锆酸钡基高温质子导体的制备和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Y掺杂锆酸钡陶瓷是理论上最好的高温质子导体,它既有良好的化学稳定性,又有较高的晶粒电导率,是固体氧化物燃料电池电解质的重要候选材料。然而,这种材料难以烧结,总电导率偏低,难以用于需要高功率密度的场合。本论文研究了降低BaZrO_3基陶瓷的烧结温度和提高其电导率的方法。
     研究了使用烧结助剂降低BaZr_(0.9)Y_(0.1)O_(3-δ)陶瓷烧结温度。通过对各种物质进行筛选,找出可以促进BaZr_(0.9)Y_(0.1)O_(3-δ)陶瓷烧结的P_2O_5、CuO和NiO三种氧化物并进行详细研究。P_2O_5促进锆酸钡致密化是依靠液相烧结机理,4 mol%的P_2O_5可使BaZr_(0.9)Y_(0.1)O_(3-δ)在1600°C保温4 h的条件下达到94.2%的理论密度。CuO和NiO通过固溶作用促进BaZr_(0.9)Y_(0.1)O_(3-δ)陶瓷的致密化。2 mol%的CuO可使1600?C烧结的BaZr_(0.9)Y_(0.1)O_(3-δ)试样的相对密度达到95.4%,远远高于不含CuO试样的67.9%的理论密度。由电动势法测得的含1~2 mol% CuO的BaZr_(0.9)Y_(0.1)O_(3-δ)在600~800°C的质子迁移率为_(0.9)5~0.85,基本可以满足燃料电池的要求。NiO对BaZr_(0.9)Y_(0.1)O_(3-δ)烧结的促进作用更加明显,1~2 mol%的NiO可使BaZr_(0.9)Y_(0.1)O_(3-δ)在1500°C的烧结温度达到>95%的相对密度。烧结助剂能将BaZr_(0.9)Y_(0.1)O_(3-δ)的高于1700°C的致密化温度大大降低,为研制燃料电池共烧工艺提供了基础。
     研究了gel-casting工艺制备掺杂BaZrO_3粉体。因为凝胶中各组分是在分子水平混合,因此粉体具有很好的化学均匀性。Gel-casting可以降低合成粉体的温度。对gel-casting法来说,1200°C保温4 h就可以合成纯的钙钛矿,而对固相法来说,却需要在1400°C保温10 h。Gel-casting法大大改善了合成粉体的烧结性,用gel-casting法粉体制备的陶瓷在1600°C保温4 h可达到理论密度的92.8%,而固相法粉体制备的陶瓷在相同的烧成制度下只达到了67.9%的理论密度。采用gel-casting法制备了不同稀土元素掺杂的BaZr_(0.9)M_(0.1)O_(2.95)(M= Yb, Dy, La)粉体,并研究了不同掺杂元素对粉体烧结性以及粉体所制备的陶瓷材料的电性能的影响。实验证明gel-casting是制备掺杂BaZrO_3粉体的一种简单快捷的工艺。
     使用二次烧成工艺将BaZrO_3基陶瓷与硫酸盐或碳酸盐复合制成复相质子导体,尽可能地保留了盐类的原始相组成,同时使BaZrO_3基陶瓷与盐类之间的反应减少到最小,将BaZr_(0.9)Y_(0.1)O_(3-δ)陶瓷的质子电导率提高了一到两个数量级,在600~800°C达到了10-2 S/cm的数量级,远远高于单相BaZr_(0.9)Y_(0.1)O_(2.95)陶瓷。添加硫酸盐(Na2SO4、K2SO4和Li2SO4:K2SO4=1:1)和碳酸盐(Na_2CO_3、K_2CO_3和2Li_2CO_3+Na_2CO_3)的BaZr_(0.9)Y_(0.1)O_(3-δ)复相材料还观察到了明显的超质子电导现象。
Y-doped BaZrO_3 ceramics is the best one among several high temperature proton conductors in theory. With the combining merits of good chemical stability and high bulk conductivity, it is a promising candidate for electrolytes in solid oxide fuel cells. However, the material is difficult to densify. Its total conductivity is low due to the large area and high resistance of the grain boundary. This inhibits its high-drain applications. Methods of lowering the sintering temperature and improving the conductivity of BaZrO_3-based ceramics are investigated in this work.
     Several sintering aids, such as P_2O_5, CuO and NiO, which can densify BaZr_(0.9)Y_(0.1)O_(3-δ) at a lower temperature, were chosen and researched thoroughly. BaZrO_3-based ceramics were densified by P_2O_5 through liquid sintering mechanism. 94.2% of theoretical density was reached for BaZr_(0.9)Y_(0.1)O_(3-δ) sintered at 1600°C for 4 h by adding 4 mol% P_2O_5. CuO and NiO promoted the densification of BaZr_(0.9)Y_(0.1)O_(3-δ) by solid solution mechanism. 95.4% of theoretical density was reached for the sample sintered at 1600 ?C by adding 2 mol% of CuO, much higher than the 67.9% of theoretical density for the sample without CuO. The proton transport number of BaZr_(0.9)Y_(0.1)O_(3-δ) with 1~2 mol% of CuO ranged from _(0.9)5 to 0.85 between 600~800°C, which could basically fulfill the request for the fuel cells. NiO could promote the densification of BaZr_(0.9)Y_(0.1)O_(3-δ) much more effectively. 1~2 mol% NiO could make the BaZr_(0.9)Y_(0.1)O_(3-δ) sample to reach >95% of theoretical density when sintered at 1500°C. Therefore, the sintering temperature of BaZr_(0.9)Y_(0.1)O_(3-δ) at >1700°C as previously reported in literature could markedly be lowered by sintering aids. This provides a guarantee for the co-firing process in the preparation of solid oxide fuel cells.
     Gel-casting process was studied to prepare BaZrO_3-based powders. As the mixing of the constituents at a molecular level during the gel formation is achieved, the powders have a very high degree of chemical homogeneity. Lower calcining temperature and shorter holding time were required to synthesize the uniform BaZr_(0.9)Y_(0.1)O_(2.95) powders compared with the traditional solid-state reaction method. Pure perovskite phase was obtained at 1200°C for 4 h by gel-casting process, whereas 1400°C for 4 h was required by solid state reaction. Sinterability of the powders was obviously improved by gel-casting method. 92.8% of theoretical density was reached for the ceramics prepared by gel-casting method, much higher than the 67.9% of theoretical density for the samples made by the solid state reaction. Different rare earth elements doped BaZr_(0.9)M_(0.1)O_(2.95) (M= Yb, Dy, La) powders were prepared by gel-casting methods. The results demonstrated that the gel-casting process is a simple, fast and convenient method for preparing a high-temperature proton conductor BaZr_(0.9)M_(0.1)O_(2.95) powders.
     Two times sintering process was applied to prepare the composites of Y-doped BaZrO_3/sulphates and BaZrO_3/carbonates. The original phases of the salts were preserved as high as possible by this process; meanwhile the reaction between BaZrO_3-based ceramics and the salts were reduced to the lowest level. The conductivities of BaZrO_3-based ceramics were increased by one or two orders of magnitude, reaching the order of 10-2 S/cm for BaZr_(0.9)Y_(0.1)O_(3-δ)/salt composites at 600~800°C, much higher than that of the monolithic BaZr_(0.9)Y_(0.1)O_(3-δ). Superprotonic conductivity phenomena were observed in the composites with sulphate (Na2SO4, K2SO4 and Li2SO4:K2SO4=1:1) and carbonate (Na_2CO_3, K_2CO_3 and 2Li_2CO_3+Na_2CO_3).
引文
[1] Iwahara H, Asakura Y, Katahira K, et al. Prospect of hydrogen technology using proton-conducting ceramics [J]. Solid State Ionics, 2004, 168 (3-4): 299~310.
    [2] Chisholm C R I. Superprotonic phase transitions in solid acids: parameters affecting the presence and stability of superprotonic transitions in the MHnXO4 family of compounds (X=S, Se, P, As; M=Li, Na, K, NH4, Rb, Cs) [D],博士学位论文, California Institute of Technology, 2003.
    [3] Islam M S. Ionic transport in ABO_3 perovskite oxides: a computer modelling tour [J]. Journal of Materials Chemistry, 2000, 10: 1027~1038.
    [4] Kreuer K. Proton conductivity: materials and applications [J], Chemistry of Materials. 1996, 8 (3): 610~641.
    [5] Haile S M, Boysen D A, Chisholm C R, et al. Solid acids as fuel cell electrolytes [J]. Nature, 2001, 410: 910 ~913.
    [6] Zhu B, Lai Z H, Mellander B. Structure and ionic conductivity of lithium sulphate-aluminum oxide ceramics [J]. Solid State Ionics, 1994, 70-71(Part 1): 125 ~129.
    [7] Zhu B, Stjerna B, Mellander B. Cubic rubidium nitrate at room temperature, Solid State Communications [J]. 1994, 89 (2): 135~138.
    [8] Zhu B. Intermediate temperature proton conducting salt–oxide composites [J]. Solid State Ionics, 1999, 125 (1-4): 397~405.
    [9] Tao S, Meng G. The proton and oxygen ion conduction in a NaCl based composite electrolyte [J]. Journal of Materials Science Letters, 1999, 18: 81~84.
    [10] Bonanos N. Oxide-based protonic conductors: point defects and transport properties [J]. Solid State Ionics, 2001, 145(1-4): 265~274.
    [11] Iwahara H, Esaka T, Uchida H, et al. Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production [J]. Solid State Ionics, 1981, 3-4: 359~363.
    [12] Iwahara H, Esaka T, Uchida H, et al. High temperature type protonic conductor based on SrCeO3 and its application to the extraction of hydrogen gas [J]. Solid State Ionics, 1986, 18-19 (Part 2): 1003~1007.
    [13] Iwahara H, Yajima T, Hibino T, et al. Protonic conduction in calcium, strontium and barium zirconates [J]. Solid State Ionics, 1993, 61(1-3): 65~69.
    [14] Kreuer K D. Aspects of the formation and mobility of protonic charge carriers and the stability of perovskite-type oxides [J]. Solid State Ionics, 1999, 125(1-4): 285~302.
    [15] Nowick A S, DU Y. High-temperature protonic conductors with perovskite-related structures [J]. Solid State Ionics, 1995, 77: 137~146.
    [16] Zimmer E, Scharf K, Mono T, et al. Preparation of the high temperature proton conductor Ba_3Ca_(1.18)Nb_(1.82)O_(8.73) via a wet chemical route [J]. Solid State Ionics, 1997, 97(1-4): 505~509.
    [17] Schober T, Friedrich J. Thermogravimetry of the high temperature proton conductors BaCa_(0.3)Nb_(0.6)Nd_(0.1)O_(3-δ), SrCa_((1+x)/3)Nb_((2-x)/3)O_(3-x/2) and Sr(Zr_(0.8)Ce_(0.2))_(0.8)In_(0.2)O_(3-δ) [J], Solid State Ionics, 1999, 125(1-4): 319~323.
    [18] Norby T, Christiansen N. Proton conduction in Ca- and Sr-substituted LaPO_4 [J]. Solid State Ionics, 1995, 77: 240~243.
    [19] Shimura T, Komori M, Iwahara H. Ionic conduction in pyrochlore-type oxides containing rare earth elements at high temperature [J]. Solid State Ionics, 1996, 86-88(Part 1): 685~689.
    [20] Ramrez R, Gonzlez R, Colera I, et al. Protons and deuterons in magnesium-doped sapphire crystals [J]. Journal of the American Ceramic Society, 1997, 80: 847~850.
    [21] Iwahara H. High temperature proton conducting oxides and their applications to solid electrolyte fuel cells and steam electrolyzer for hydrogen production [J]. Solid State Ionics, 1988, 28-30(Part 1): 573~578.
    [22] Iwahara H, Uchida H, Morimoto K. High temperature solid electrolyte fuel cells using perovskite-type oxide based on BaCeO_3 [J]. J. Electrochem. Soc., 1990, 137: 462~465.
    [23] Bonanos N, Ellis B, Mahmood M N. Construction and operation of fuel cells based on the solid electrolyte BaCeO_3:Gd [J], Solid State Ionics, 1991, 44 (3-4): 305~311.
    [24] Taniguchi N, Hatoh K, Niikura J, et al. Proton conductive properties of gadolinium-doped barium cerates at high temperatures [J]. Solid State Ionics, 1992, 53-56 (Part 2): 998~1003.
    [25] Iwahara H, Yajima T, Hibino T, et al. Performance of solid oxide fuel cell using proton and oxide ion mixed conductors based on BaCe1–xSmxO3–δ[J]. J. Electrochem. Soc., 1993, 140: 1687~1691.
    [26] Kreuer K D. Proton-conducting oxides. Annual Review of Materials Research [J]. 2003, 33(1): 333~359.
    [27] Zuo C, Zha S, Liu M, et al. Ba(Zr_(0.1)Ce_(0.7)Y_(0.2))O_(3-δ) as an electrolyte for low-temperature solid-oxide fuel cells [J]. Advanced Materials (FRG), 2006, 18(24): 3318~3320.
    [28] Shim J H, Park J S, An J, et al. Intermediate-temperature ceramic fuel cells with thin film yttrium-doped barium zirconate electrolytes [J]. Chemistry of Materials, 2009, 21 (14): 3290~3296.
    [29]王吉德,宿新泰,刘瑞泉.钙钛矿型高温质子导体研究进展[J].化学进展, 2004, 16 (5): 829~835.
    [30] Matsushita E, Tanase A. Theoretical approach for protonic conduction in perovskite-oxide ceramics [J]. Solid State Ionics, 1997, 97 (1-4): 45~50.
    [31] Norton F H. Fine ceramics: technology and applications [M]. New York: McGraw-Hill, 1970.
    [32] Goodenough J B. Oxide-ion electrolytes [J]. Annu. Rev. Mater.Res., 2003, 33: 91~128.
    [33] Erb A, Walker E, Flukiger R. BaZrO_3: the solution for the crucible corrosion problem during the single crystal growth of high-TC superconductors REBa2Cu3O7-δ[J]. Physica C: Superconductivity, 1995, 245: 245~251.
    [34] Bohn H G, Schober T. Electrical conductivity of the high-temperature proton conductor BaZr_(0.9)Y_(0.1)O_(2.95) [J]. Journal of the American Ceramic Society, 2000, 83 (4): 768~772.
    [35] Anselmi-Tamburini U, Buscaglia M T, Viviani M, et al. Solid-state synthesis and spark plasma sintering of submicron BaY_xZr_(1-x)O_(3-x/2) (x = 0, 0.08 and 0.16) ceramics [J]. Journal of the European Ceramic Society, 2006, 26(12): 2313~2318.
    [36] Sygnatowicz M, Snure M, Tiwari A. Proton conducting BaZr_(0.8)Y_(0.2)O_(3-x) thin films by pulsed laser deposition technique [J]. Journal of Crystal Growth, 2008, 310 (15): 3590~3595.
    [37] Iwahara H. Technological challenges in the application of proton conducting ceramics [J]. Solid State Ionics, 1995, 77: 289~298.
    [38] Iwahara H. Proton conducting ceramics and their applications [J]. Solid State Ionics, 1996, 86-88(Part 1): 9~15.
    [39] Iwahara H, Uchida H, Maeda N. High temperature fuel and steam electrolysis cells using proton conductive solid electrolytes [J]. Journal of Power Sources, 1982, 7 (3): 293~301.
    [40] Yajima T, Koide K, Fukatsu N, et al. A new hydrogen sensor for molten aluminum [J]. Sensors and Actuators B: Chemical, 1993, 14 (1-3): 697~699.
    [41] Matsumoto H, Takeuchi K, Iwahara H. Electromotive force of hydrogen isotope cell with a high temperature proton-conducting solid electrolyte CaZr0.90In0.10O3-δ[J]. Journal of the Electrochemical Society, 1999, 146 (4): 1486~1491.
    [42] Matsumoto H, Suzuki T, Iwahara H. Automatic regulation of hydrogen partial pressure using a proton conducting ceramic based on SrCeO3 [J]. Solid State Ionics, 1999, 116 (1-2): 99~104.
    [43] Chiang P H, Eng D, Stoukides M. Solid electrolyte aided direct coupling of methane [J]. Journal of Catalysis, 1993, 139: 63~65.
    [44] Iwahara H, Hibino T, Sunano T. An electrochemical steam pump using a proton conducting ceramic [J]. Journal of Applied Electrochemistry, 1996, 26: 829~832.
    [45] Iwahara H, Matsumoto H, Takeuchi K. Electrochemical dehumidification using proton conducting ceramics [J]. Solid State Ionics, 2000, 136-137: 133~138.
    [46] Kobayashi T, Morishita S, Abe K, et al. Reduction of nitrogen oxide by a steam electrolysis cell using a proton conducting electrolyte [J]. Solid State Ionics, 1996, 86-88 (Part 1): 603~607.
    [47] Heed B, Zhu B, Mellander B, et al. Proton conductivity in fuel cells with solid sulphate electrolytes [J]. Solid State Ionics, 1991, 46 (1-2): 121~125.
    [48] Tarneberg R, Lunden A. Ion diffusion in the high-temperature phases Li_2SO_4, LiNaSO_4, LiAgSO_4 and Li_4Zn(SO_4)_3 [J]. Solid State Ionics, 1996, 90 (1-4): 209~220.
    [49] Lunden A. Enhancement of cation mobility in some sulphate phases due to a paddle-wheel mechanism [J]. Solid State Ionics, 1988, 28-30(Part 1): 163~167.
    [50] Lunden A. Evidence for and against the paddle-wheel mechanism of ion transport in superionic sulphate phases [J]. Solid State Communications, 1988, 65 (10): 1237~1240.
    [51] Andersen N H, Bandaranayake P W S K, Careem M A, et al. Paddle-wheel versus percolation mechanism for cation transport in some sulphate phases [J]. Solid State Ionics, 1992, 57 (3-4): 203~209.
    [52] Lunden A. Paddle-wheel versus percolation model, revisited [J]. Solid State Ionics, 1994, 68 (1-2): 77~80.
    [53] Zhu B, Mellander B. Proton conduction in salt-ceramic composite systems [J]. Solid State Ionics, 1995, 77: 244~249.
    [54] Zhu B, Mellander B, Stjerna B. Infrared spectra of the rubidium nitrate alumina composites [J]. Solid State Communications, 1994, 91 (9): 709~712.
    [55] Zhu B, Mellander B. Proton conduction and diffusion in Li2SO4 [J]. Solid State Ionics, 1997, 97 (1-4): 535~540.
    [56] Zhu B, Albinssin I, Mellander B, et al. Intermediate-temperature proton-conducting fuel cells—Present experience and future opportunities [J]. Solid State Ionics, 1999, 125 (1-4): 439~446.
    [57] Cervera R B, Oyama Y, Yamaguchi S. Low temperature synthesis of nanocrystalline proton conducting BaZr0.8Y0.2O3?δby sol–gel method [J]. Solid State Ionics, 2007, 178 (7-10): 569~574.
    [58] Yamazaki Y, Hernandez-Sanchez R, Haile S M. High total proton conductivity in large-grained yttrium-doped barium zirconate [J]. Chemistry of Materials, 2009, 21 (13): 2755~2762.
    [59]李中秋. BaZrO_3基固体电解质材料的研究[D].唐山:河北理工大学, 2006.
    [60] Stuart P A, Unno T, Ayres-Rocha R, et al. The synthesis and sintering behaviour of BaZr_(0.9)Y_(0.1)O_(3-δ) powders prepared by spray pyrolysis [J]. J. Euro Ceram Soc., 2009, 29 (4), 697~702.
    [61] Kingsley J J, Patil K C. A novel combustion process for the synthesis of fine particleα-alumina and related oxide materials, Materials Letters [J]. 1988, 6 (11-12): 427~432.
    [62]戚雯.锆酸盐/无机盐复相质子导体的制备和性能研究[D].天津:天津大学,2008.
    [63] Omatete O O, Janney M A, Strehlow R A. Gelcasting—a new ceramic forming process [J]. American Ceramic Society Bulletin, 1991, 70 (10): 1641~1643.
    [64] Pechini M P. Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor [P]. US Patent No. 3330697, 11 July 1967.
    [65] Marcilly C, Courty P, Delmon B. Preparation of highly dispersed mixed oxides and oxide solid solutions by pyrolysis of amorphous organic precursors [J]. Journal of the American Ceramic Society, 1970, 53: 56~57.
    [66] Douy A, Odier P. The polyacrylamide gel: a novel route to ceramic and glassy oxide powders [J]. Materials Research Bulletin, 1989, 24 (9): 1119~1126.
    [67] Douy A. Polyacrylamide gel: an efficient tool for easy synthesis of multicomponent oxide precursors of ceramics and glasses [J]. International Journal of Inorganic Materials, 2001, 3 (7): 699~707.
    [68] Sin A, Odier P. Gelation by acrylamide, a quasi-universal medium for the synthesis of fine oxide powders for electroceramic applications [J].. Advanced Materials, 2000, 12 (9): 649~652.
    [69] Sin A, Picciolo J J, Lee R H, et al. Synthesis of mullite powders by acrylamide polymerization [J]. Journal of Materials Science Letters, 2001, 20 (17): 1639~1641.
    [70] Dezanneau G, Sin A, Roussel H, et al. Synthesis and characterisation of La_(1-x)MnO_(3±δ) nanopowders prepared by acrylamide polymerisation [J]. Solid State Communications, 2002, 121 (2-3): 133~137.
    [71] Yoshimura M, Ma J, Kakihana M. Low-temperature synthesis of cubic and rhombohedral Y_6WO_(12) by a polymerized complex method [J]. Journal of the American Ceramic Society, 1998, 81 (10): 2721~2724
    [72] Sin A, El Montaser B, Odier P, et al. Synthesis and sintering of large batches of barium zirconate nanopowders [J]. Journal of the American Ceramic Society, 2002, 85 (8): 1928~1932.
    [73] Azad A, Subramaniam S, Dung T W. On the development of high density barium metazirconate (BaZrO_3) ceramics [J]. Journal of Alloys and Compounds, 2002, 334: 118~30.
    [74] Babilo P, Haile S M. Enhanced sintering of yttrium-doped barium zirconate by addition of ZnO [J]. Journal of the American Ceramic Society, 2005, 88 (9): 2362~2368.
    [75] Tao S, Irvine J T S. Conductivity studies of dense yttrium-doped BaZrO_3 sintered at 1325°C [J]. Journal of Solid State Chemistry, 2007, 180 (12): 3493~3503.
    [76] Gil V, Tartaj J, Moure C, et al. Rapid densification by using Bi_2O_3 as an aid for sintering of gadolinia-doped ceria ceramics [J]. Ceramics International, 2007, 33 (3): 471~475.
    [77] Huang C, Chen Y, Tasi C. Influence of V_2O_5 additions to 0.8(Mg_(0.95)Zn_(0.05))TiO_3–0.2Ca_(0.61)Nd_(0.26)TiO_3 ceramics on sintering behavior and microwave dielectric properties [J]. Journal of Alloys and Compounds, 2008, 454 (1-2): 454~459.
    [78] Guo X, Xiao M, Ding W, et al. The effect of Sb_2O_5 additions on the dielectric properties of Ag(Nb_(0.8)Ta_(0.2))O_3 ceramics [J]. Materials Letters, 2006, 60 (29-30): 3651~3654.
    [79] Fernandez J F, Caballero A C, Duran P, et al. Improving sintering behaviour of BaTiO_3 by small doping additions [J]. Journal of Materials Science, 1996, 31 (4): 975~981.
    [80] Isobe T, Kato Y, Mizutani M, el al. Pressureless sintering of negative thermal expansion ZrW_2O_8/Zr_2WP_2O_(12) composites [J]. Mater Lett 2008, 62: 3913~3915.
    [81] Levin E M, McMurdie H F. Phase diagrams for ceramists: 1975 supplement [D] Columbus, Ohio: American Ceramic Society, 1975.
    [82] Amezawa K, Tomii Y, Yamamoto N. High temperature protonic conduction in LaPO_4 doped with alkaline earth metals [J]. Solid State Ionics, 2005, 176 (1-2): 135~141.
    [83] Shannon R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides [J]. Acta Crystallographica, 1976, A32: 751~767.
    [84]王常珍.固体电解质和化学传感器[M].北京:冶金工业出版社, 2005.
    [85]史美伦.交流阻抗谱原理及应用[M].北京:国防工业出版社, 2001.
    [86] Bauerle J E. Study of solid electrolyte polarization by a complex admittance method [J]. 1969, 30: 2657~2670.
    [87] Verkerk M J, Middelhuis B J, Burggraaf A J. Effect of grain boundaries on the conductivity of high-purity ZrO2-Y2O3 ceramics [J]. Solid State Ionics, 1982, 6 (2): 159~170.
    [88] Rahaman M N. The handbook of ceramic engineering [M]. Marcel Dekker, 1998
    [89] Imashuku S, Uda T, Awakura Y. Sintering Properties of Trivalent Cation-Doped Barium Zirconate at 1600°C [J]. Electrochemical and solid state letters, 2007, 10 (10): B175-B178.
    [90] Schober T, Composites of ceramic high-temperature proton conductors with inorganic compounds, Electrochemical and Solid-State Letters, 2005, 8 (4): A199~A200
    [91] Franken P E C, Viegers M P A, Gehring A P. Microstructures of SrTiO_3 boundary-layer capacitors material [J]. Journal of the American Ceramic Society, 1981, 64 (12): 687~690.
    [92]王平.钙钛矿型质子导体材料的制备和硫酸盐质子导体的燃料电池化学稳定性[D].合肥:中国科学技术大学,1999.
    [93] Mellander B, Albinsson I. Proton conduction in oxyacid salts at intermediate temperatures for fuel cell applications [J]. Ionics, 1998, 4 (5-6): 415~421.
    [94] Anooz S B, Bertram R, Klimm D. The solid state phase transformation of potassium sulfate [J]. Solid State Communications, 2007, 141 (9): 497~501.
    [95] Zhu B, Yang X T, Xu J, et al. Innovative low temperature SOFCs and advanced materials [J]. Journal of Power Sources, 2003, 118: 47~53.
    [96] Zhu B, Liu X, Zhou P. Innovative solid carbonate-ceria composite electrolyte fuel cells [J]. Fuel Cells Bulletin, 2002, (1), 8~12.
    [97] Zhu B. Functional ceria-salt-composite materials for advanced ITSOFC applications [J]. Journal of Power sources, 2003, 114: 1~9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700