y. Ying, Chem. Mater. 1996, 8, 874-881.
    [17] S. N. Che, Lim S. Y., Kaneda M., Yoshitake H., Terasaki O., Tatsumi T., J. Am. Chem. Soc. 2002, 124, 13962.
    [18] Sakamoto, Y.; Kaneda, M.; Terasaki, O.; Zhao, D.; Kim, J. M.; Stucky, G. D.; Shin, H. J.; Ryoo, R. Nature 2000, 408, 449.
    [19]王春雷,吉林大学博士论文第二章。
    [20] Yang, H.; Coombs, N.; Ozin, G. A. Nature 1997, 386, 692.
    [21] Ray, A.; Nemethy, G. J. Am. Chem. Soc. 1971, 93, 6787.
    [22] Gaillon,L.; Lelievere, J.; Gaboriaud, R. J. Colloid Interface Sci. 1999, 213, 287.
    [23] E. Leontidis, Curr. Opin., Colloid Interface Sci. 2002, 7, 81.
    [24] K. Flodstrom, V. Alfredsson, N. Kallort, J. Am. Chem. Soc. 2003, 125, 4402.
    [25] Ryoo, R.; Jun, S. J. Phys. Chem. B. 1997, 101, 317.
    [26] Kim, J. M.; Jun, S.; Ryoo, R. J Phys. Chem. B 1999, 103, 6200.
    [27] Das, D.; Tsai, C. M.; Cheng, S. F. Chem. Commun. 1999, 473.
    [28] Yu, J.; Shi, J. -L.; Chen, H.–R.; Yan, J.–N.; Yan, D.–S. Microporous Mesoporous Mater. 2001, 46, 153.
    [29] Zhang, W.; Glomski, B.; Pauly, T. R.; Pinnavaia, T. J. Chem. Commun. 1999, 1803.
    [30] Prouzet, E.; Cot, F.; Nabias, G.; Larbot, A.; Kooyman P.; Pinnavaia, T. J. Chem. Mater. 1999, 11, 1498.
    [31] Schmidt-Winkel, P.; Yang, P.; Margolese, D. I.; Chmelka B. F.; Stucky, G. D. Adv. Mater. 1999, 11, 303.
    [32] Zhao, D.; Sun, J.; Li, Q.; Stucky, G. D. Chem. Mater. 2000, 12, 275.
    [33] CT Kresge, ME Leonowicz, WJ Roth, JC Vartuli, JS Beck: Nature 1992, 359, 710.
    [34] JS Beck, JC Vartuli, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW, McCullen SB, Higgins JB, Schlenker JL: J Am Chem Soc 1992, 114, 10834.
    [1] D. Zhao, Q. Huo, J. Feng, B. F. Chmelka, G. D. Stucky, J. Am. Chem. Soc, 1998, 120, 6024.
    [2] P. Schmidt-Winkel, W. Lukens, D. Zhao, P. Yang, B. F. Chmelka, G. D. Stucky, J. Am. Chem. Soc, 1999, 121, 254.
    [3] S. S. Kim, T. R. Pauly, T. J. Pinnavaia, Chem. Commun, 2000, 1661.
    [4] J. S. Lettow, Y. J. Han, P. Schmidt-Winkel, P. D. Yang, D. Y. Zhao, G. D. Stucky, J. Y. Ying, Langmuir, 2000, 16, 8291.
    [5] P. Schmidt-Winkel, W. W. Lukens Jr, P. D. Yang, D. I. Margolese, J. S. Lettow, J. Y. Ying, G. D. Stucky, Chem. Mater, 2000, 12, 686.
    [6] F. Kleitz, S. H. Choi, R. Ryoo, Chem. Commun, 2003, 2136.
    [7] J. Fan, C. Yu, J. Lei, Q. Zhang, T. Li, B. Tu, W. Zhou, D. Zhao, J. Am. Chem. Soc, 2005, 127, 10794.
    [8] Q. S. Huo, S. Margoleses, U. Ciesla, D. Demuth, P. Feng, D. Gier, P. Sieger, B. Chmelka, F. Schuth, G. Stucky, Chem. Mater, 1994, 6, 1176.
    [9] Y. Deng, T. Yu, Y. Wan, Y. Shi, Y. Meng, D. Gu, L. Zhang, Y. Huang, C. Liu, X. Wu, D. Zhao, J. Am. Chem. Soc, 2007, 129, 1690.
    [10] E. Kramer, S. Forster, C. Goltner, M. Antonietti, Langmuir, 1998, 14, 2027.
    [11] M. Groenewolt, T. Brezesinski, H. Schlaad, M. Antonietti, P. W. Groh, B. Ivan, Adv. Mater, 2005, 17, 1158.
    [12] M. Templin, A. Franck, A. D. Chesne, H. Leist, Y. Zhang, R. Ulrich, V. Schadler, U. Wiesner, Science, 1997, 278, 1795.
    [13] J. L. Blin, B. L. Su, Langmui, 2002, 18, 5303.
    [14] A. Sayari, M. Kruk, M. Jaroniec, I. L. Moudrakovski, Adv. Mater, 1998, 10, 1376.
    [15] M. Luechinger, G. D. Pirngruber, L. Benedikt, P. Laggner, R. Prins, Microporous Mesoporous Mater, 2005, 79, 41.
    [16] S. A. Bagshaw, E. Prouzet, T. J. Pinnavaia, Science, 1995, 269, 1242.
    [17] T. Pauly, Y. Liu, T. Pinnavaia, S. Billinge, T. Rieker, J. Am. Chem. Soc, 1999, 121, 8835.
    [18] S. Zhai, W. Wei, D. Wu, Y. Sun, Catal. Lett, 2003, 89, 261.
    [19] R. Ryoo, S. H. Joo, S. Jun, J. Phys. Chem. B, 1999, 103, 7743.
    [20] M. E. Davis, Nature, 2002, 417, 813.
    [21] Q. S. Huo, S. Margoleses, U. Ciesla, D. Demuth, P. Feng, D. Gier, P. Sieger, B. Chmelka, F. Schuth, G. Stucky, Chem. Mater, 1994, 6, 1176.
    [22] Q. S. Huo, D. I. Margolese, G. D. Stucky, Chem. Mater, 1996, 8, 1147.
    [23] S. I. Che, A. Garcia-Bennett, T. Yokoi, K. Sakamoto, H. Kunieda, O. Terasaki, T. Tatsumi, Nature Mater, 2003, 2, 801.
    [24] P. Schmidt-Winkel, W. Lukens, D. Zhao, P. Yang, B. F. Chmelka, G. D. Stucky, J. Am. Chem. Soc, 1999, 121, 254.
    [25] S. S. Kim, T. R. Pauly, T. J. Pinnavaia, Chem. Commun, 2000, 1661.
    [26] M. Templin, A. Franck, A. D. Chesne, H. Leist, Y. Zhang, R. Ulrich, V. Schadler, U. Wiesner, Science, 1997, 278, 1795.
    [27] S. S. Kim, T. R. Pauly, T. J. Pinnavaia, Chem. Commun, 2000, 835.
    [28] Y. Li, J. Shi, Z. Hua, H. Chen, M. Ruan, D. Yan, Nano. Lett, 2003, 3, 609.
    [29] Y. Zhu, J. Shi, W. Shen, X. Dong, J. Feng, M. Ruan, Y. Li, Angew. Chem. Int. Ed, 2005, 44, 5083.
    [30] Q. Sun, P. J. Kooyman, J. G. Grossmann, P. Bomans, P. M. Frederik, P. Magusin, T. Beelen, S. R. A. Von, N. Sommerdijk, AdV. Mater, 2003, 15, 1097.
    [31] Q. Sun, P. Magusin, B. Mezari, P. Panine, S. R. A. Van, N. Sommerdijk, J. Mater. Chem, 2005, 15, 256.
    [32] P. Schmidt-Winkel, C. J. Glinka, G. D. Stucky, Langmuir, 2000, 16, 356.
    [33] B. Zhao, B. Shi, R. Ma, Eng. Life Sci. 2005, 5, 436-441.
    [34] J. F. Diaz, K. J. Balkus Jr, J. Mol. Caltal. B: Enzymat 1996, 2, 115-126.
    [35] J. He, X. Li, D. G. Evans, X. Duan, C. Li, J. Mol. Caltal. B: Enzymat 2000, 11, 45-53.
    [36] M. C. R. Hernandez, J. E. M. Wejebe, J. I. V. Alwantara, R. M. Ruvalcaba, L. A, G. Serrano, J. T. Ferrara, Microporous Mesoporous Mater. 2005, 80, 25-31.
    [37] P. H. Pandye, R. V. Jasra, B. L. Newalker, P. N. Bhatt, Microporous Mesoporous Mater. 2005, 77, 67-77.
    [38] A. Kandya, L. Ji, P. G. Smieniotis, N. G. Pinto, Microporous Mesoporous Mater. 2005, 80, 311-320.
    [39] P. Xue, G. Lu, Y. Guo, Y. Wang, Y. Guo, J. Mol. Caltal. B: Enzymat 2004, 30, 75-81.
    [40] L. Washmon-Kriel, V. L. Jimenez, K. J. Balkus Jr, Journal of Molecular Catalysis B: Enzymatic 2000, 10, 453-469.
    [41] T. Haruo, L. Bo, S. Toshiya, M. Chie, K. Tsutomu, I. Shinji, Microporous Mesoporous Mater. 2001, 44-45, 755-762.
    [42] J. Deere, E. Magner, J. G. Wall, B. K. Hodnett, J. Phys. Chem. B 2002, 106, 7340-7347.
    [43] J. Deere, E. Magner, J. G. Wall, B. K. Hodnett, Chem.Commun. 2001, 465-465.
    [44] J. He, X. Li, D. G.. Evans, X. Duan, C. Li, J. Mol. Catal. B: Enzymatic 2000, 11, 45-53.
    [45] A. S. Maria Chong, X. S. Zhao, Applied Surface Science 2004, 237, 98.
    [46] R. M. Blanco. P. Terreros, Mónica Fernández-Pérez, C. Otero, G. Díaz González, Journal of Molecular Catalysis B: Enzymatic 2004, 30, 83-93.
    [47] J. Fan, J. Lei, L. M. Wang, C. Z. Yu, B. Tu, D. Y. Zhao, Chem. Commun. 2003, 2140-2141.
    [48] J. Lei, J. Fan, C. Z. Yu, L. Y. Zhang, S. Y. Jiang, B. Tu, D. Y.Zhao, Microporous Mesoporous Mater. 2004, 73, 121-128.
    [49] M. Vallet-Regí, A. Rámila, R. P. Del Real, J. Pérez-Pariente, Chem. Mater. 2001, 13, 308-311.
    [50] Fengyu Qu, Guangshan Zhu, Shiying Huang, Shougui Li, Shilun Qiu. ChemPhysChem, 2006, 7, 400-406.
    [1]徐如人,庞文琴,屠昆岗《沸石分子筛的结构与合成》吉林大学出版社,长春,1987;徐如人,庞文琴《分子筛与多孔材料化学》人民教育出版社, 2001
    [2] J. A. Martens, J. Perez-Pariente, E. Sastre, A. Corma, P. A. Jacobs, Appl. Catal., 1988, 45, 85.
    [3] P. Ratnasamy, R. N. Bhat, S. K. Pokhriyal, S. G. Hagde, R. Kumar, J. Catal., 1989, 119, 65.
    [4] K. S. N. Reddy, M. J. Eapen, H. S. Soni, P. V. Shiralkar, J. Phys. Chem., 1992, 96, 7923.
    [5] R. L. Wadlinger, G. T. Kerr, E. J. Rosinski, US Pat., 3308069, 1967.
    [6] J. M. Newsam, M. M. J. Treacy, W. T. Koetsier and C. B. De Gruyter, Proc. R. Soc. Lond. Ser. A., 1988, 420, 375.
    [7] M. M. J. Treacy, J. M. Newsam, Nature, 1988, 332, 251.
    [8] M. M. J. Treacy, J. M. Newsam, M. W. Deem, Proc. R. Soc. Lond. Ser. A., 1991, 433, 499.
    [9] G. Bellusi, G. Pazzuconi, C. Perego, G. Girotti, G. Terzoni, J. Catal., 1995, 157, 227.
    [10] L. Bonetto, M. A. Camblor, A. Corma, J. Perez-Pariente, Appl. Catal. A, 1992, 82, 37.
    [11] A. J. Hoefnagel, H. van Bekkum, Appl. Catal. A, 1993, 97, 87.
    [12] K. P. de Jong, C. M. A. M. Mesters, D. G. R. Peferoen, P. T. M. van Brugge, C. de Groot, Chem. Eng. Sci., 1996, 51, 2053.
    [13] G. Bellussi, G. Pazzuconi, C. Perego, et al., J. Catal., 1995, 157, 227.
    [14] I. Wang, T. c. Tsai, S. T. Huang, Ind. Eng. Chem. Res., 1990, 29, 2005.
    [15] K. S. N. Reddy, B. S. Rao, V. P. Shiralkar, Appl. Catal. A, 1993, 95, 53.
    [16] J. C. Jansen, E. J. Creyghtom, S. L. Njo, et al, Catal. Today, 1997, 205.
    [17] M. E. Davis, R. F. Lobo, Chem. Mater., 1992, 4, 156.
    [18] A. Corma, M. T. Navarro, F. Rey, J. Rius, S. Valencia, Angew. Chem. Int. Ed., 2001, 40, 2277.
    [19] A. Corma, M. T. Navarro, F. Rey, S. Valencia, Chem. Commun., 2001, 1486.
    [20] T. Ohusna, Z. Liu, O. Terasaki, K. Hiraga, M. A. Camblor, J. Phys. Chem. B, 2002, 106, 5673.
    [21] L. A. Villaescusa, P. A. Barrett, M. A. Camblor, Angew. Chem. Int. Ed., 1999, 38, 1997.
    [22] A. Corma, M. Puche, F. Rey, G. Sankar, S. J. Teat, Angew. Chem. Int. Ed., 2003, 42, 1156.
    [23] A. Corma, M. J. Diaz-Cabanas, J. M. Triguero, F. Rey, J. Rius, Nature, 2002, 418, 514.
    [24] A. Corma, F. Rey, S. Valencia, J. Jorda, J. Rius, Nature Materials, 2003, 2, 493.
    [25] A. Cantin, A. Corma, M. J. Diaz-Cabanas, J. L. Jorda, M. Moliner, F. Rey, Angew. Chem. Int. Ed., 2006, 45, 8013.
    [26] Haibo Zhu, Zhicheng Liu, Dejin Kong, Yangdong Wang and Zaiku Xie, J. Phys. Chem. C 2008, 112, 17257–17264
    [27] Yangchuan Tong, Tianbo Zhao, Fengyan Li and Yue Wang, Chem. Mater. 2006, 18, 4218-4220
    [28] Guangshan Zhu,a,b Shilun Qiu, Osamu Terasaki, J. Mater. Chem., 2001, 11, 1687–1693
    [29] A. Leonard, B. L. Su,. Chem. Commun. 1674, (2004).
    [30] B. L. Su, A. Leonard. Z. Y. Yuan. C. R. Chim. 8, 713 (2005).
    [31] J. L. Blin, A. Leonard, Z. Yuan, L. Gigot, A. Vantomme, A. Cheetham, B. L. Su. Angew. Chem., Int. Ed. 42, 2872 (2003).
    [32] Z. Y. Yuan, A. Vantomme, A. Leonard, B. L. Su. Chem. Commun. 1558 (2003).
    [33] W. Deng, M. Toepke, B. Shanks. Adv. Funct. Mater. 13, 61 (2003).
    [34] T. Z. Ren, Z. Y. Yuan, B. L. Su. Langmuir 20, 1531 (2004).
    [35] Leonard, J. L. Blin, B. L. Su. Chem. Commun. 2568 (2003).
    [36] Z. Y. Yuan, T. Z. Ren, A. Vantomme, B. L. Su. Chem. Mater. 16, 5096 (2004).
    [37] Yongde Xia and Robert Mokaya, J. Mater, Chem. 2004, 14, 3427.
    [1] M. Taramasso, G. Perego, B. Notari, US Pat. 4, 1983, 410, 501.
    [2] G. Perego, G. Bellussi, C. Corno, M. Taramasso, F. Buonomo, A. Esposito, Stud. Surf. Sci. Catal. 1986, 28, 129.
    [3] B. Notari, Stud. Surf. Sci. Catal 1988, 37, 413.
    [4] A. Thangaraj, R. Kumar, P. Ratnassamy, Appl. Catal. A, 1990, 57, L1.
    [5] A. Thangaraj, R. Kumar, P. Ratnasamy, J. Catal., 1991, 131, 294.
    [6] J. S. Reddy, R. Kumar, P. Ratnasamy, Appl. Catal. A, 1990, 58, L1.
    [7] J. S. Reddy, R. Kumar, P. Ratnasamy, J. Catal., 1991, 130, 440.
    [8] S. B. Kumar, S. P. Mirajkar, G. C. G. Paris, P. Kumar, R. Kumar, J. Catal. 1995, 156, 63.
    [9] R. A. Sheldon, J. Dakka, Catal. Today, 1994, 19, 215.
    [10] T. Tatsumi, M.Nakamura, S. Negishi, J. Chem. Soc., Chem. Commun., 1990, 476.
    [11] U. Romano, A. Esposito, F. Maspero, Stud. Surf. Sci. Catal., 1990, 55, 33.
    [12] A. J. H. P. van der Pol, J. H. C. van Hooff, Appl. Catal. A., 1993, 106, 97.
    [13] A. Thangarij, S. Sivasanker, P. Ratnasamy, J. Catal., 1992, 137, 252.
    [14] D. R. C. Huybrechts, P. L. Buskens, P. A. Jacobs, Nature, 1990, 345, 240.
    [15] M. Hassan Zahedi-Niaki, M. P. Kapoor, S. Kaliaguine, J. Catal., 1998, 177, 231.
    [16] Limin Huang, Zhengbao Wang, Jinyu Sun, Lei Miao, Quanzhi Li, Yushan Yan, and Dongyuan Zhao, J. Am. Chem. Soc., 2000, 122, No.14, 3531
    [17] A. Leonard, B. L. Su,. Chem. Commun. 2004, 1674.
    [18] B. L. Su, A. Leonard. Z. Y. Yuan. C. R. Chim. 2005, 8, 713.
    [19] J. L. Blin, A. Leonard, Z. Yuan, L. Gigot, A. Vantomme, A. Cheetham, B. L. Su. Angew. Chem., Int. Ed. 2003, 42, 2872.
    [20] Z. Y. Yuan, A. Vantomme, A. Leonard, B. L. Su. Chem. Commun. 2003, 1558.
    [21] W. Deng, M. Toepke, B. Shanks. Adv. Funct. Mater. 2003, 13, 61.
    [22] T. Z. Ren, Z. Y. Yuan, B. L. Su. Langmuir, 2004, 20, 1531.
    [23] Leonard, J. L. Blin, B. L. Su. Chem. Commun. 2003, 2568.
    [24] Z. Y. Yuan, T. Z. Ren, A. Vantomme, B. L. Su. Chem. Mater. 2004, 16, 5096.
    [25] C. Jacobsen, C. Madsen, J. Houzvicka, I. Schmidt, A. Carlsson. J. Am. Chem. Soc. 2000, 122, 7116.
    [26] Kyeong Taek Jung, and Yong Gun Shul, Chem. Mater., 1997, Vol. 9, No. 2, 421
    [1] M. Taramasso, G. Perego and B. Notari, Proc. 5th Inter. Conf. on Zeolites, 1980, P40.
    [2]庞文琴,景晓燕,张密林,高等学校化学学报,1982, 3, 577.
    [3]裘式纶,吉林大学博士学位论文,1988.
    [4] Brian T. Holland, Lloyd Abrams, and Andreas Stein, J. Am. Chem.Soc., Vol, 1999. 121, No. 17, 4309
    [5] Angang Dong, Yajun Wang, Yi Tang, ect., Chem. Mater., 2002, Vol. 14, No. 8,
    [6] Zhu, Y.; Chuah, G. K.; Jaenicke, S. J. Catal. 2004, 227, 1.
    [7] Zhu, Y.; Yungtong, N.; Jaenicke, S.; Chuah, G. K. J. Catal. 2005, 229, 404.
    [8] Mercedes Boronat, Avelino Corma, ect., J. Phys. Chem. B, 2006, 110, 21168-21174.
    [9] A. Leonard, B. L. Su,. Chem. Commun. 2004, 1674.
    [10] B. L. Su, A. Leonard. Z. Y. Yuan. C. R. Chim. 2005, 8, 713.
    [11] J. L. Blin, A. Leonard, Z. Yuan, L. Gigot, A. Vantomme, A. Cheetham, B. L. Su. Angew. Chem., Int. Ed. 2003, 42, 2872.
    [12] Z. Y. Yuan, A. Vantomme, A. Leonard, B. L. Su. Chem. Commun. 2003. 1558.
    [13] W. Deng, M. Toepke, B. Shanks. Adv. Funct. Mater. 2003, 13, 61.
    [14] T. Z. Ren, Z. Y. Yuan, B. L. Su. Langmuir, 2004, 20, 1531.
    [15] Leonard, J. L. Blin, B. L. Su. Chem. Commun. 2003, 2568.
    [16] Z. Y. Yuan, T. Z. Ren, A. Vantomme, B. L. Su. Chem. Mater. 2004, 16, 5096.
    [17] G. Zhu, S. Qiu, F. Gao, D. Li, Y. Li, R. Wang, B. Gao, B. Li, Y. Guo, R. Xu, Z. Liu, O.Treasaki, J. Mater. Chem., 2001, 11, 1687.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700