掺稀土碲酸盐玻璃与光纤应用基础问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
21世纪信息量的爆炸式增长和信息交流需求的剧增,迫切需要对信息进行超高速率、超快响应和超大容量处理。传统的掺铒石英光纤放大器由于稀土掺杂浓度较低,带宽较窄(~30 nm),已不能满足通信传输发展的需要。因此,在波分复用技术的推动下,开发新型宽带光纤放大器,将光放大带宽开拓至L波段和S波段,成为目前光通信材料与器件研究的热点之一。本文以研究用于1.53μm宽带光纤放大器的掺稀土碲酸盐玻璃与玻璃光纤应用基础问题为主要目标。主要内容包括掺稀土多组分碲酸盐玻璃与玻璃光纤基础问题研究,碲酸盐玻璃与光纤材料的激发和发光、能量传递与转换、光放大特性等材料物理和光学基本问题研究和探讨,多组分碲酸盐玻璃基光纤激光器的关键技术等。
     碲酸盐玻璃具有比氟化物和磷酸盐更好的稳定性和抗腐蚀性。与传统掺铒石英玻璃相比,掺铒碲酸盐玻璃具有熔制温度低、透光区域大(0.35-6μm)、稀土离子溶解度高、折射率高、声子能量低(~750 cm?1)等优点。利用稀土掺杂碲酸盐光学玻璃作为激光核心介质,能够获得较大的受激发射截面、较高的辐射量子效率和带宽(~70 nm),有利于器件的小型化,对扩大光通信系统的传输容量具有重要的意义。然而,目前碲酸盐玻璃尚存在一些缺点,例如,碲酸盐玻璃抗析晶热稳定性较差、玻璃脆性较大、机械强度较低等,导致光纤制备过程中容易出现析晶、微裂纹等缺陷,引起光纤损耗增加;其次,由于碲酸盐玻璃声子能量较低,使得在980 nm激光二极管泵浦下,上转换和激发态吸收成为两个主要的能量损失通道,导致Er~(3+)离子在1.53μm的发光效率降低。
     针对上述难题,结合国内外最新发展和研究,本论文着重研究了掺稀土多组分碲酸盐玻璃与玻璃光纤的应用基础问题,探讨了碲酸盐玻璃与光纤材料的激发和发光、能量传递与转换、光放大机理,以及多组分碲酸盐玻璃基光纤激光器的关键技术等。根据拉曼光谱测试,分析了不同网络修饰体和混合形成体对Er~(3+)离子配位环境的影响,讨论了不同类型玻璃中结构基团振动引起玻璃基质声子能量的变化,指出结构特征的变化对玻璃抗析晶热稳定性和Er~(3+)离子光谱非均匀展宽的作用。采用适当的敏化离子和能量接受离子共掺的方法,提高Er~(3+)离子对泵浦光的吸收效率,降低上转换发光,改善了Er~(3+)离子在玻璃中的发光特性;依据这些结果进一步分析稀土离子间能量传递机制,在此基础上优化光放大介质的设计;最后从光学参数、热力学参数和流变特性等性能匹配的角度,确定了光纤预制棒的纤芯和包层组分,制备稀土掺杂碲酸盐玻璃光纤;初步探讨了碲酸盐玻璃光纤的宽带光放大特性。本论文取得的主要结论和创新点如下:
     (1)通过在TeO2-ZnO-Na2O系统玻璃中引入声子能量约为900 cm-1的Nb2O5、WO3和GeO2等网络形成体或网络中间体氧化物,显著改善了碲酸盐玻璃的抗析晶热稳定性。其拉曼光谱、X射线衍射谱和差示扫描测试分析研究表明,与一般采用网络修饰体改善玻璃热稳定性的方法相比,利用重金属氧化物对网络的修复作用和对网络群体的牵制作用之间的平衡,强化了碲酸盐玻璃网络结构。同时,高声子能量重金属氧化物的引入产生了明显的混合形成体效应,增大了Er~(3+)离子光谱的非均匀展宽,提高了玻璃的最大声子能量或最大声子能量密度,导致Er~(3+)离子4I11/2→4I13/2无辐射跃迁的几率提高,有效降低了上转换发光强度。
     (2)系统探讨了能量接受离子RE~(3+)(RE~(3+) =Ce~(3+), Eu~(3+), Tb~(3+), Dy~(3+), Ho~(3+)和Tm~(3+))对Er~(3+)/Yb~(3+)共掺碲酸盐玻璃发光特性的影响规律,根据稀土离子能级,上转换发光光谱和荧光发射光谱,分析了Er~(3+)、Yb~(3+)和RE~(3+)离子之间的能量传递机制。研究结果显示,通过Dexter能量共振转移,掺杂能量接受离子Ce~(3+), Eu~(3+), Tb~(3+)和Dy~(3+)可以有效降低Er~(3+)离子上转换发光。而且,共掺Ce~(3+)离子还可以增强Er~(3+)在1.53μm处的发光,使得Er~(3+)/Yb~(3+)共掺碲酸盐玻璃在1.53μm光纤放大器的应用更具吸引力。
     (3)采用“改进的管棒法”制备碲酸盐玻璃预制棒,并成功拉制出掺铒和掺铥单模碲酸盐玻璃光纤,其荧光半高宽分别为60 nm和102 nm,将掺铒和掺铥碲酸盐玻璃光纤串接后,荧光半高宽达到128 nm,为传统石英光纤的3倍以上,基本覆盖E+S+C波段。
     (4)采用单程后向超荧光实验结构,在mW级的泵浦功率下,在长仅几厘米的掺铒碲酸盐玻璃短光纤中实现了3 dB带宽为60~80 nm的放大自发辐射光谱。
     上述研究结果为进一步研究研制掺稀土碲酸盐基光纤激光器和放大器提供了理论基础和技术支撑。
With the rapid development of computer networks and other data-transmitting services, the demand for the increase of capacity of communication system is urgent. The conventional silica based Er~(3+)-doped fiber amplifier (EDFA) can not meet this requirement because of its low rare earth ion solubility and intrinsic bandwidth limit (~30 nm). Therefore, wide bandwidth novel optical amplifier covering C-band, L-band and S-band for wavelength division multiplexing (WDM) system has been attracted a great deal of attention. The dissertation reports on research works in the subject of the Er~(3+)-doped multi-component tellurtie glass active fiber for 1.53μm broadband optical amplifiers. The fundamental investigations on the properties and fluorescence characteristics of glass materials and fiber, the glass fiber fabrication technology and the pertinent theory of energy transfer have been carried out.
     Compared with conventional Er~(3+)-doped silica glasses, Er~(3+)-doped tellurite glasses combining the attribute of low melting temperature, wide bandwidth (~70 nm), wide transmission region (0.35-6μm), good glass stability, rare earth ion solubility, slow corrosion rate, lowest phonon energy spectrum among oxide glass formers, and high refractive index, are now promising candidates for use in fabricating novel optical amplifiers for WDM system. However, there are two important factors to be considered in developing efficient amplifiers using tellurite glasses. Firstly, the relatively poor thermal stability and low strength lead to crystallization processes at the moment of optical fiber drawing, as well as make the material easy damageable at high optical intensities. Secondly, due to their low phonon energy (~750 cm?1), under 980nm pump, up-conversion and excited state absorption (ESA) become two dominant loss mechanisms,significantly depleting the spectral gain of Er~(3+) ions.
     Herein, based on the requirement of the development of optical communication, the optimization on thermal stability and luminescence properties of the rare-earth-doped multi-component tellurite glasses have been the goal of this dissertation. The Raman spectra results indicate that the local ligand environment of Er~(3+) in glasses changed by different modifiers and mixed formers. The variations of maximum phonon energies in different glasses with vibrations of different kinds of structural group were discussed. And the influence of the structural characteristics on thermal stability and inhomogeneous broaden of Er~(3+)emission spectrum were also pointed out. Moreover, the spectral properties of Er~(3+) ions in tellurite glasses have been improved by introducing donor ion and energy acceptor ions. And the possible energy transfer mechanisms involved have also been systemically analyzed and discussed. The cladding glasses and the core glasses were then selected considering their well match in refractive index, thermal properties and rheological properties. Finally, the rare- earth-doped optical fiber were fabricated and characterized optically with a single pass backward (SPB) configuration.
     The novel and main results of the research works are as follows:
     (1) The Raman spectra, XRD and DCS results indicate that the introducing network formers (Nb2O5、WO3 and GeO2) behaved better than other modifiers in improving the thermal stability of tellurite glasses. With appropriate phonon energy (900 cm-1), they are also helpful for lowering the up-conversion luminescence of Er~(3+)-doped tellurite glass, via speeding up the nonradiative relaxation of Er~(3+):4I11/2→4I13/2 transition without influencing the 1.53μm emission.
     (2) The effect of energy acceptor RE~(3+) (RE~(3+) =Ce~(3+), Eu~(3+), Tb~(3+), Dy~(3+), Ho~(3+) and Tm~(3+)) ions on the fluorescence characteristics of tellurite glasses co-doped with Er~(3+)/Yb~(3+) is reported. The energy transfer dominated by Dexter mechanism between Er~(3+) and RE~(3+) were explored based on their energy level diagrams, up-conversion and infrared emission properties. It is found that the incorporation of energy acceptor into Er~(3+)/Yb~(3+)-codoped tellurite glass could effectively reduce up-conversion emission. Moreover, co-doping Ce~(3+) could also enhanced the 1.53μm emission, which makes Er~(3+)/Yb~(3+)-codoped tellurite glass more attractive for using in 1.53μm optical fiber amplifiers.
     (3) A modified rod-in-tube technique is brought forward to prepared Er~(3+)-doped and Tm~(3+)-doped tellurite single-mode glass-fibers with the FWHM of 60 nm and 102 nm respectively. And broad emission spectra with bandwidth up to 128 nm (as 3 times of that in conventional Er~(3+)-doped silica glasses), which coveres E-, S- and C-bands simultaneously, is obtained based on an tandem structure with Er~(3+)-doped and Tm~(3+)-doped tellurite glass-fibers.
     (4) A very broad erbium amplified spontaneous emission (60~80 nm) from erbium-doped single- mode tellurite glass-fiber is described in a single pass backward (SPB) configuration.The advantages of this EDTF are the short EDTF length and the small pumping power required in such an SPB configuration.
     The investigation results of this work provide theoretical foundation and technical support for the further research on rare-earth-doped tellurite glass fiber amplifier and laser.
引文
[1] Maiman T.H., Stimulated optical radiation in ruby [J]. Nature,1960, 187(4736): 493-494
    [2] Kao C.K., Hockham G.A., Dielectric- fibre surface waveguides for optical frequencies [J]. Proc. IEE., 1966, 6:1151-1158
    [3] Stolen R.H., Ippen E.P., Tynes A.R., Raman oscillation in glass optical waveguide [J]. Appl. Phys. Lett., 1972, 20(2): 62-64
    [4] Geusic J.E.,Scovil H.E.D., A unidirectional traveling-wave optical maser [J]. Bell. System tech., 1962. 41:1371-1397
    [5] Koester C.J., Snitzer E., Amplication in a fiber laser [J]. Appl. Opt., 1964. 3(10):1182-1186
    [6] Letokhov V.S., Pavlik B.D., Nonlinear amplification of surface light wave in active optical fiber[J]. Sov. J. Tech. Phys., 1966,36: 2181-2187
    [7] Poole S.B., Payne D.N., Fermann M.E., Fabrication of low loss optical fibers containing rare-earth ions [J]. Electron. Lett., 1985,21(17):737-738
    [8] Alcock I.P., Tropper A.C., Ferguson A.I., et al. Q-switched operation of a neodymium-doped monomode fiber laser[J]. Electron. Lett., 1986,22(2):84-85
    [9] Millar C.A., Miller I.D., Ainslie B.J., et al. Low-threshold CW operation of an erbium-doped fibre laser pumped at 807 nm wavelength [J]. Electron. Lett.,1987,23(6):865-866
    [10] Miller I.D., Mortimore D.B., Urquhart P., et al. A Nd~(3+)-doped CW fiber laser using all-fiber reflectors [J]. Appl. Opt.,1987,26(11): 2197-2201
    [11] Fukuchi K.,Kasamatsu T., Morie M., et al. 10.92Tb/s (273×40Gb/s) triple-band / ultra- dense WDM optical- repeatered transmission experiment [A]. OFC’2001, 2001, 4:PD24:1-3
    [12] Kani J., Suzuki H., Teshima M., et al. Triple-wavelength-band WDM transmission technologies [A]. OFC’2002, 2002, TuR5:122-123
    [13] Shen S., Naftaly M., Jha A., et al. Thulium-doped tellurite glasses for S-band amplification [A]. OFC’2001, 2001, 2: TuQ6-1 -TuQ6-3
    [14] McCumber D.E., Theory of phonon-terminated optical masers [J]. Phys. Rev. A., 1964, 134(2): 299-306
    [15] Weber M.J., Myers J.D., Blackburn D.H., Optical properties of Nb~(3+) in tellurite andphosphotellurite glasses [J]. J.Appl.Phys., 1981,52:2944-2949
    [16] Layne C.B., Weber M.J., Multiphonon relaxation of rare-earth ions in beryllium- fluoride glass [J]. Phys. Rev. B., 1977,16(7): 3259-3261
    [17] Jorgensen C.K., Luminescence in potential fluoride glass lasers [J]. Journal de Physique Colloque., 1987,48(C-7):C7/447-450
    [18] Reisfeld R., Jorgensen C.K., Excited state phenomenon in vitreous materials [M]. Schneidner Jr K A, Eyring L(Eds.), Handbook on the Physics and Chemistry of Rare Earths, Chap. 58, Amsterdam,North Holland:Elsevier Science Publishers BV,1987:1-C
    [19] Judd B.R., Optical absorption intensities in rare earth ions [J]. Phys.Rev., 1962, 127(3):750-761
    [20] Ofelt G.R., Intensities of crystal spetrca of rare earth ions [J]. J.Chem.Phys., 1962, 37(3):511-520
    [21] Carnall W.T., Foelds P.R., Wybourne B.G., Spectral Intensity of the Trivalent Lanthanides and Actinides in Solution. I. Pr~(3+), Nd~(3+), Er~(3+), Tm~(3+) and Yb~(3+)[J]. J. Chem. Phys., 1965, 42(11):3797-3806
    [22] Webber M.J., Probabilities for Radiative and Nonradiative Decay of Er~(3+) in LaF3 [J]. Phys. Rev., 1967, l57(2):262-272
    [23] Piehler D., Craven D., 11.7mW InGaAs- laser- pumped erbium fiber laser [J]. Electron. Lett., 1994, 30:1759-1761
    [24] Piehler D., Craven D., Kwong N., Green laser -diode-pumped erbium fiber laser [M]. in:‘Compact blue-green lasers, Technical digest series, Vol. I’. Washington, DC:Optical Society of America, 1994:65-61
    [25] Sanders S., Waarts P.G. Mehuys D.G., Laser diode pumped 106mW blue upconversion fiber laser [J]. Appl. Phys. Lett., 1995, 67(13):1815-1817
    [26] Xie P., Zhao X., Jain R., Adiode-pumped mirrorless blue fiber laser [A]. Proceedings of the Conference on Lasers and Electro-Optics, 1998, Paper CTHA4: 323-324
    [27] Sun H.T., Xu S.Q., Zhang L.Y., et al. Infrared- to- visible upconversion fluorescence of Er~(3+) -doped novel lithium-barium-lead-bismuth glass [J]. Mater. Sci. Eng. A, 2005, 394(1-2): 83-86
    [28] Sun H.T., Zhang L.Y., Zhang J.J., et al. Upconversion fluorescence property of Er~(3+) /Yb~(3+)-codoped novel bismuth-germanium glass [J]. Solid. State. Comm., 2005, 133(12): 781-784
    [29] Miyakawa T., Dexter D. L., Cooperative and stepwise excitation of luminescence:trivalent rare-earth ions in Yb~(3+) sensitized crystals [J]. Phys. Rev. B, 1970, 1 (1): 70-80
    [30] Hwang B.C., Jiang S., Luo T., et al. Cooperative upconversion and energy transfer of new high Er~(3+)- and Yb~(3+)- Er~(3+)-doped phosphate glasses[J]. J.Opt.Soc.Am.B., 2000, 17(5): 833-839
    [31] Kashyap R., Wyatt R., McKee P.F., Wavelength flattened saturated erbium amplifier using multiple side-tap Bragg gratings [J]. Electron. Lett., 1993, 29 (11)∶1025-1026
    [32] Rottwitt K., Kidorf H., Nissov M., et al. Distributed Raman amplifiers for long haul transmission systems[A]. LEOS'98., 1998,2: 251-252
    [33] Emori Y., Namiki S., 100 nm bandwidth flat gain Raman amplifiers pumped and gain- equalized by 12-wavelength-channel WDM high power laser diodes [A]. OFC'99., 1999, PD19:1-3
    [34] Mermelstein M.D., Headley C., Bouteiller J.C., et al. A high- efficiency power- stable three- wavelength configurable Raman fiber laser [A]. OFC’2001., 2001,4:PD3-1-3
    [35] Wysocki P.F., Judkins J., Espindola R., et al. Erbium- doped fiber amplifier flattened beyond 40 nm using long- period grating[A]. OFC’97., 1997,6: 375-378
    [36] Yamada M., Ono H., Ohoshi Y., Low-noise, broadband Er~(3+) doped silica fiber amplifiers [J]. Electron. Lett., 1998,34(13):1490-1491
    [37] Sun Y., Sulhoff J.W., Srivastava A.K., et al. 80nm ultra-wideband erbium doped silica fiber amplifier[J]. Electron. Lett., 1997,33(23):1965-1967
    [38] Chung H.S., Lee M.S., Lee D., et al. Low noise, high efficiency L-band EDFA with 980nm pumping[J]. Electron. Lett., 1999,35(13): 1099-1100
    [39] Yamada M., Ono H., Kanamori T., et al. Broadband and gain-flattened amplifier composed of a 1.55μm-band and a 1.58μm-band Er~(3+)-doped fibre amplifier in a parallel configuration[J]. Electron. Lett., 1997,33(8): 710-711
    [40] Masuda H., Suzuki K.I., Kawai S., Aida K., Ultra-wideband optical amplification with 3dB bandwidth of 65nm using a gain-equalised two-stage erbium-doped fibre amplifier and Raman amplification[J]. Electron. Lett., 1997,33(9):753-754
    [41] Komukai T., Yamamoto T., Sugawa T., et al. Efficient upconversion pumping at 1.064μm of Tm~(3+)-doped fluoride fiber laser operating around 1.47μm[J]. Electron. Lett., 1992,28(9): 830-832
    [42] Ohishi Y., Kanamori T., Kitagawa T., et al. Pr~(3+) - doped fluoride fiber amplifier operating at 1.31μm [J]. Opt. Lett., 1991, 16(22): 1747- 1749
    [43] Hewak D.W., Deol R.S., Wang J., et al. Low phonon-energy glasses for efficient 1.3μmoptical fibre amplifiers [J]. Electron. Lett., 1993.29(2): 237-239
    [44] Kasamatsu T., Yano Y., Sekita H., Novel 1.50-μm band gain-shifted thulium-doped fiber amplifier by using dual wavelength pumping of 1.05μm and 1.56μm[A]. Proceedings of Topical Meeting on Optical Amplifiers and their Applications, Nara, Japan, 1999, 30: 46-50
    [45]聂秋华.光纤激光器和放大器技术[M].北京:电子工业出版社,1997:4-9
    [46]张军杰.掺稀土氟锆酸盐玻璃光谱与磷酸盐激光光纤的研究[D].上海:中国科学院上海光学精密机械研究所博士论文,2000
    [47] Mori A., Ohishi Y., Yamada M., et al. 1.5μm broadband amplification by tellurite-based EDFA’s [A]. OFC’97., 1997, 6: 371-374
    [48] Sugimoto N., Kuroiwa Y., Ito S., et al. Broadband 1.5μm emission of Er~(3+) ions in bismuth- based oxide glasses for WDM amplifier [A]. LEOS'99., 1999,2:814- 815
    [49] Auzel F., Goldner P., Towards rare-earth clustering control in doped glasses [J]. Optical Materials, 2001,16:93-103
    [50] Mari A., Ohishi Y., Sudo S., Erbium-doped tellurite glass fiber laser and amplifier [J]. Electron. Lett., 1997,33(10): 863-864
    [51] Wang J.S., Vogel E.M., Snitzer E., Tellurite glass: a new candidate for optical devices [J]. Opt.Mater., 1994. 3(3): 187-203
    [52] Standworth J., Tellurite glasses [J], J.Soc. Glass Tech., 1952, 36: 217-241
    [53] Reisfeld R., Eckstein Y., Radiative and non-radiative transition probabilities and quantum yields for excited states of Er~(3+) in germanate and tellurite glasses [J]. J. Non-cryst. Solids., 1974, 15(1): 125-140
    [54] Ono H., Sakamoto T., Mori A., et al. An erbium-doped tellurite fiber amplifier for WDM systems with dispersion-shifted fibers [J]. IEEE Photonics Technol. Lett., 2002, 14(8): 1070-1072
    [55] Bookey H.T., Lousteau J., Jha A., et al. Multiple rare earth emissions in a multicore tellurite fiber with a single pump wavelength [J]. Opt. Exp., 2007, 15(26): 17554- 17561
    [56] Joshi P., Shen S., Jha A., Er~(3+)-doped boro-tellurite glass for optical amplification in the 1530-1580 nm[J]. J. Appl. Phys., 2008, 103: 083543-1-7
    [57] Zhao C., Zhang Q.Y., Yang G.F., et al. Laser-diode-excited blue upconversion in Tm~(3+)/Yb~(3+) - codoped TeO2-Ga2O3-R2O (R=Li,Na,K) glasses[J]. J. Fluoresc. 2008, 18: 87-91
    [58] Mori A., Kobayashi K., Yamada M., Low noise broadband tellurite-based Er~(3+)-doped fiber amplifiers [J]. Electron. Lett., 1998, 34 (9) : 887-888
    [59] Kawanishi S., Takara H., Uchiyama K., et al. 3Tbit/s(160Gbit×19ch) OTDM/WDM transmission experiment [A]. OFC’99, 1999, PD1:1-3
    [60] Raouf A.H. Ei-Mallawany. Tellurite glasses handbook: physical properties and data [M]. USA: CRC Press, 2002: 71-72
    [61] Corning Incorporated. Tellurite glass and optic component [P]. USA Panent: 6 194 334 B1, 2001-02-27
    [62] Nippon Telegraph and Telephone Corporation. Tellurite glass, optical amplifier and light source [P]. USA Panent: 6 356 387 B1, 2002-03-12
    [63]杨建虎,戴世勋,李顺光,胡丽丽,姜中宏.掺铒碲酸盐玻璃的光谱性质和能量传递[J].发光学报, 2002, 23(5): 485-489
    [64] Chen H., Liu Y.H., Zhou Y.F., et al. Spectroscopic properties of Er~(3+) doped TeO2-BaO (Li2O, Na2O)-La2O3 glasses for 1.5-μm optical amplifiers[J]. J. Non-Cryst. Solids., 2005, 54(10):3060-3064
    [65] Chen D.D., Liu Y.H., Zhang Q.Y., et al. Thermal stability and spectroscopic properties of Er~(3+)-doped niobium tellurite glasses for broadband amplifiers[J]. Mater. Chem. Phys., 2005, 90:78-82
    [66] Marjanovic S., Toulouse J., Jain H., et al. Characterization of new erbium-doped tellurite glasses and fibers [J]. J. Non-Cryst. Solids., 2003, 322(1-3):311–318
    [67] Chen D.D., Zhang Q.Y., Liu Y.H., et al. Broadband Amplified Spontaneous Emission from Er~(3+)-doped Single-Mode Tellurite Fiber [J]. Chin.Phys., 2006, 15(12): 2902-2905
    [68] Antipenko B.M., Mak A.A., Raba O.B., et al. New lasing transition in the Tm~(3+) ion [J]. Sov. J. Quantum. Electron., 1983,13(4):558-560
    [69] Allain J.Y., Monerie M., Poignant H., Tunable CW lasing around 0.82, 1.48, 1.88, 2.35μm in thulium-doped fluorozirconate fiber[J]. Electron. Lett., 1989, 25 (24): 1660 -1662
    [70] Ng L.N., Taylor E.R., Sessions N.P., et al. Thulium-doped tellurite fiber for S-band amplification [A]. ECOC’2002, Denmark:ECOC. 2002, 1:1-2
    [71] Sakamoto T., Aozasa S., Yamada M., et al. High-gain hybrid amplifier consisting of cascaded fluoride based TDFA and silica based EDFA in 1458-1540nm wavelength region [J]. Electron. Lett., 2003,39(7): 597-599
    [72] Shen S., Naftaly M., Jha A., Tm~(3+) and Er~(3+) doped tellurite glass fibers for a broadbandamplifier at 1430-1600nm[A]. Proc. SPIE. 1999, 3849: 103-110
    [73] Cho D. H., Choi Y.G., Kim K.H., Energy transfer from Tm~(3+):3F4 to Dy~(3+):6H11/2 in oxyfluoride tellurite glasses [J]. Chem. Phys. Lett., 2000, 322(3-4): 263-266
    [74] Chillcce E.F., Rodriguez E., Neves A.A.R., et al. Er~(3+)-Tm~(3+) co-doped tellurite fibers for broadbandoptical fiber amplifier around 1550 nm band [J]. Optical fiber Technology, 2006, 12(2): 185-195
    [75] Mori A., Masuda H., Shikano K., et al. Ultra-wideband tellurite-based Raman fibre amplifier [J]. Electron. Lett., 2001,37(24): 1442-1443
    [76] Masuda H., Mori A., Shikano K., et al. Ultra-wide-band hybrid tellurite/silica fibre Raman fibre [A]. OFC’2002, 2002,ThB6: 388-390
    [77] HocdéS., Jiang S.B., Peng X., Er~(3+) doped boro-tellurite glasses for 1.5μm broadband amplification[J]. Opt. Mater., 2004, 25(2): 149-156
    [78] Jong H., David L., George H.S., Spectroscopic analysis of the structure and properties of alkali tellurite glasses [J]. J.Am.Ceram.Soc., 1992, 75(2): 277-281
    [79] Kosuge T., Benino Y., Dimitrov V., Thermal stability and heat capacity changes at the glass transition in K2O-WO3-TeO2 glasses [J]. Non-Cryst.Solids, 1998, 242(2/3): 154-164
    [80] Komatsu T., Shioya K., Kim H.G., Thermal stability and optical properties of K2O-Nb2O5-TeO2 glasses [J]. Phys Chem. Glasses, 1997, 38(4): 188-195
    [81] Simondi-Teisseire B., Viana B., Vivien D., Yb~(3+) to Er~(3+) energy transfer and rate- equations formalism in the eye safe laser material Yb∶Er∶Ca2Al2SiO7 [J]. Opt. Mater., 1996, 6 (4): 267-274
    [82] Andronov A.A., Grishin I.A., Gurev V.A., et al. Enhancement of the luminescence yield of Er~(3+) ions at 1540nm in ZBLAN glass additionally doped with Eu~(3+) and Tb~(3+) and pumped in the range of 975nm[J]. Tech. Phys. Lett., 1998, 24(5): 365-366
    [83] Meng Z., Yoshimura T., Fukue K., et al. Large improvement in quantum fluorescence yield of Er~(3+) doped fluorozirconate and fluoroindate glasses by Ce~(3+) codoping [J]. Appl. Phys., 2000,88 (5): 2187-2190
    [84] Zhou Y.X., Gai N., Wang J., et al. Effect of Ce~(3+)(Eu~(3+)) codoping on the spectroscopic properties of Er~(3+) in bismuth-germanate glass [J]. Opt. Mater., 2009, 31(11): 1595-1599
    [85] Huppauff M., Lengeler B., Valency and structure of iridium in anodic iridium oxide films [J]. J. Electrochem. Soc., 1993, 140(3): 598-602
    [86]刘艳格,张春书,孙婷婷,等.输出平均功率大于2W的高功率、包层抽运、超短脉冲铒镱共掺光纤激光器[J].物理学报,2006,55(09):4679-4685
    [87] Cao W.H., Wai P. K. A., Amplification and compression of ultrashort fundamental solitons in an erbium-doped nonlinear amplifying fiber loop mirror [J]. Opt. Lett., 2003, 28(4): 284-287
    [88] Wai P.k.A., Cao W.H., Simultaneous amplification and compression of ultrashort solitons in an erbium-doped nonlinear amplifying fiber loop mirror [J]. IEEE. J. Quantum Electron, 2003, 39(4): 555-561
    [89] Chen H.T., Yang W.Y., Wang F., Numerical study on adiabatic compression of ultrashort fundamental solitons in an erbium-doped fiber amplifier [J]. Optik., 2009, 120 (4): 174-178
    [90] Wysocki Paul F., Digonnet M.J.F., Kim B.Y., Characteristics of erbium-doped superfluorescent fiber sourcesfor interferometric sensor applications [J]. J. LightwaveTechnol., 1994, 12(3): 550-567
    [91]刘彬,孙军强. C波段和980 nm抽运的两段级联L波段掺铒光纤放大器[J].中国激光,2003, 30(10) : 917-920
    [92] Tsai S. C., Tsai T. C., Law P. C., High-power flat L-band erbium-doped fiber ASE source using dual forward-pumping scheme [J] . Opt. Quantum Electron. , 2003, 35(2): 161-167
    [93] Espindola R. P., Ales G., Park J., 80 nm spectrally flattened, high power erbium amplified spontaneous emission fibre source [J]. Electron. Lett., 2000 , 36(15) : 1263 -1265
    [94] Li Y., Deng L.X., Qian J.R., Simple broadband erbium-doped superfluorescent fiber source [A]. SPIE, 2002, 4905: 368-374
    [95] Huang W.C., Ming H., Xie J.P., High efficiency broad bandwidth erbium-doped super-fluorescent fiber source [J]. Chin. Opt. Lett., 2003, 1(6): 311-313
    [96] Chen S.P., Liu Z.J., Li Y.G.,et al. Resonantly pumped high power flat L-band erbium-doped superfluorescent fiber source [J]. Opt. Exp., 2008, 16(1):207-212
    [97] Li Y.J.,Liu Y.H., Huang H.,et al. Output characteristics of Er-doped fiber super- fluorescent source for fiber gyroscope [J]. J. Appl. Opt.,2008,29(6): 984-989
    [98] Sakida S., Hayakawa S., Yoko T., Part 1. Te-125 NMR study of tellurite crystals [J].J.Non-Cryst.Solids, 1999, 243(1): 1-12
    [99] Tatsumisago M., Lee S.K., Minami T.,et al. Raman spectra of TeO2- based glasses and glassy liguids:local structure change with temperature in relation to fragility of liguid[J]. J.Non-Cryst.Solids, 1994, 117(2): 154-163
    [100] Leciejevicz J. The crystal structure of tellurium dioxide. A redetermination by neutron diffraction [J]. Z.Kristallogr., 1961, 116(3-6): 345-353
    [101] Lindqvist O. Refinement of the structure ofα-TeO2 [J]. Acta Chem. Scand.,1968,22(3): 977-982
    [102] Sekiya T., Mochida N., Ohtsuka A.,et al. Normal vibrations of 2 polymorphic forms of TeO2 crystals and assignments of raman peaks of pure TeO2 glass [J]. J.Ceram.Soc. Jpn., 1989,97(12): 1435-1439
    [103] Mochida N., Takahashi K., Nakata K., et al. Properties and structure of the binary tellurite glasses containing mono- and di-valent cations [J].Yogho-kyokaishi, 1978, 86(995): 316-326
    [104] Noev S., Kozhukharov V., Gerasimova I., et al. Model for structural recombination in tellurite glasses [J]. J.Phys.C - Solids state Phys., 1979, 12(13): 2475 - 2479
    [105] Sekiya T., Mochida N., Ohtsuka A.,et al. Raman spectra of MO1/2-TeO2 (M = Li, Na, K, Rb, Cs and Ti) [J]. J.Non-Cryst.Solids, 1992, 144(2-3): 128-144
    [106] Stanworth J.E., Tellurite glasses [J]. J. Soc. Glasses Technol., 1954, 38: 425-435
    [107] Yakhkind A.K., Tellurite glasses [J]. J. Am. Ceram. Soc., 1966, 49(12):670-675
    [108] Kozhukharov V., Marinov M. Grigorova G., Glass-formation range in binary tellurite system containing transition metal oxides [J]. J. Non-cryst. Solids, 1978, 28(3): 429- 430
    [109]卡恩R.W.,哈森P.,克雷默E.J.玻璃与非晶态材料[M].干福熹,候立松译.北京:科学出版社, 2001: 274-275
    [110] Redman M. J., Chen J. H., Zinc tellurite glasses[J]. J.Am. Ceram. Soc., 1967, 50(10): 523-525
    [111] Bürge H., Kneipp K., Hobert H., et al. Glass formation, Properties and structure of glasses in the TeO2-ZnO system [J]. J. Non-cryst. Solids, 1992, 151(1/2): 134-142
    [112] Bridge B., Bavins T. E., Woods D., et al. On the preparation and composition of theglass formation range of the system TeO2-ZnCl2 [J]. J. Non-cryst. Solids, 1986, 88(3): 262-270
    [113] Bridge B., Woods D., Woolven T. P., et al. Infrared Properties of the vitreous system TeO2-ZnCl2 [J]. J. Mater. Sci. Lett., 1986, 5(9): 956-958
    [114] Kozhukharov V., Marinov M., Gugov I., et al. A new family of tellurite glasses. I. Glass formation [J]. J. Mater. Sci., 1983, 18(5): 1557-1563;
    [115] Yakhkind A.K., Chebotarev S.A., Glass formation, crystallizing tendency, density, and the thermal expansion of glasses of ternary telluride-halide systems [J]. Soviet J. Glass Phys. and Chem., 1980,6(2): 112-117
    [116]周跃芬.宽带光纤放大器用碲酸盐玻璃的研究[D].广州:华南理工大学硕士学位论文,2002
    [117] El-Mallawany R., Structural and vibrational investigations of thermal properties of tellurite glasses [J]. Mater. Res., 1992, 7(1): 224-228
    [118] El-Mallawany R., Divitrification and vitrification of tellurite glasses [J]. J. Mater. Sci. Electron., 1995, 6(1): 1-3
    [119] Dimitriev Y., Dimitrov V., IR spectral and structures of tellurite glasses [J]. J. Mater. Sci., 1983, 18(5): 1853-1858
    [120] Ding Y., Jiang S.B., Hwang B.C., et al. Spectral properties of erbium-doped lead halotellurite glasses for 1.5μm broadband amplification [J]. Opt. Mater., 2000, 15(2): 123-130
    [121] Cho D.H., Choi Y.G., Kim K.H., Improvement of 4I11/2→4I13/2 transition rate and thermal stabilities in Er~(3+)-doped TeO2-B2O3 (GeO2)-ZnO-K2O[J]. ETRI Journal, 2001, 23(4): 151-157
    [122] Cho D.H., Choi Y.G., Kim K.H., Energy transfer from Tm~(3+): 3F4 to Dy~(3+): 6H11/2 in oxyfluoride tellurite glasses [J]. Chem. Phys. Lett., 2000, 322(3-4): 263-266
    [123] Hirao K., Kishimoto S., Tanaka K., et al. Upconversion fluorescence of Ho~(3+) in TeO2-based glasses[J]. J. Non-Cryst. Solids, 1992, 139: 151-156
    [124] Feng X., Qi C.H., Lin F.Y., et al. Tungsten-tellurite glass: a new candidate medium for Yb~(3+)- doping [J]. J. Non-Cryst. Solids, 1999, 256&257: 372-377
    [125] Ding Y., Jiang S., Luo T., et al. Optical waveguides prepared in Er~(3+)-doped telluriteglass by Ag+-Na+ ion exchange [A]. Proc. SPIE, 2001, V. 4282: 23-31
    [126] Kosuge T., Benino Y., Dimitrov V., et al. Thermal stability and heat capacity changes at the glass transition in K2O-WO3-TeO2 glasses [J]. J. Non-Cryst. Solids, 1998, 242(2-3): 154-164
    [127] Ovcharenko N.V., Smirnova T.V., High refractive index and magneto - optical glasses in the systems TeO2-WO3-Bi2O3 and TeO2-WO3-PbO [J]. J. Non-Cryst. Solids, 2001, 291(1-2): 121-126
    [128] Kashchieva E., Pankaova M., Dimitriev Y., Liquid Phase Separation in the systems TeO2- B2O3-M2O3 (M2O3= Al2O3, Ga2O3, Sc2O3, La2O3, Bi2O3) [J]. Ceramics - Silikaty, 2001, 45(3): 111-114
    [129] Rolli R., Maurizio A.C., Rare-earth-activated fluoride and tellurite glasses: optical and spectroscopic properties [A]. SPIE, 2001, 4282: 109-122
    [130] Dos Santos P.V., Vermelho M.V.D., Gouveia E. A., et al. Efficient energy up-conversion emission in Tm~(3+)/Yb~(3+)-codoped TeO2-based optical glasses excited at 1.064μm[J]. J. Appl. Phys., 2001, 90(12): 6550-6552
    [131] Courrol L.C., Tarelho L.V.G., Gomes L., et al. Time dependence and energy - transfer mechanisms in Tm~(3+), Ho~(3+) and Tm~(3+)- Ho~(3+) co-doped alkali niobium tellurite glasses sensitized by Yb~(3+)[J]. J. Non-Cryst. Solids, 2001, 284(1-3): 217-222
    [132]姜中宏,胡新元,赵祥书.用热力学方法推导玻璃形成区内的共熔区及分相区[J].硅酸盐学报, 1982,10(3): 309-318
    [133] Kowada Y., Morimoto K., Adachi H., et al. Electronic states of binary tellurite glasses [J]. J. Non-cryst. Solids, 1996, 196(1): 204-209
    [134] Hanke K., Die kristallstruktur von Zn2Te3O8 [J]. Naturwissenschaften, 1966, 53 (11) : 273-273
    [135] Arnaudov M., Dimitrov V., Dimitriev Y., et al. Infrared-spectral investigation of tellurites [J]. Mater. Res. Bull., 1982, 17(9):1121-1129
    [136] Rawson H., Inorganic glass- forming systems [M]. London: Academic press. 1967: 196
    [137] Balaya P.,Sunandana C.S., Recent advances in fast ion conducting materials and devices [M]. Edited by Chowdari B.V.R., Liu Q.G., Chen L.Q., Singapor: WorldScientific Publishing Companay. 1990: 539
    [138] Komatsu T.,Ike R.,Matusita K.,Mixed alkali effect in tellurite glasses and change in fragility [J]. Phys.Chem.Glasses,1995, 36(5): 216-221
    [139] Komatsu T., shioya K., Kim H.G., Thermal stability and optical properties of K2O- Nb2O5-TeO2 glasses [J]. Phys.Chem.Glasses,1997, 38(4): 188-192
    [140] Murugan G.S., Suzuki T., Ohishi Y.,Tellurite glasses for ultrabrosdband fiber Raman amplifiers [J]. Appl.Phys.Lett., 2005, 86(16): 161109-1-3
    [141] Heo J., Lam D., Sigel G.H., Mendoza E.A., et al. Spectrascopic anlysis of the structure and properties of alkali tellurite glasses [J]. J. Am. Ceram. Soc., 1992, 75(2): 277-281
    [142] Himei Y., Osaka A., Nanba T., et al. Coordiantion change of Te atoms in binary tellurite glasses [J]. J. Non-Cryst. Solids,1994, 177(1): 164-169
    [143] Kneipp K., Burge H., Fasbler D., et al. Raman spectroscopic study on glasses in the system K2O-WO3-TeO2 glasses[J]. J. Non-Cryst. Solids, 1984, 65(2-3):154-164
    [144]龚勇宏,成煜,赵修建.碲钨酸盐玻璃热学性能和结构的研究[J].武汉理工工大学学报, 2008, 30(1): 36-39
    [145]贾相华,吕树臣,孙江亭. WO3对掺铒碲酸盐玻璃光谱性质的影响[J].物理学报, 2008, 57(9): 5978-5982
    [146] Murugan G.S., Ohishi Y., Raman spectroscopic studies of TeO2-BaO-SrO-Nb2O5 glasses: Structure-property correlations [J]. J. Appl. Phys., 2004, 96(5): 2437-2442
    [147]路同兴,路轶群.激光光谱技术原理及应用[M].合肥:中国科学技术大学出版, 2006:263-280
    [148] Sigaev V.N., Gregora I., Pernice P., et al. Structure of lead germinate glasses by Raman spectroscopy [J]. J. Non-Cryst. Solids, 2001, 279(2-3): 136-144
    [149] Soltay L.G., Henderson G.S., The structure of lithium-containing silicate and germanate glasses [J]. Canadian mineralogist, 2005, 43(5): 1643-1651
    [150] Nykolak G., Becker P.C., Shmulovich J., et al. Concentration dependent 4I13/2 lifetimes in Er doped fibers and Er doped planar waveguides[J]. IEEE Photo.Tech.Lett., 1993, 5(9):1014-1016
    [151] Snoeks E., Kik P.G., Polman A., Concentration quenching in erbium doped alkali silicate glasses [J]. Opt. Mater., 1996, 5(1): 159-167
    [152] Myslinski P., Nguyen D., Chrostowski J., Effects of concentration on the performance of erbium doped fiber amplifiers [J]. J.Light. Tech., 1997, 15(1): 112- 120
    [153] Sun H.T., Zhang L.Y., Zhang J.J., Upconversion fluorescence property of Er~(3+) /Yb~(3+)-codoped novel bismuth germanium glass[J]. Solid State Comm., 2005, 133(12): 781-784
    [154] Chen X.B., Song Z.F., Nie Y.X., Non-resonant upconversion energy transfer of crystal ErP5O14 [J]. Acta Phys. Sin., 1999, 8(3): 216-222
    [155] Chen X.B., He C.J., Du W.M., et al. Dynamic up-conversion population processes of erdium-doped pentaphosphate crystal [J]. J. Appl. Phys., 2002, 92(7): 3425-3435
    [156] Hwang B.C., Jiang S.B., Luo T., et al. Characterization of cooperative upconversion and energy transfer of Er~(3+) and Yb~(3+)/Er~(3+) doped phosphate glasses[A]. SPIE., 1999, 3622: 10-18
    [157] Zou X.L. Izumitani T., Spectroscopic properties and mechanisms of excited state absorption and energy transfer upconversion for Er~(3+)-doped glasses [J]. J. Non-Cryst. Solids, 1993, 162(1-2): 68-80
    [158] Inokuti M., Hirayama F., Influence of energy transfer by the exchange mechanism on donor luminescence [J]. J. Chem. Phys., 1965, 43(6): 1978-1989
    [159] Simondi-Teisseire B., Viana B., Vivien D., et al. Yb~(3+) to Er~(3+) energy transfer and rate-equations formalism in the eye safe laser material Yb:Er:Ca2 Al2SiO7 [J]. Opt. Mater., 1996, 6(4): 267-274
    [160] Simondi-Teisseire B., Viana B., Vivien D., et al. Optical investigation of Er:Ca2Al2SiO7 and Yb:Ca2Al2SiO7 for laser applications in the near infrared[J]. Phys. Stat. Sol A., 1996, 155(1): 249-262
    [161] Johnson L.F., Guggenheim H.J., Rich T.C., et al. Infrared-to-visible conversion by rare-earth ions in crystals[J]. J. Appl. Phys., 1972, 43(3):1125-1137
    [162] Heber J., Neukum J., Altwein M., et al. Interaction between excitions and rare-earth ions [J]. Spect. Acta. Part A, 1998, 54(11): 1557-1569
    [163] Yang J.H., Dai S.X., Wen L., et al. Investigation on nonradiative decay of 4I13/2→4I15/2 transition of Er~(3+) doped oxide glasses [J]. J. Lumin., 2004, 106(1):9-14
    [164] Miniscalco W.J., Erbium-doped glasses for fiber amplifiers at 1500 nm [J]. J.LightwaveTechnol., 1991, 9(2):234-250
    [165] Yang J.H., Hu L.L., Dai S.X., et al. Fluorescence quenching in Er~(3+) doped tellurite glass due to the introduction of BO3/2[J]. J.Mater.Sci.Lett., 2003, 22(8):575-576
    [166] Luo Y.S., Zhang J.H., Zhang X., et al. Demonstration of enhanced population feeding of the 1.53μm emitting level of Er~(3+) in TeO2-WO3-Li2O-P2O5 glasses using upconversion luminescence spectroscopy [J]. J. Appl. Phys., 2008, 103(6): 063107-1-5
    [167] Jiang S.B., Luo T., Hwang B.C., et al. Er~(3+)-doped phosphate glasses for fiber amplifiers with high gain per unit length[J] J. Non-Cry. Solids. 2000,263 & 264(1):364-368
    [168] Xhen S.X., Jha A., Liu X.B., et al. Tellurite glasses for broadband amplifiers and integrated optics[J].J. Am. Ceram. Soc., 2002, 85(6):1391-1395
    [169] Liu Z.P., Qi C.H., Dai S.X., et al. Spectra and laser properties of Er~(3+),Yb~(3+) : phosphate glasses[J].Opt. Mater., 2003,21(4):789-794
    [170] Porque J., Jiang S.B., Hwang B.C., et al.Fluorescence properties of erbium doped germanate glasses[A]. SPIE., 2000, 3942: 60-67
    [171] Tanabe S., Ohyagi T., Soga N., et al. Compositional dependence of Judd-Ofelt parameters of Er~(3+) ions in alkali-metal borate glasses[J]. Phys. Rev. B, 1992, 46(6): 3305-3310
    [172] Tanabe S., Ohyagi T., Todoroki S., et al. Relation between the ?6 intensity parameter of Er~(3+) ions and the 151Eu isomer shift in oxide glasses [J]. J. Appl. Phys., 1993, 73(12): 8451-8454
    [173] Tanabe S., Optical transitions of rare earth ions for amplifiers: how the local structure works in glass [J]. J. Non-Cryst. Solids, 1999, 259(1/3):1-9
    [174] Neov S., Kozhukharov V., Gerasimova I., et al. A model for structural recombination in tellurite glasses [J]. J.Phys.C, Solids State Phys., 1979, 12(13):2475-2479
    [175] Heo J., Lam D., Sigel G.H., et al. Spectrascopic anlysis of the structure and properties of alkali tellurite glasses [J]. J. Am. Ceram. Soc., 1992, 75(2): 277-281
    [176] Murugan G.S., Ohishi Y., Raman spectroscopic studies of TeO2-BaO-SrO-Nb2O5 glasses: Structure-property correlations [J]. J. Appl. Phys., 2004, 96(5): 2437-2442
    [177] McCumber D.E., Einstein relations connecting broadband emission and absorption spectra [J]. Phy. Rev. 1964, 136(4A): 954-957
    [178] Lin H., Pun E.Y.B., Man S.Q., et al. Optical transitions and frequency upconversion of Er~(3+) ions in Na2O center dot Ca3Al2Ge3O12 glasses[J]. J. Opt. Soc. Am., B 2001, 18(5): 602-609
    [179] Auzel F., Goldner P., Towards rare-earth clustering control in doped glasses [J]. Opt. Mater., 2001, 16(1):93-103
    [180] Meng Z., Yoshimura T., Nakata Y.,Improvement of fluorescence characteristics of Er~(3+)-doped fluoride glass by Ce~(3+) codoping [J]. Jpn. J. Appl. Phys., 1999, 38(Part 2, 12A): L1409-L1411
    [181] Qiu J, Shimizugawa Y., Iwabuchi Y., et al. Photostimulated luminescence of Ce~(3+)- doped alkali borate glasses [J]. Appl.Phys.Lett.,1997, 71(1): 43-45
    [182] Dexter D.L., A theory of sensitized luminescence in solids [J]. J. Chem. Phys., 1953, 21:836-850
    [183] Choi Y.G., Kim K.H., Park S.H., et al. Comparative study of energy transfer from Er~(3+) to Ce~(3+) in tellurite and sulfide glasses under 980nm excitation [J], J. Appl.Phys., 2000,88(7):3832-3839
    [184] Choi Y.G., Heo J.,1.3μm emission and multiphonon relaxation phenomena in PbO- Bi2O3 -Ga2O3 glasses doped with rare-earths [J]. J. Non-Cryst. Solids., 1997, 217(2-3): 199-207
    [185] Bettinelli M., Ingletto G., Energy transfer between Tb~(3+) and Tm~(3+) in a lead silicate glass [J]. J. Lumin.,1989,43(2):115-119
    [186]干福熹.现代玻璃科学技术(下册)[M].上海:上海科学技术出版社, 1990:190-223
    [187] Choi Y.G., Kim K.H., Heo J., Spectroscopic properties of and energy transfer in PbO-Bi2O3-Ga2O3 glass doped with Er2O3[J]. J. Am. Ceram. Soc., 1999, 82(10): 2762-2768
    [188] Robinson C.C., Multiple sites for Er~(3+) in alkalisilicate glasses [J]. J. Non-Cryst. Solids, 1974, 15(1): 1-9
    [189] Jha A., Shen S., Naftaly M., Structural origin of spectral broadening of 1.5-μm emission in Er~(3+)-doped tellurite glasses[J]. Phys.Rev.B, 2000, 62(10): 6215- 6227
    [190] Martin I.R., Rodriguez V. D., Alcala R., et al. Cross-relaxation for Tm~(3+) ions in indium-based glasses [J]. J. Non - Cryst. Solids, 1993,161(1):294-296
    [191] Komukai T., Yamamoto T., Sugawa T.,et al. Efficient upconversion pumping at 1.064μm Tm~(3+)-doped fluoride fibre laser operating around 1.47μm [J]. Electron Lett., 1992, 28(9): 830-832
    [192] Roy F., Bayart D., Baniel P.,Novel pumping schemes for thulium doped fiber amplifier [A]. OFC., 2002,37:14-16
    [193] Zou X.L., Toratani H., Spectroscopic properties and energy transfers in Tm~(3+) singly-and Tm~(3+)/Ho~(3+) doubly-doped glasses [J]. J. Non-Cryst. Solids, 1996, 195(1): 113-124
    [194] Schuster K., Kirchhof J., Kobelke J., et al. Heavy metal oxide glasses as potential materials for VIS fiber laser[A]. SPIE., 1999, 3849: 116-124
    [195] Sudo S., Optical fiber amplifiers: materials, devices, and applications [M]. London: Artech House, Inc, 1997:339-347
    [196] Wang X.S., Nie Q.H., Xu T.F., et al. A new hot-jointing technique of the preform fabrication for tellurite based single mode optical fibers. SPIE., 2005, 5869 : 58691F-1
    [197] Hand R.J., Kangley R.I., Shephard J.D., GaLaS optical fibres - thermo-optical properties & fibre drawing[A]. SPIE., 2001,4215: 36-43
    [198]高秀敏,蔡春平.光纤涂料特性及其对光纤强度的影响[J].应用光学,2000,21(2):31-37
    [199] Braglia M., Bruschi C., Chierici E., et al. Fabrication of Er~(3+)-doped fluoride fibres with single-mode geometry based on over-clad drilling[J]. J. Non-Cryst. Solids., 1999, 256/257(1): 220-225

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700