锆酸镧热障涂层研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热障涂层具有良好的隔热和抗氧化效果,是目前最为先进的高温防护涂层之一,广泛应用在航空、航天、汽车和大型火力发电等行业。目前最常用的热障涂层材料是8mol.%Y2O3-ZrO2(8YSZ),但这种材料的长期使用温度低于1200℃,已经不能满足未来技术发展的需要。研究能替代YSZ用在更高温度下的热障涂层材料是今后工作的重点。锆酸镧(La2Zr2O7,LZ)由于具有熔点高、相结构稳定、导热系数低等特点而被认为是一种非常有潜力的新型高温热障涂层材料。本文从LZ粉末制备入手,通过离子掺杂改性、造粒和大气等离子喷涂(APS)技术在Ni基合金表面制备出新型锆酸镧基热障涂层,在此基础上,首次深入系统地研究了涂层在1250℃下的抗烧结、抗氧化和抗热震性能。文章最后对锆酸镧基/8YSZ双陶瓷层热障涂层及Mo基体上锆酸镧基热障涂层的性能和失效机制进行了探索性研究。主要内容和结论如下:
     采用化学共沉淀法,分别利用氨水和草酸铵作为沉淀剂制备了LZ粉末,研究了沉淀剂对反应条件、过程、产物成分及形貌的影响。结果表明,与草酸铵相比,利用氨水作沉淀剂,虽然抽滤和洗涤效率较低,但可以在更低温度(1200℃)下合成出成分控制更精确、均匀度更高的单相烧绿石结构LZ。
     利用稀土离子掺杂对LZ粉末进行改性。首次考察了Nd~(3+)、Ce~(4+)复合掺杂对LZ热膨胀系数和烧结行为的影响。发现适量稀土元素共掺杂可以显著提高LZ粉末的热膨胀系数,并改善其抗烧结性能。其中La1.6Nd0.4Ce1.0Zr1.0O7(LNCZ)的热膨胀系数在25~1200℃可达到10.4×10~(-6)/K,高于目前热障涂层中应用最广泛的8YSZ陶瓷的热膨胀系数,与Ni基合金的热膨胀行为更匹配。
     通过喷雾造粒和1200℃热处理得到了粒径和流动性能均满足等离子喷涂要求的LNCZ造粒粉体。利用该粉体采用APS法在Ni基合金表面制备了LNCZ热障涂层,通过考察喷涂工艺与涂层结构及性能的关系,得到了优化的工艺参数:功率40kW,喷涂距离9cm,送粉速率12g/min。高温热处理能显著改善涂层的结合强度和抗热震性能,1200℃氩气气氛下保温2小时后,涂层的结合强度从1.326MPa提高到7.048MPa,1250℃下热震寿命从15次提高到65次(涂层剥落50%)。
     研究了LNCZ陶瓷涂层的高温烧结行为及其对涂层显微结构和热、力学性能的影响。发现LNCZ涂层在1250℃会发生烧结,但孔隙率反而从11.35%增至15%,片层层间裂缝、垂直方向微裂纹的粗大化以及三维大空洞的不断增多是孔隙率增大的主要原因。受孔隙率的影响,保温5h后,涂层的导热系数从0.88W/(m·K)减小至0.75W/(m·K),硬度从1.97GPa增至2.73GPa。
     重点考察了LNCZ热障涂层在1250℃下氧化和热震过程中的失效行为,通过裂纹分析手段和对粘结层氧化产物(TGO)内部元素扩散行为的研究,结合文献报道的涂层热疲劳失效模型理论,得出了涂层在1250℃下的氧化和失效机制。结果表明两种考核方式下涂层的失效部位一样,都发生在LNCZ层、LNCZ/TGO界面反应层以及TGO层的内部,但是失效形式和失效机制有所不同。LNCZ热障涂层的氧化失效形式是边缘分层,涂层的失效属于单源失效,裂纹源主要是由烧结应力和热失配应力诱发的位于陶瓷层内部靠近粘结层凸起的平行Ⅰ型裂纹。该裂纹在随后的氧化过程中,受TGO生长所引入的热生长应力和烧结应力共同作用,不断粗化、扩展直至涂层失稳破坏;促使裂纹失稳扩展的原因是TGO生成以及TGO与LNCZ反应在涂层内部引入的大量空洞、应力和疏松氧化产物的出现。LNCZ热障涂层的热震失效形式是开裂和皱曲分层,涂层的失效属于多源失效,裂纹源包括:热喷涂残余应力诱发的涂层内部垂直开口Ⅰ型裂纹,热失配应力诱发的片层间平行Ⅰ型裂纹、位于TGO余弦型界面中部偏上位置处的Ⅱ型裂纹和LNCZ/TGO界面波峰位置处的平行Ⅰ型裂纹,以及随TGO厚度的增加,由热失配应力分布发生变化而诱发的位于陶瓷层内部波谷位置的Ⅰ型裂纹。上述裂纹在热失配应力和热生长应力的作用下,沿缺陷较多的LNCZ/TGO界面或者穿过疏松的TGO内部发生扩展、相连,多处微裂纹的贯通最终导致陶瓷层的剥落失效。
     陶瓷层材料的低断裂韧性、TGO外侧NiO和(Cr,Al)2NiO4等脆性且不致密氧化物的过早生成以及TGO与LNCZ之间的化学不稳定性是导致涂层快速失效的主要原因。为缓解LNCZ涂层内部的应力积累并阻止LNCZ与TGO的化学反应,设计并制备了LNCZ/8YSZ双陶瓷层热障涂层(DCL-TBCs)。该涂层与相同厚度LNCZ热障涂层相比,隔热性能略有降低,但抗热震性能明显提高,1250℃下热震45次后涂层表面仅剥落5%。涂层皱曲剥落扩展和剥落加深是LNCZ/8YSZ TBCs失效的主要形式,导致LNCZ层和8YSZ涂层先后剥落的原因分别是热失配应力和热生长应力。
     首次在Mo基体上制备了以Mo与La_(1.4)Nd_(0.6)Zr_2O_7(LNZ)的混合物(ML)为粘结层、以LNZ为陶瓷层的热障涂层。该涂层具有良好的结合强度,但是1200℃下的热震寿命非常短。Mo在高温下的氧化以及氧化产物与涂层极差的化学相容性是导致LNZ热障涂层快速失效的主要原因。避免Mo基体氧化或者氧化产物与锆酸镧接触是保证锆酸镧热障涂层在高温环境下安全使用的必要条件。
Thermal barrier coatings (TBCs) are one of the most advanced high temperature protective coatings and being wildly used in aeronautic, astronautics, motor industry and heat power station, for their good performance at thermal barrier and oxidation resistance. 8 mol. % yttria partially stabilized zirconia (8YSZ) is currently used as the commercial materials of TBCs. However, the major disadvantage of YSZ is the limited operation temperature of 1200oC for the long-term application. And the search for new candidate materials that can work at even higher temperature has been intensified in future. Among the interesting candidates for TBCs, lanthanum zirconate (La2Zr2O7, LZ) has been proposed as a promising TBCs material for its high melting point, more stable structure and lower thermal conductivity than YSZ. In this work, the preparetion of LZ powder was studied. Different rare earth elements doped LZ powders were researched and LZ-based powders with higher thermal expansion coefficient and better sintering resistance were obtained. Then the powders with good spraying performance were prepared by spray pelletization. And the LZ-based TBCs on Ni super alloy with high bonding strength and thermal shock resistance were fabricated by Air Plasma Spraying (APS). On this basis, the sintering behavior, oxidation resistance and thermal shock resistance of TBCs at 1250 oC were studied in detail for the first time. Besides, the LZ-based/YSZ double ceramic layer (DCL) TBCs deposited on Ni super alloy substrate and LZ-based TBCs deposited on Mo substrate were prepared and their failure mechanism were researched primarily. Details are as follow:
     The single-phase La2Zr2O7 powders were synthesized by co-precipitation method using ammonia and oxalate ammonium as precipitators, respectively. And the synthesis procedure, calcination temperature, compositon and morphology of products were studied. The results show that, compared with oxalate ammonium, co-precipitation using ammonia is prone to obtain better composition controllable and more homogenous La2Zr2O7 powders with pyrochlore structure at lower temperature (1200oC), despite with lower filtering efficiency.
     The properties of LZ were modified by rare earth elements adoption. The thermal expansion coefficient (TEC) and sintering behavior of Nd~(3+), Ce~(4+) doped LZ powder were investigated in this work. It is observed that the proper addition of Nd and Ce into LZ can largely increase its TEC and improve the sintering-resistance. The TEC of La1.6Nd0.4Ce1.0Zr1.0O7 (LNCZ) is 10.4×10~(–6)/K at 25~1200oC, which is higher than that of commercial 8YSZ and approaches that of Ni super alloy.
     The LNCZ powder with good spraying performance was obtained by spray pelletization and being heat treatment at 1200oC. Using this kind of powder, APS LNCZ TBCs were fabricated on the surface of Ni super alloy. The effects of spraying parameters on the microstructure and properties of APS LNCZ TBCs were examined and the optimized technological conditions are given out: power is 40kW, stand off distance is 9cm and powder feeding rate is 12g/min. APS LNCZ TBCs with post argon shield heat treatment were employed to improve their properties. According to the experimental results, post argon shield heat treatment could improve the average bonding strength and thermal shock resistance of coatings. The bonding strength value of LNCZ TBCs increases from 1.326MPa to 7.048MPa, and the thermal shock life increases from 15 to 65 cycles (while 50% of the ceramic coat was delaminated) at the same time, after being heated at 1200℃for 2h.
     The sintering behavior of LNCZ coat and its effects on the microstructure, thermophysical and mechanical properties of coat were investigated. The porosity of coat increases from 11.35% to 15% after being calcined at 1250℃for 5h. The increasing of intersplat gaps, intrasplat cracks and three-dimensional coarse pore may be the reasons. Thermal conductivity and hardness are more sensitive to the changes in microstructure. After an exposure to a temperature of 1250℃for 5h, the coat’s thermal conductive decreases from 0.88W/(m·K) to 0.75W/(m·K), while the hardness increases from 1.97GPa to 2.73GPa.
     The oxidation and thermal shock behavior of LNCZ TBCs at 1250oC were studied in detail. The failrue mechanisms in LNCZ TBCs were discussed by cracks analysis and the investigation of element’s diffusion, combined with the theory of failure on thermal fatigue of PS TBCs as reported. The analysis indicates, during isothermal oxidation and thermal cycling, the breakage all occurs at the LNCZ coat interior primarily with a part of the interface between LNCZ and the thermally grown oxidation (TGO) and the TGO interior. But the failure mode and mechanism during these two processes are different.
     The failure mode of LNCZ during isothermal oxidation is edge-delamination. Its failure is dominated by one type of crack——parallel mode I crack which is initiated in LNCZ coat near the crests of bond coat undulations by tensile sintering stress and residual stress. The main cause of crack propagation and thickening is the sintering stress and the thermal growth stress caused by TGO product between bond coat and LNCZ coat. The reaction between TGO and LNCZ results in the loose microstructure near the interface of TGO/LNCZ and compressed stress in LNCZ coat. The parallel crack fast propagates along the weak area and induces the ultimate failure of the TBCs.
     The failure mode of LNCZ TBCs during thermal cycling is cracking and bucking- delamination. Its failure is dominated by two types of cracks——mode I crack and modeⅡcrack, including the vertical mode I crack initiated in the LNCZ coat by residual stress, the parallel mode I crack between the ceramic splat, the mode I crack along the LNCZ/TGO interface at undulation crests, modeⅡcrack within the LNCZ coat in the troughs adjacent to TGO and mode I crack within the LNCZ coat in the troughs of undulations which are induced by the thermal mismatch stress dues to the differences in thermal expansion between LNCZ coat and substrate. As the TGO being thicken, the thermal mismatch stress increases. The increased thermal mismatch stress and thermal mismatch stress can accelerate the propagation of all cracks along the weak area, such as the interface of LNCZ/TGO or TGO interior. The coalescence of transverse cracks induces the ultimate failure of the TBCs.
     The reasons for fast failure of LNCZ TBCs include the lower fracture toughness of LNCZ, rapid formation of brickle and porous oxides, such as NiO and (Cr,Al)2NiO4, and worse thermochemical compatibility between LNCZ and TGO. In order to release the thermal stress between bond coat and LNCZ coat and prevent the reaction between LNCZ and TGO, LNCZ/8YSZ DCL-TBCs were designed and fabricated. After being combined with 8YSZ, the thermal barrier ability of TBCs degrades slightly but its thermal shock resistance has been improved significantly. Just only 5% of the ceramic coat was delaminated after thermal shock for 45 cycles under 1250oC in an air furnace. The failure mode of DCL-TBCs during thermal cycling is bucking-delamination near the interface of LNCZ/8YSZ and 8YSZ/TGO by sequence. The failure mechanisms of LNCZ coat and 8YSZ coat are in the light of thermal mismatch strain and thermal growth stress, respectively.
     La_(1.4)Nd_(0.6)Zr_2O_7 (LNZ) TBCs on Mo substrate with high bonding strength was prepared for the first time. The mixture of Mo and LNZ powder was used as bond coat materials. The behaviors of LNZ TBCs during thermal cycling under 1200oC were examined. The result shows that the thermal shock life is very short. The reaction between LNZ and MoO3 from the oxidation of Mo results in the failure of LNZ TBCs on Mo substrate. Avoiding the oxidation of Mo or the osculation between molybdenum oxide and ceramic coat is favorable for the integrality of LZ-based TBCs on Mo substrate.
引文
[1] Miller R A. Current status of the thermal barrier coatings—an overview [J]. Journal of Thermal Spray Technology, 1987, 30(1): 1~11.
    [2] Xu Z H, He L M, Mu R D, et al. Influence of the deposition energy on the composition and thermal cycling behavior of La2(Zr0.7Ce0.3)2O7 coatings [J]. Journal of the European Ceramic Society, 2009, 29(9): 1771~1779.
    [3]管恒荣,李美姮,孙晓峰等.高温合金热障涂层的氧化和失效研究[J].金属学报, 2002, 38(11): 1133~1140.
    [4] Miller R A.Thermal barrier coatings for aircraft engines: History and directions [J]. Journal of Thermal Spray Technology, 1997, 6(1): 35~42.
    [5] Duvall D S, Ruckle D L. Ceramic thermal barrier coatings for turbine engine components. ASME, International Gas Turbine Conference and Exhibit, 27th, 1982.
    [6]宫文彪.等离子喷涂三元纳米ZrO2-Y2O3/CeO2热障涂层的组织与性能研究[D].吉林:吉林大学, 2007.
    [7] Brandt R. Thermal diffusivity measurements in plasma sprayed CaO-stabilized ZrO2 [J]. High Temperature-High Pressure, 1979, 13: 279~285.
    [8]邓世均.高性能陶瓷涂层[M].北京:化学工业出版社, 2004: 609~611.
    [9]徐惠彬,宫声凯,刘福顺.乌克兰巴顿焊接研究所的电子束物理气相沉积技术[J].航空制造工程, 1997, 6: 6~8.
    [10]徐惠彬,宫声凯,刘福顺.航空发动机热障涂层材料体系的研究[J].航空学报, 2000, 21(1): 7~12.
    [11] Schmitt-Thamas K G, Dietl U. Thermal barrier coat with improved oxidation resistance [J]. Surface and Coatings Technology, 1994, 68/69: 113~115.
    [12] Muller J, Neuschutz D. Efficiency of alumina as difusion barrier between bond coat and bulk material of gas turbin blades [J]. Vacuum, 2003, 71: 247~251.
    [13]张晓囡,张华芳,李庆芬等.热障涂层界面扩散阻挡层研究进展[J].材料导报, 2008, 22(4): 14~17.
    [14] Strangman T E. Ceramic thermal barrier coating with alumina interlayer [P]. US Patent 4880614, 1990.
    [15] Choules B D, Kokini K, Taylor T A. Thermal fracture of thermal barrier coatings in a high heat flux environment [J]. Surface and Coatings Technology, 1998, 106: 23~29.
    [16]王学兵,张幸红,杜善义.梯度热障涂层的研究现状[J].中国表面工程, 2004,17(3): 7~14.
    [17] Gu Y W, Khor K A, Fu Y Q, et al. Functionally graded ZrO2-NiCrAlY coatings prepared by plasma spraying using pre-mixed, spheroidized powders [J]. Surface and Coatings Technology, 1997, 96: 305~312.
    [18]郭洪波,宫声凯,徐惠彬.梯度热障涂层的设计[J].航空学报, 2002, 23(5): 467~472.
    [19]纪小健,李辉,栗卓新等.热障涂层的研究进展及其在燃气轮机的应用[J].燃气轮机技术, 2008, 21(2): 7~11.
    [20] Schulz U. Phase transformation in EB-PVD yttria partially stabilized zirconia thermal barrier coatings during annealing [J]. Journal of the American Ceramic Society, 2000, 83: 904~910.
    [21] Cao X Q, Vassen R, St?ver D, et al. Ceramic materials for thermal barrier coatings [J]. Journal of the European Ceramic Society, 2004, 24: 1~10.
    [22] Liu B, Wang J Y, Zhou Y C, et al. Theoretical elastic stiffness, structure stability and thermal conductivity of La2Zr2O7 pyrochlore [J]. Acta Materialia, 2007, 55(9): 2949~2957.
    [23] Carta G, Habra N E, Rossetto G, et al. MgO and CaO stabilized ZrO2 thin films obtained by metal organic chemical vapor deposition [J]. Surface and Coatings Technology, 2007, 201(22-23): 9289~ 9293.
    [24] Azzopardi A, Mévrel R, Saint-Ramond B, et al. Influence of aging on structure and thermal conductivity of Y-PSZ and Y-FSZ EB-PVD coatings [J]. Surface and Coatings Technology, 2004, 177-178: 131~139.
    [25]邓世钧.高性能陶瓷涂层[M].北京:化学工业出版社, 2004: 121~127.
    [26] Chwa S O, Ohmori A. Microstructures of ZrO2-8wt.%Y2O3 coatings prepared by a plasma laser hybrid spraying technique [J]. Surface and Coatings Technology, 2002, 153: 304~307.
    [27]尹衍升,陈守刚,刘英.氧化锆陶瓷的掺杂稳定及生长动力学[M].北京:化学工业出版社, 2004: 8.
    [28] Bansal N P, Zhu D M. Effects of doping on thermal conductivity of pyrochlore oxides for advanced thermal barrier coatings [J]. Materials Science and Engineering A, 2007, 459: 192~195.
    [29] Zhu D, Miller R A. Thermal fatigue and fracture behavior of ceramic, thermal barrier coatings [J]. Ceramic Engineering and Science Proceedings, 2002, 22(4): 453~461.
    [30] Jones R L, Mess D. Improved tetragonal phase stability at 1400 oC with scandia, yttria-stabilised zirconia [J]. Surface and Coatings Technology, 1996, 86-87: 94~101.
    [31] Matsumoto M, Yamaguchi N, Matsubara H. Low thermal conductivity and high temperature stability of ZrO2-Y2O3-La2O3 coatings produced by electron beam PVD [J]. Scripta Materialia, 2004, 50: 867~871.
    [32] Matsumoto M, Aoyama K, Matsubara H, et al. Thermal conductivity and phase stability of plasma sprayed ZrO2-Y2O3-La2O3 coatings [J]. Surface and Coatings Technology, 2005, 194: 31~35.
    [33] Winter M R, Clarke D R. Oxide materials with low thermal conductivity [J]. Journal of the American Ceramic Society, 2007, 90(2): 533~540.
    [34] Gadow R, Lischka M. Lanthanum hexaaluminate—novel thermal barrier coatings for gas turbine applications-materials and process development [J]. Surface and Coatings Technology, 2002, 151-152: 392~399.
    [35] Wu J, Wei X Z, Padture N P, et al. Low-thermal-conductivity rare-earth zirconates for potential thermal barrier coating applications [J]. Journal of the American Ceramic Society, 2002, 85: 3031~3035.
    [36] Lehmann H, Pitzer D, Pracht G, et al. Thermal conductivity and thermal expansion coefficients of the lanthanum rare-earth-element zirconate system [J]. Journal of the American Ceramic Society, 2003, 86: 1338~1344.
    [37] Maloney M J. Thermal barrier coatings systems and materials [P]. US Patent 6 117 560, 2000.
    [38] Saruhan B, Francois P, Fritscher K, et al. EB-PVD processing of pyrochlore- structured La2Zr2O7-based TBCs [J]. Surface and Coatings Technology, 2004, 182: 175~183.
    [39] Subramanian R. Thermal barrier coating having high phase stability [P]. US Patent, 6258467, 2001.
    [40] Mitterdorfer A, Gauckler L J. La2Zr2O7 formation and oxygen reduction kinetics of the La0.85Sr0.15MnyO3, O2 (g)| YSZ system [J]. Solid State Ionics, 1998, 111: 185~218.
    [41] Nitin P P, Klemens P G. Low thermal conductivity in garnets [J]. Journal of the American Ceramic Society, 1977, 80(4): 1018~1020.
    [42] Zhu D M, Miller R A. Thermal conductivity and elastic modulus evolution of thermal barrier coatings under high heat flux conditions [J]. Journal of Thermal Spray Technology, 2000, 9: 175~180.
    [43] Friedrich C J, Gadow R, Schirmer T. Lanthanum hexaaluminate—a new material for atmospheric plasma spraying of advanced thermal barrier coatings [J]. Journal of Thermal Spray Technology, 2001, 10: 592~598.
    [44] Bansal N P, Zhu D M. Thermal properties of oxides with magnetoplumbite structure for advanced thermal barrier coatings [J]. Surface and Coatings Technology, 2008, 202: 2698~2703.
    [45]齐峰,樊自拴,孙冬柏等.新型热障涂层材料镁基六铝酸镧喷涂粉末的制备[J].材料工程, 2006, 7: 14~18.
    [46]邓世均.高性能陶瓷涂层[M].北京:化学工业出版社, 2004: 298.
    [47]王海军.热喷涂实用技术[M].北京:国防工业出版社, 2006: 28.
    [48] Brindley W J, Miller R A. Thermal barrier coating life and isothermal oxidation of low-pressure plasma-sprayed bond coat alloys [J]. Surface and Coatings Technology, 1990, 43/44: 446~457.
    [49] Hsueh C H, Haynes J A, Lance M J, et al. Effects of interface roughness on residual stresses in thermal barrier coatings [J]. Journal of the American Ceramic Society, 1999, 82(4): 1073~1075.
    [50]陈丙贻译.热喷涂技术的过去、现在和将来[J].国外金属热处理, 1994, 15(3): 8~14.
    [51] Rhy-Jones T N. The use of thermal sprayed coatings for compressor and turbine application in aero engines [J]. Surface and Coatings Technology, 1990, 42: 1~10.
    [52] William B J, Todd L A. Metallugraphic techniques for evaluation of thermal barrier coatings [J]. Material Characterization, 1990, 24: 93~96.
    [53]曹学强.热障涂层材料[M].北京:科学出版社, 2007: 152.
    [54] Schulz U, Fritscher K, Ebach-Stahl A. Cyclic behavior of EB-PVD thermal barrier coating systems with modified bond coats [J]. Surface and Coatings Technology, 2008, 203(1-2): 160~170.
    [55] Matsumoto M, Wada K, Yamaguchi N, et al. Effects of substrate rotation speed during deposition on the thermal cycle life of thermal barrier coatings fabricated by electron beam physical vapor deposition [J]. Surface and Coatings Technology, 2008, 202: 3507~3512.
    [56]陈炳贻.三种热障涂层制备技术对比[J].航空制造技术, 2004, 2: 82~83.
    [57] Padture N P, Schlichting K W, Bhatia T, et al. Towards durable thermal barrier coatings with novel microstructure deposited by solution-precursor plasma spray [J]. Acta Materialia, 2001, 49: 2251~2257.
    [58] Gell M, Xie L D, Ma X Q, et al. Highly durable thermal barrier coatings made by the solution precursor plasma spray process [J]. Surface and Coatings Technology, 2004, 177-178: 97~102.
    [59] Rousseau F, Awamat S, Morvan D, et al. Deposition of thick oxide layers from solutions in a low pressure plasma reactor [J]. Surface and Coatings Technology, 2007, 202: 714~718.
    [60]谢冬柏,王福会.热障涂层研究的历史与现状[J].材料导报, 2002, 16(3): 7~10.
    [61] He Y, Lee K N, Tewari S, et al. Development of refractory silicate-yittriastabilized zirconia dual-layer thermal barrier coatings [J]. Journal of Thermal Spray Technology, 2000, 9(1): 59~67.
    [62] Salman S, K?se R, Urtekin L, et al. An investigation of different ceramic coating thermal properties [J]. Materials and Design, 2006, 27(7): 585~590.
    [63] Dobbins T A, Knight R, Mayo M J. HVOF thermal spray deposited Y2O3- stabilized ZrO2 coatings for thermal barrier applications [J]. Journal of Thermal Spray Technology, 2003, 22: 214~225.
    [64]裴宇韬,欧阳家虎,雷廷权.激光熔覆复合涂层的研究进展[J].哈尔滨工业大学学报, 1994, 26(1): 73~79.
    [65]查莹,周昌炽,唐西南等.改善激光熔覆镍基合金和陶瓷硬质相复合涂层性能的研究[J].中国激光, 1999, 26(10): 947~950.
    [66] Ouyang J H, Pei Y T, Lei T C. Laser cladding of ZrO2-(Ni alloy) composite coating [J]. Surface and Coatings Technology, 1996, 81(2-3): 131~135.
    [67]杨森,张庆茂,陈娜等.激光涂覆制备原位自生MoSi2/SiC陶瓷复合涂层的研究[J].金属热处理, 2002, 27(4): 4~6.
    [68]张永康.激光加工技术[M].北京:化学工业出版社, 2004.
    [69]刘其斌.高温合金激光熔覆涂层中裂纹防止方法的研究[J].贵州工业大学学报(自然科学版), 2000, 29(5): 56~59.
    [70]牟仁德,何利民,陆峰等.热障涂层制备技术研究进展[J].机械工程材料, 2007, 31(5): 1~4.
    [71]陈照峰,张立同,成来飞等. CVD Al2O3-SiO2系氧化物及其机理分析[J].稀有金属材料与工程, 2004, 33(6): 609~611.
    [72] P?eauchat B, Drawin S. Properties of PECVD-deposited thermal barrier coatings [J]. Surface and Coatings Technology, 2001, 142/144: 835~842.
    [73] Kuzuya C, Hishikawa Y, Motojima S. Preparation of carbon micro-coils by ultrasonic wave CVD [J]. Journal of Chemical Engineering of Japan, 2002, 35(2): 144~149.
    [74] Goto T. Thermal barrier coatings deposited by laser CVD [J]. Surface and Coatings Technology, 2005, 198: 367~37l.
    [75] Wang Z C, Shemilt J, Xiao P. Fabrication of ceramic composite coatings using electrophoretic deposition, reaction bonding and low temperature sintering [J]. Journal of the European Ceramic Society, 2002, 22: 183~189.
    [76] Wang X, Xiao P. Residual stresses and constrained sintering of YSZ/Al2O3 composite coatings [J]. Acta Materialia, 2004, 52: 2591~2603.
    [77]王周成,唐毅,黄龙门等.钛合金表面电泳沉积法制备YSZ/HAp纳米复合涂层[J].功能材料, 2006, 37(6): 944~947.
    [78] Wang X, Xiao P, Schmidt M, et al. Laser processing of yttria stabilised zirconia/alumina coatings on Fecralloy substrates [J]. Surface and Coatings Technology, 2004, 187: 370~376.
    [79] Nijdam T J, Sloof W G. Combined pre-annealing and pre-oxidation treatment for the processing of thermal barrier coatings on NiCoCrAlY bond coatings [J]. Surface and Coatings Technology, 2006, 201: 3894~3900.
    [80] Schulz U, Bernardi O, Ebach-Stahl A, et al. Cyclic behavior of EB-PVD thermal barrier coating systems with modified bond coats [J]. Surface and Coatings Technology, 2008, 203(5-7): 449~455.
    [81] Matsumoto M, Kato T, Hayakawa K,et al.The effect of pre-oxidation atmosphere on the durability of EB-PVD thermal barrier coatings with CoNiCrAlY bond coats [J]. Surface and Coatings Technology 2008, 202: 2743~2748.
    [82] Li H W, Chang E, Wu B C, et a1. Effects of bond coat preoxidation on the properties of ZrO2-8wt%Y2O3/Ni-22Cr-10A1-1Y thermal barrier coatings [J]. Oxides Metal, 1991, 36(3/4): 221~228.
    [83] Padture N P, Gell M, Jordan E H. Thermal barrier coatings for gas-turbine engine applications [J]. Science, 2002, 296: 280~284.
    [84]高阳,潘峰,曾飞等.喷丸处理对热障涂层中NiCrAlY结合层的影响[J].材料保护, 2003, 36(7): 11~12.
    [85]徐前岗,唐建新,王宁等.粘结层表面预处理对EB-PVD热障涂层循环氧化的影响[J].航空材料学报, 2004, 24(4): 30~33.
    [86]田永生,陈传忠,刘军红等. ZrO2热障涂层研究进展[J].中国机械工程, 2005, 16(16): 1499~1503.
    [87] Jones R L. Scandia-stabilized zirconia for resistance to molten vanadate-sulfate corrosion [J]. Surface and Coatings Technology, 1989, 39-40: 89~96.
    [88] Tsai P C, Lee J H, Hsu C S. Hot corrosion behavior of laser-glazed plasma-sprayed yttria-stabilized zirconia thermal barrier coatings in the presence of V2O5 [J]. Surface and Coatings Technology, 2007, 20: 5143~5147.
    [89] Nicholls J R, Deakin M J, Rickerby D S. A comparison between the erosion behaviour of thermal spray and electron beam physical vapour deposition thermal barrier coatings [J]. Wear, 1999, 233-235: 352~361.
    [90] Wellman R G, Deakin M J, Nicholls J R. The effect of TBC morphology on the erosion rate of EB-PVD TBCs [J]. Wear, 2005, 258: 349~356.
    [91] Guo H B, Vassen R, St?ver D. Atmospheric plasma sprayed thick thermal barrier coatings with high segmentation crack density [J]. Surface and Coatings Technology, 2004, 186: 353~363.
    [92]黄维刚.去应力退火对等离子喷涂ZrO2-NiCoCrAlY热障涂层热震性能的影响[J].材料工程, 2001, (10): 25~26.
    [93] Richard C S, Beranger G, et al. The influences of heat treatments and inter- diffusion on the adhesion of plasma-sprayed NiCrAlY coatings [J]. Surface and Coatings Technology, 1996, 82: 99~109.
    [94]肖李鹏,李恩萍,熊国刚.真空热处理对陶瓷涂层性能的影响[C].中国工程物理研究院科技年报, 2003, 1: 486~487.
    [95] Antou G, Montavon G, Hlawka F, et al. Processing of yttria partially stabilized zirconia thermal barrier coatings implementing a high-power laser diode [J]. Journal of Thermal Spray Technology, 2004, 13(3): 381~389.
    [96] Zhang G, Liang Y, Wu Y N, et al. Laser remelting of plasma sprayed thermal barrier coatings [J]. Journal of Materials Science and Technology, 2001, 17(S1): 150~110.
    [97] Lee J H, Tsai P C, Chang C L. Microstructure and thermal cyclic performance of laser-glazed plasma-sprayed ceria-yttria-stabilized zirconia thermal barrier coatings [J]. Surface and Coatings Technology, 2008, 202: 5607~5612.
    [98] Petitbon A, Boquet L. Lsaer surface sealing and strengthening of zirconia coatings [J]. Surface and Coatings Technology, 1991, 49: 57~61.
    [99] Park J H, Kim J S, Lee K H, et al. Effects of the laser treatment and thermal oxidation behavior of CoNiCrAlY/ZrO2-8wt%Y2O3 thermal barrier coating [J]. Journal of Materials Processing Technology, 2008, 201: 331~335.
    [100]陈琳,张三平,周学杰.热喷涂涂层孔隙率的降低方法[J].热加工工艺, 2004, 2: 52~54.
    [101] Ahmaniemia S, Vuoristoa P, M?ntyl? T. Thermal cycling resistance of modified thick thermal barrier coatings [J]. Surface and Coatings Technology, 2005, 190: 378~387.
    [102]王栋,蔡启舟,骆海贺等.热喷涂涂层耐高温SiO2溶胶封孔剂的开发[J].材料热处理, 2002, 35(22): 28~29.
    [103] Miller R A, Lowell C E. Failure mechanisms of thermal barrier coatings exposed to elevated temperatures [J]. Thin Solid Film, 1982, 95: 265~273.
    [104] Wu B C, Chang E, Chang S F, et al. Thermal cyclic response of yttria-stabilized zirconia-CoNiCrAlY thermal barrier coatings [J]. Thin Solid Films, 1989, 172: 185~196.
    [105] Rabiei A, Evans A G. Failure mechanisms associated with the thermally grown oxide in plasma-sprayed thermal barrier coatings [J]. Acta Materialia, 2000, 48: 3963~3976.
    [106] Schlichting K W, Padture N P, Jordan E H, et al. Failure modes in plasma-sprayed thermal barrier coatings [J]. Materials Science and Engineering A, 2003, 342:120~130.
    [107] Bianchi L, Leger A C, Vardelle A, et al. Splat formation and coating of plasma- sprayed zirconia [J]. Thin Solid Films, 1997, 305: 35~47.
    [108] Kuroda S, Clyne T W. The quenching stress in thermally sprayed coatings [J]. Thin Solid Films, 1991, 200: 49~66.
    [109] Takeuchi S, Ito M, et al. Modeling of residual stress in plasma-sprayed coatings: Effect of substrate temperature [J]. Surface and Coatings Technology, 1990, 43: 426~435.
    [110] Matejicek J, Sampath S, Brand P C, et al. Quenching, thermal and residual stress in plasma sprayed deposits: NiCrAlY and YSZ coatings [J]. Acta Materialia, 1999, 47 (2): 607~617.
    [111]姜袆,徐滨士,王海斗.热喷涂层残余应力的来源及其失效形式[J].金属热处理, 2007, 32(1): 25~27.
    [112] Ahrens M, Vassen R, St?ver D. Stress distributions in plasma-sprayed thermal barrier coatings as a function of interface roughness and oxide scale thickness [J]. Surface and Coatings Technology, 2002, 161: 26~35.
    [113] Strangman T, Raybould D, Jameel A, et al. Damage mechanisms, life prediction, and development of EB-PVD thermal barrier coatings for turbine airfoils [J]. Surface and Coatings Technology, 2007, 202: 658~664.
    [114] Portinha A, Teixeira V, J. Carneiro, et al. Characterization of thermal barrier coatings with a gradient in porosity [J]. Surface and Coatings Technology, 2005, 195: 245~241.
    [115] Lima C R C, Nin J, Guilemany J M. Evaluation of residual stresses of thermal barrier coatings with HVOF thermally sprayed bond coats using the Modified Layer Removal Method (MLRM) [J]. Surface and Coatings Technology, 2006, 200: 5963~5972.
    [116] Gill S C, Clyne T W. Stress distributions and material response in thermal spraying of metallic and ceramic deposits [J]. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 1990, 21 (2): 377~385.
    [117] Scardi P, Leoni M, Bertini L, et al. Gradients in plasma-sprayed zirconia thermal barrier coatings [J]. Surface and Coatings Technology, 1998, 108/109: 93~98.
    [118]彭晓,王福会.光激发荧光谱术分析Co-Cr-Al(Y)纳米涂层的氧化Ⅱ: Al2O3膜应力测量与分析[J].金属学报, 2003, 39(10): 1060~1064.
    [119] Lipkin D M, Clarke D R, Schaffer H, et al. Lateral growth kinetics ofα-alumina accompanying the formation of a protective scale on (111) NiAl during oxidation at 1100oC [J]. Applied Physics Letters, 1997, 70: 2550~2552.
    [120] Tolpygo V K, Dryden J, Clarke D R. Determination of the growth stresses generated during the oxidation of Fe-22Cr-4.8Al-0.3Y alloy [J]. Acta Materialia, 1998, 46(3): 927~937.
    [121] Tolpygo V K, Clarke D R. Microstructural study of the theta-alpha transformation in alumina scales formed on nickel-aluminides [J]. Materials at High Temperatures, 2000, 17(1): 59~70.
    [122] Peng X, Clarke D R. Piezospectroscopic analysis of interface debonding in thermal barrier coatings [J]. Journal of the American Ceramic Society, 2000, 83: 1165~1170.
    [123] Chang G C, Phueharoen W, Miller RA. Behavior of thermal barrier coatings of advanced gas turbine blades [J]. Surafce and Coatings Technology, 1986: 30(1): 1~3.
    [124]张永康,孔德军,冯爱新等.涂层界面结合强度检测研究(I):涂层结合界面应力的理论分析[J].物理学报, 2006, 55(6): 2897~3004.
    [125]张勇.热障涂层高温氧化和热冲击失效研究[硕士学位论文].西安:西北工业大学, 2005.
    [126] Vidyasagar H N, Prakash S G, Shivrudraiah, et al. Influence of cyclic thermal loading on fatigue behavior of thermal barrier coatings [J]. World Academy of Science, Engineering and Technology, 2007, 32: 311~313.
    [127]李志华,李焕喜,徐惠彬等.热障涂层的残余应力分析[J].北京航空航天大学学报, 2004, 30(3): 272~275.
    [128]王庆五,杨晓光,齐红宇等.基于粘塑性的单晶镍基合金晶体学本构模型[J].失效分析与预防, 2008, 3(1): 28~34.
    [129]王勇军,王峰会,张勇.圆柱基体热障涂层制备工艺中的残余应力分析[J].应用力学学报, 2007, 24(2): 204~207.
    [130]姚国凤,马红梅,王晓英等.热障涂层界面形貌尺寸与残余应力的关系[J].金属热处理, 2005, 30(10): 43~46.
    [131] Singh J P, Nair B G, Renusch D P, et al. Damage evolution and stress analysis in zirconia thermal barrier coatings during cyclic and isothermal oxidation [J]. Journal of the American Ceramic Society, 2001, 84(10): 2385~2393.
    [132]高西亚,徐颖强,柳卫东.热障涂层在多次热循环作用下残余应力的模拟[J].机械设计与制造, 2007, 6: 77~79.
    [133] Evans A G, He M Y, Hutchinson J W. Mechanics-based scaling law for the durability of thermal barrier coatings [J]. Progress in Materials Science, 2001, 46: 249~271.
    [134] Hutchinson J W, Suo Z. Mixed mode cracking in layered materials [J]. Advancesin Applied Mechanics, 1992, 29: 63~191.
    [135] Teixeira V, Andritschky M, Gruhn H, et al. Failure of physical vapor deposition/ plasma-sprayed thermal barrier coatings during thermal cycling [J]. Journal of Thermal Spray Technology, 2000, 9(2): 191~197.
    [136] Bi X F, Xu H B, Gong S K. Investigation of the failure mechanism of thermal barrier coatings prepared by electron beam physical vapor deposition [J]. Surface and Coatings Technology, 2000, 130: 122~127.
    [137] Sohn Y H, Kim J H, Jordan E H, et al. Thermal cycling of EB-PVD/MCrAlY thermal barrier coatings: I. Microstructural development and spallation mechanisms [J]. Surface and Coatings Technology, 2001, 146-147: 70~78.
    [138]陈和兴,周克菘,金展鹏.等离子喷涂热障涂层失效机理的研究[J].广东有色金属学报, 2002, 12(2): 116~119.
    [139] Wu F, Jordan E H, Ma X, et al. Thermally grown oxide growth behavior and spallation lives of solution precursor plasma spray thermal barrier coatings [J]. Surface and Coatings Technology, 2008, 202: 1628~1635.
    [140]陈炳贻.迅速发展的热障涂层[J].航空制造工程, 1994, (6): 25~26.
    [141]吴卫枫.等离子弧喷涂Al2O3陶瓷涂层的研究[硕士学位论文].辽宁:沈阳工业大学, 2005.
    [142] Brindley W J, Miller R A. Thermal barrier coating life and isothermal oxidation of low plasma-sprayed bond Co at alloys [J]. Surface and Coatings Technology, 1990, 43/44: 446~457.
    [143] Zhu D M, Miller R A. Evaluation of oxidation damage in thermal barrier systems[R]. Washington: NASA, 1996.
    [144] Tolpygo V K, Clarke D R, Murphy K S. Evaluation of interface degradation during cyclic oxidation of EB-PVD thermal barrier coatings and correlation with TGO luminescence [J]. Surface and Coatings Technology, 2004, 188-189: 62~70.
    [145] Clarke D R, Pompe W. Critical radius for interface separation of a compressively stressed film from a rough surface [J]. Acta Materialia, 1999, 47(6): 1749~1756.
    [146] Kim G M, Yanar N M, Hewitt E N, et al. The effect of the type of thermal exposure on the durability of thermal barrier coatings [J]. Scripta Materialia, 2002, 46(7): 489~495.
    [147] Nissley D M. Thermal barrier coating life modeling in aircraft gas turbine engines [J]. Journal of Thermal Spray Technology, 1997, 6(1): 91~98.
    [148]张红松,徐强,王富耻等. ZrO2基热障涂层陶瓷材料研究进展[J].宇航材料工艺, 2007, 3: 1~5.
    [149] Vassen R, Cao X Q, Tietz F, et al. Zirconates as new materials for thermal barrier coatings [J]. Journal of the American Ceramic Society, 2000, 83(8): 2023~2028.
    [150] Li J Y, Dai H, Li Q, et al. Lanthanum zirconate nanofibers with high sintering- resistance [J]. Materials Science and Engineering B, 2006, 133: 209~212.
    [151] Subramanian M A, Aravamudan G, Subba Rao G V. Oxide pyrochlores—A review [J]. Progress in Solid State Chemistry, 1983, 15(2): 55~143.
    [152] Zhou H M, Yi D Q, Yu Z M, et al. Preparation and thermophysical properties of CeO2 doped La2Zr2O7 ceramic for thermal barrier coatings [J]. Journal of Alloys and Compounds, 2007, 438: 217~221.
    [153] Vassen R, Lehmann H, Dietrich M, et al. Heat insulating layer based on La2Zr2O7 for high temperatures [P]. EP1386017, 2004.
    [154]刘喜华,毛红,宋波等. La2O3-CeO2-ZrO2粉的制备及性能[J].北京科技大学学报, 2006, 26(4): 404~406.
    [155]刘喜华.氧化铈改性的锆酸镧热障涂层的制备及热物性研究[硕士学位论文].北京:北京科技大学, 2004.
    [156] Clarke D R. Materials selection guidelines for low thermal conductivity barrier coatings [J]. Surface and Coatings Technology, 2003, 163/164: 67~74.
    [157] Suresh G, Seenivasan G, Krishnaiah M V, et al. Investigation of the thermal conductivity of selected compounds of lanthanum, samarium and europium [J]. Journal of Alloys and Compounds, 1998, 269: L9~L12.
    [158]周宏明,易丹青,钟华.稀土Dy和Ce共掺杂La2Zr2O7新型热障涂层用陶瓷材料[J].无机材料学报, 2008, 23(3): 567~572.
    [159]张清纯.陶瓷材料的力学性能[M].北京:科学出版社, 1987: 279.
    [160] Shimamura K, Arima T, Idemitsu K et al. Thermophysical properties of rare- earth-stabilized zirconia and zirconate pyrochlores as surrogates for actinide- doped zirconia [J]. International Journal of Thermophysics, 2007, 28(3): 1074~ 1084.
    [161] Matsumura Y, Yoshinaka M, Hirota K, et al. Formation and sintering of La2Zr2O7 by the hydrazine method [J]. Solid State Communications, 1997,104(6): 341~345.
    [162] Karch J, Birringer R, Glener H. Ceramics ductile at low temperature [J]. Nature, 1987, 330: 556~558.
    [163] Li J Y, Dai H, Zhong X H, et al. Lanthanum zirconate ceramic toughened by BaTiO3 secondary phase [J]. Journal of Alloys and Compounds, 2008, 452(2): 406~409.
    [164] Li J Y, Da H, Zhon X H, et al. Effect of the addition of YAG (Y3Al5O12) nanopowder on the mechanical properties of lanthanum zirconate [J]. Materials Science and Engineering A, 2007, 460-461: 504~508.
    [165] Li J Y, Dai H, Li Q, et al. Improvement of fracture toughness lanthanum zirconate [J]. Material Engineering, 2006, 5: 51~57.
    [166]李美姮,胡望宇,孙晓峰等. EB-PVD热障涂层的弹性模量和断裂韧性研究[J].稀有金属材料与工程, 2006, 35(4): 577~580.
    [167] Minervini L, Grimes R W, Sickafus K E. Disorder in pyrochlore oxides [J]. Journal of the American Ceramic Society, 2000, 83(8): 1873~1878.
    [168] Stanek C R, Minervini L, Grimes R W. Nonstoichiometry in A2B2O7 pyrochlores [J]. Journal of the American Ceramic Society, 2002, 85(11): 2792~2798.
    [169] Labrincha J A, Frade J R, Marques F M B. Protonic conduction in La2Zr2O7-based pyrochlore materials [J]. Solid State Ionics, 1997, 99: 33~40.
    [170] Ma W, Gong S K, Li H F, et al. Novel thermal barrier coatings based on La2Ce2O7/8YSZ double-ceramic-layer systems deposited by electron beam physical vapor deposition [J]. Surface and Coatings Technology, 2008, 202(12): 2704~2708.
    [171]林河成.氧化镧的生产及应用发展[J].上海有色金属, 2007, 28(4): 196~200.
    [172] Poulsen F W, Puil N. Phase relations and conductivity of Sr- and La-zirconates [J]. Solid State Ionics, 1992, 53/56: 777~783.
    [173] Labrincha J A, Frade J R, Marques F M B. La2Zr2O7 formed at ceramic electrode/YSZ contacts [J]. Journal of Materials Science, 1993, 28: 3809~3815.
    [174] Tong Y P, Zhu J W, Lu L D, et al. Preparation and characterization of Ln2Zr2O7 (Ln = La and Nd) nanocrystals and their photocatalytic properties [J]. Journal of Alloys and Compounds, 2008, 465: 280~284.
    [175]周宏明,易丹青,肖来荣.化学沉淀法制备CeO2-La2O3-ZrO2陶瓷粉末[J].中国有色金属学报, 2007, 17(2): 265~269.
    [176]李霞,刘宏,王继扬等.不同沉淀剂对YAG纳米粉体制备的影响[J].机械工程材料, 2004, 28(7): 51~54.
    [177] Ota A, Matsumura Y, Yoshinaka M, et al. Formation and sintering of 8 mol% Y2O3-substituted La2Zr2O7 by the hydrazine method [J]. Journal of Materials Science Letters, 1998, 17: 199~201.
    [178] Nair J, Nair P, Doesburg E B M, et al. Preparation and characterization of lanthanum zirconate [J]. Journal of Materials Science, 1998, 33: 4517~4523.
    [179] Hiroyasu K, Sridhar K, Rustum R. Preparation of La2Zr2O7 by sol-gel route [J]. Journal of the American Ceramic Society, 1991, 74(2): 422~424.
    [180] Pechini M P. Methods of preparing lead and alkaline-earth iitanates and niobates using the same to form a capacitor [P]. US Patent 3 330 697, 1967.
    [181] Rao K K, Banu T, Vithal M et al. Preparation and characterization of bulk and nano particles of La2Zr2O7 and Nd2Zr2O7 by sol-gel method [J]. Materials Letters, 2002, 54: 205~210.
    [182]赵晓东,曾克里,谢建刚等.溶胶-凝胶法在合成纳米La2Zr2O7中的应用[J].有色金属(冶炼部分), 2007,增刊: 2~4.
    [183] Prasadarao A V, Selvaraj U, Komarneni S, et al. Sol-Gel synthesis of Ln2(Ln=La, Nd)Ti2O7 [J]. Journal of Materials Science, 1992, 7: 2859~2863.
    [184]朱振峰,王若兰.自蔓延燃烧合成陶瓷粉体的研究进展[J].中国陶瓷, 2004, 40(1): 28~31.
    [185] Tong Y P, Wang Y P, Yu Z X. Preparation and characterization of pyrochlore La2Zr2O7 nanocrystals by stearic acid method [J]. Materials Letters, 2008, 62: 889~891.
    [186] Zhang A Y, Lu M K, Zhou G J, et al. Combustion synthesis and photo- luminescence of Eu3+, Dy3+-doped La2Zr2O7 nanocrystals [J]. Journal of Physics and Chemistry of Solids, 2006, 67: 2430~2434.
    [187]倪星元,姚兰芳,沈军等.纳米材料的制备技术[M].北京:化学工业出版社, 2008.
    [188]陈代荣,焦秀玲,徐如人. La2M2O7(M=Ti,Zr)多晶粉末的低温水热合成及表征[J].高等学校化学学报, 1998, 19(9): 1378~1380.
    [189] Chen D R, Xu R R. Hydrothermal synthesis and chareacterization on La2M2O7 (M=Ti, Zr) powders [J]. Materials Research Bulletin, 1998, 33(3): 409~417.
    [190] Saruhan B, Fritscher K, Schulz U. Y-Doped La2Zr2O7 pyrochlore EB-PVD thermal barrier coatings [J]. Ceramic Engineering and Science Proceedings, 2003, 24(3):491~498.
    [191] Yu Z M, Odier P, Ortega L, et al. La2Zr2O7 films on Cu-Ni alloy by chemical solution deposition process [J]. Material Science and Engineering B, 2006, 130: 126~131.
    [192] Zhu X B, Sun Y P, Song W H, et al. Chemical solution deposition of La2Zr2O7 and Y2Ti2O7 buffer layers on NiW substrates [J]. Physica C, 2006, 433(3-4): 154~159.
    [193] Celik E, Akin Y, Sigmund W, et al. Fabrication of La2Zr2O7 buffer layers on Ni tapes by reel-to-reel sol-gel technique [J]. Materials Science and Engineering B, 2004, 106(2): 182~190.
    [194]宋波,刘喜华,张梅等. La2O3-CeO2-ZrO2热障涂层材料研究[J].中国稀土学报, 2004, 22: 465~468.
    [195] Cao X Q, Vassen R, Jungen W, et al. Thermal stability of lanthanum zirconate plasma-sprayed coating [J]. Journal of the American Ceramic society, 2001, 84 (9): 2086~2090.
    [196]张红松,张政,魏媛等.等离子喷涂Sm2Zr2O7热障涂层及其性能[J]. 2008, 41(11): 24~27.
    [197]曾可里,刘富荣,赵晓东.等离子喷涂纳米La2Zr2O7和纳米ZrO2涂层隔热性能比较[J].有色金属(冶炼部分), 2007,增刊: 79~82.
    [198] Zhao X D, Zeng K L, Xie J G. Nanostructured lanthanum zirconate coating and its thermal stability properties [J]. Proceedings of Sino-Swedish Structural Materials Symposium 2007: 147~151.
    [199] Miura M, Hongoh H, Yogo T, et al. Formation of plate-like lanthanum-beta- aluminate crystal in Ce-TZP matrix [J]. Journal of Materials Science, 1994, 29(1): 262~268.
    [200] Strunz P, Schumacher G, Vassen R, et al. In-situ SANS study of pore micro- structure in YSZ thermal barrier coatings [J]. Acta Materialia, 2004, 52: 3305~ 3312.
    [201] Strunz P, Schumacher G, Vassen R, et al. In situ small-angle neutron scattering study of La2Zr2O7 and SrZrO3 ceramics for thermal barrier coatings [J]. Scripta Material, 2006, 55: 545~548.
    [202] Cao X Q, Li J Y, Zhong X H, et al. La2(Zr0.7Ce0.3)2O7—a new oxide ceramic material with high sintering-resistance [J]. Materials Letters, 2008, 62: 2667~ 2669.
    [203] St?ver D, Pracht G, Lehmann H, et al. New material concepts for the next generation of plasma-sprayed thermal barrier coatings [J]. Journal of Thermal Spray Technology, 2004, 13(1): 76~83.
    [204] He L M, Xu Z H, Cao X Q, et al. Adhesive strength of new thermal barrier coatings of rare earth zirconates [J]. Vacuum, 2009, 83: 1388~1392.
    [205]周宏明.稀土掺杂锆酸盐新型热障涂层制备及性能研究.中南大学博士后出站报告, 2008.
    [206] Cao X Q, Vassen R, Tietz F, et al. New double-ceramic-layer thermal barrier coatings based on zirconia-rare earth composite oxides [J]. Journal of the European Ceramic Society, 2006, 26: 247~251.
    [207] Ma W, Gong S K, Xu H B, et al. The thermal cycling behavior of Lanthanum-Cerium Oxide thermal barrier coating prepared by EB-PVD [J]. Surface and Coatings Technology, 2006, 200: 5113~5118.
    [208] Vassen R, Cao X Q, St?ver D. Improvement of new thermal barrier coating systems using a layered or graded structure [J]. Ceramic Engineering Science Process, 2001, 22 (4): 435~442.
    [209] Vassen R, Traeger F, St?ver D. New thermal barrier coatings based on pyrochlore/YSZ double-layer systems [J]. International Journal of Applied Ceramic Technology, 2004, 1(4): 351~361.
    [210] Dai H, Zhong X H, Li J Y, et al. Thermal stability of double-ceramic-layer thermal barrier coatings with various coating thickness [J]. Materials Science andEngineering A, 2006, 433: 1~7.
    [211] Vassen R, Dietrich M, Lehmann H, et al. Development of Oxide Ceramics for an Application as TBC [J]. Materials Science Engineering Technology, 2001, 32(8): 673~677.
    [212] Wei Q L, Guo H B, Gong S K, et al. Novel microstructure of EB-PVD double ceramic layered thermal barrier coatings [J]. Thin Solid Films, 2008, 516: 5736~5739.
    [213]陈恭珉.用于高温化工环境的镍基合金Haynes(R) 230(R) [J].上海化工, 2005, 30(6): 51~52.
    [214]夏斌.钼合金超燃发动机燃烧室的研制[硕士学位论文].湖南:国防科技大学, 2006.
    [215]王海军.热喷涂实用技术[M].北京:国防工业出版社, 2006: 248.
    [216]张红松,王富耻,马壮等.等离子涂层孔隙研究进展[J].材料导报, 2006, 20(7): 16~19.
    [217]魏高升,张欣欣,于帆等.激光脉冲法测量硬硅钙石绝热材料热扩散率[J].北京科技大学学报, 2006, 28(8): 778~781.
    [218] Du Q, Liu X, Guo J, et al. Thermal barrier coating-thermal conductivity measurement and methods to reduce the thermal conductivity [J]. Functional Materials, 2005, 36(7): 1100~1106.
    [219]朱健,胡传顺,尤国武等.燃气轮机叶片热障涂层隔热效果计算[J].石油化工高等学校学报, 2003, 16(4): 44~47.
    [220]尹敬执,申泮文.基础无机化学(下册)[M].北京:人民教育出版社, 1980: 593.
    [221] Choy J H, Han Y S, Kim S J. Oxalate coprecipitation route to the piezoelectric Pb(Zr,Ti)O3 oxide [J]. Journal of Materials Chemistry, 1997, 7(9): 1807~1813.
    [222]大连工学院无机化学教研室编.无机化学[M].北京:人民教育出版社, 1978: 26.
    [223] Chen H F, Gao Y F, Liu Y, et al. Coprecipitation synthesis and thermal conductivity of La2Zr2O7 [J]. Journal of Alloys and Compounds. doi:10.1016/ j.jallcom.2009.02.081
    [224] Ludwig F P, Schmelzer J. On von weimarn's law in nucleation theory [J]. Journal of Colloid and Interface Science, 1996, 181(2): 503~510.
    [225]翟永清,姚子华,穆晓楠等.用碳酸氢铵作沉淀剂制备La2O3纳米晶体[J].化学研究与应用, 2005, 17(3): 359~361.
    [226]张克立,陈雄斌,席美云等.十水草酸镧的热分解机理[J].武汉大学学报(自然科学版), 1996, 42(2): 163~166.
    [227]王连洲,范福康. pH值对化学共沉淀法制备SrTiO3粉料性能的影响[J].硅酸盐通报, 1991, 1: 3~8.
    [228]李建,刘存业,姚永泉.用湿化学法制备LaAlO3微粒的研究[J].硅酸盐学报, 1994, 22(5): 504~508.
    [229]杨波,王志兴,郭华军等.室温固相反应-煅烧分解法制备镍锰氧化物[J].中国有色金属学报, 2007, 17(10): 1705~1710.
    [230]陆昌伟,施剑林,奚同庚.化学法制备超细ZrO2粉热分解过程的TG-DTA-MS研究[J].材料研究学报, 1994, 8(2): 144~148.
    [231] Harvey E J, Whittle K R., Lumpkin G R, et al. Solid solubilities of (La Nd,)2(Zr,Ti)2O7 phases deduced by neutron diffraction [J]. Journal of Solid State Chemistry, 2005, 178: 800~810.
    [232] Shannon R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides [J]. Acta Crystallographica Section A, 1976, 32: 751~769.
    [233]周玉.陶瓷材料学[M].哈尔滨:哈尔滨工业大学出版社, 1995: 319.
    [234] Ma W, Gong S K, Xu H B, et al. On improving the phase stability and thermal expansion coefficients of lanthanum cerium oxide solid solutions [J]. Scripta Materialia, 2006, 54(8): 1505~1508.
    [235] Heine V, Welche P R L, Dove M T. Geometrical origin and theory of negative thermal expansion in framework structures [J]. Journal of the American Ceramic Society, 1999, 82(7):1793~1802.
    [236] Sleight A W. Compounds that contract on heating [J]. Inorganic Chemistry, 1998, 37(12): 2854~ 2860.
    [237] Bayer G, Hofmann M, Gauckler L J. Effect of ionic substitution on the thermal expansion of ZrTiO4 [J]. Journal of the American Ceramic Society, 1991, 74(9): 2205~2208.
    [238] Khosrovani N, Sleight A W, Vogt T. Structure of ZrV2O7 from -263 to 470oC [J]. Journal of Solid State Chemistry, 1997, 132: 355~360.
    [239] Sleight A W. Negative thermal expansion materials [J]. Current Opinion in Solid State and Materials Science, 1998, 3(2): 128~131.
    [240] Zhu D M, Miller R A. Development of advanced low conductivity thermal barrier coatings [J]. International Journal of Applied Ceramic Technology, 2004, 1(1): 86~94.
    [241] Wilde P J, Catlow C R A. Defects and diffusion in pyrochlore structured oxides [J]. Solid State Ionics, 1998, 112: 173~183.
    [242] Wilde P J, Catlow C R A. Molecular dynamics study of the effect of doping and disorder on diffusion in gadolinium zirconate [J]. Solid State Ionics, 1998, 112:185~195.
    [243] Crocombette J -P, Chartier A. Spontaneous cationic Frenkel pair recombinations in lanthanum pyrozirconate (La2Zr2O7) [J]. Nuclear Instruments and Methods in Physics Research Section B, 2006, 250: 24~27.
    [244] Phatak G M, Gangadharan K, Pal H, et al. Luminescence properties of Ti-doped gem-grade zirconia powders [J]. Bulletin of Materials Science 1994, 17:163~169.
    [245] Johnson J, Qu J M. Effective modulus and coefficient of thermal expansion of Ni-YSZ porous cermets [J]. Journal of Power Sources, 2008, 181, 85~92.
    [246] Brinkiene K, Kezelis R. Correlations between processing parameters and microstructure for YSZ films produced by plasma spray technique [J]. Journal of the European Ceramic Society, 2004, 24: 1095~1099.
    [247] McPherson R, Shafer B V. Interlamellar contact within plasma-sprayed coatings [J]. Thin Solid Films, 1982, 97: 201~204.
    [248]张平.热喷涂材料[M].北京:国防工业出版社, 2006: 189.
    [249] Nusair K A, Lu J. Manipulation of air plasma spraying parameters for the production of ceramic coatings [J]. Journal of Materials Processing Technology, 2009, 209(5): 2508~2514.
    [250]龚江宏.陶瓷材料断裂力学[M].北京:清华大学出版社, 1999: 9~11.
    [251]蔡建平,李波.等离子喷涂羟基磷灰石涂层的结合强度[J].材料保护, 2000, 33(9): 35~37.
    [252]张永康,孔德军,冯爱新等.涂层界面结合强度检测研究(Ⅱ):涂层结合界面应力的理论分析[J].物理学报, 2006, 55(11): 6008~6012.
    [253] Hsueh C H. Thermal stresses in elastic multilayer systems [J]. Thin Solid Films, 2002, 418(2): 182~188.
    [254]应保胜,高全杰,但斌斌.等离子喷涂涂层中残余应力分析[J].表面技术, 2004, 33(1): 15~17.
    [255] Andersson C A. Thermal stress fracture of ceramic coatings [J]. Fracture Mechanics of Ceramics, 1983, 6: 497~509.
    [256] Cao X Q, Vassen R, Tietz F, Stoever D. New double-ceramic-layer thermal barrier coatings based on zirconia-rare earth composite oxides [J]. Journal of the European Ceramic Society, 2006, 26: 247~251.
    [257]王盘鑫.粉末冶金学[M].北京:冶金工业出版社, 1997: 188.
    [258] Diaz P, Edirisinghe M J, Ralph B. Microstructural changes and phase trans- formations in a plasma sprayed zirconia-yttria-titania thermal barrier coating [J]. Surface and Coatings Technology, 1996, 82(3): 284~290.
    [259] Lima R S, Marple B R. Nanostructured YSZ thermal barrier coatings engineered to counteract sintering effects [J]. Materials Science and Engineering A, 2008,485(1-2): 182~193.
    [260] McPherson R. A model for the thermal conductivity of plasma sprayed ceramic coatings [J]. Thin Solid films, 1984, 112: 89~95.
    [261] McPherson R. A review of microstructure and properties of plasma sprayed ceramic coatings [J]. Surface and Coatings Technology, 1989, 39/40: 173~181.
    [262] Neuer G, Steffens H-D, Brandl W, et al. Some aspects of properties design of plasma-sprayed thermal barrier coatings [J]. Powder Metallurgy International, 1991, 23(2): 108~111.
    [263] Li H, Bradt R C. The microhardness indentation load/size effect in rutile and cassiterite single crystals [J]. Journal of Materials Science, 1993, 28(4): 917~926.
    [264]赵文明,王俊,翟长生等.纳米复合涂层ZrO2/0.05w(Al2O3)力学性能的Weibull分布特性[J].中国表面工程, 2005, 18(4): 13~16.
    [265] Zhou H, Li F, He B, et al. Air plasma sprayed thermal barrier coatings on titanium alloy substrates [J]. Surface and Coatings Technology, 2007, 201(16-17): 7360~ 7367.
    [266] Elsing R, Knotek O, Balting U. Calculation of residual thermal stress in plasma-sprayed coating [J]. Surface and Coatings Technology, 1990, 43/44(1-3): 416~425.
    [267] Khor K A, Gu Y W, Dong Z L. Mechanical behavior of plasma sprayed functionally graded YSZ/NiCoCrAlY composite coatings [J]. Surface and Coatings Technology, 2001, 139(2): 200~206.
    [268] Bolelli G, Cannillo V, Lusvarghi L. Plasma-sprayed glass-ceramic coatings on ceramic tiles: microstructure, chemical resistance and mechanical properties [J]. Journal of the European Ceramic Society, 2005, 25(11): 1835~1853.
    [269] Costa Oliveiraa F A, Cruz Fernandes J. Mechanical and thermal behaviour of cordierite-zirconia composites [J]. Ceramics International, 2002, 28: 79~91.
    [270] Balmain J, Loudjani M K, Huntz A M. Microstructure and diffusional aspects of the growth of Alumina [J]. Materials Science and Engineering A, 1997, 224: 87~100.
    [271] Busso E P, Lin J, Sakurai S, et al. A mechanistic study of oxidation-induced degradation in a plasma-sprayed thermal barrier coating system. Part I: model formulation [J]. Acta Materialia, 2001, 49(9): 1515~1528.
    [272] Wu Y N, Ke P L, Wang Q M, et al. High temperature properties of thermal barrier coatings obtained by detonation spraying [J]. Corrosion Science, 2004, 46: 2925~ 2935.
    [273] Wang B, Gong J, Sun C. The behavior of MCrAlY coating on Ni3Al-base superalloy [J]. Material Science and Engineering A, 2003, 357: 39~44.
    [274]张罡,武颖娜,梁勇等. Al2O3对等离子喷涂热障涂层高温氧化及热震性能的影响[J].中国有色金属学报, 2002, 12(3): 409~414.
    [275] Leoni M, Jones R L, Scardi P. Phase stability of scandia-yttria-stabilized zirconia TBCs [J]. Surface and Coatings Technology, 1998, 108-109: 107~113.
    [276]师昌绪,李恒德,周廉.材料科学与工程手册(上卷)[M].北京:化学工业出版社, 2003: 6-241.
    [277]美国国家材料咨询委员会所属涂层委员会编,金石译.高温抗氧化涂层-防止超级合金难熔金属和石墨氧化的涂层[M].北京:科学出版社, 1980.
    [278]方前锋,王先平,易志国等. La2Mo2O9系新型氧离子导体中氧空位扩散的内耗与介电弛豫研究[J].金属学报, 2003, 39(11): 1133~1138.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700