稀土氧化物热障涂层陶瓷材料的缺陷化学及热物理性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着热能发动机的发展,对热障涂层陶瓷层材料的性能要求越来越高,传统的Y2O3稳定的ZrO_2(YSZ)材料已经很难满足这种需求,研发综合性能更加优异的新一代热障涂层陶瓷材料具有重要的现实意义和应用价值。本论文以综合性能比较好的稀土氧化物陶瓷材料为研究对象,通过掺杂、非化学计量比、稀土元素替代、成分设计等方法和手段,研究了材料晶体结构以及各种点缺陷对材料热物理性能的影响,为新型热障涂层陶瓷材料的选择与性能调控打下了基础。主要研究内容如下:
     以焦绿石结构稀土锆酸盐为研究对象,研究了二价元素掺杂对Sm_2Zr_2O_7热物理性能的影响。结果显示,掺杂MgO可以在小幅提高Sm_2Zr_2O_7材料热导率的情况下,显著改善其热膨胀性能,平均热膨胀系数最高可达11.94×10-6 K~(-1)(室温~1000℃)。通过分析固溶体的拉曼光谱、点阵参数、X射线光电子能谱以及实测密度,提出并确认了一种不同于之前研究的涉及多种点缺陷和一个机理转变点的固溶模型,并解释了材料热物理性能的变化。
     以焦绿石/萤石相区的SmO_(1.5)-ZrO_2体系固溶体为研究对象,研究了非化学计量比对材料晶体结构、缺陷类型以及热物理性能方面的影响。研究表明,非化学计量比同时降低了材料的热导率和热膨胀系数,其中,0.55 SmO_(1.5)·0.45ZrO_2具有最好的综合性能。该体系拉曼光谱的分析提供了萤石/焦绿石结构转变的重要信息,并为焦绿石结构拉曼光谱振动模式分析提供了有力的证据支持。
     研究了具有稳定焦绿石结构的稀土锡酸盐体系的晶体结构和热物理性能,发现其1000℃下的热导率为1.9~2.3W/(m·K),平均热膨胀系数在8.3~9.3×10-6K-1之间(30~1000℃)。极限热导率计算认为,其热导率还有较大的下降空间。
     首次研究了成分容忍度高的磷灰石结构稀土硅酸盐的热物理性能。通过材料成分设计的方法,在材料中引入了多种点缺陷,研究了不同点缺陷种类与浓度对材料热导率的影响。测试结果表明,该体系化合物具有基本不随温度变化的极低的热导率,阴阳离子空位浓度的增大可以进一步降低材料的热导率,而氧离子间隙对材料热导率的影响不大。
With the development of heat engines, there is a growing demand for a better performance of the ceramic top-coat in thermal barrier coatings (TBCs) whereas conventional yttria-stabilized zirconia (YSZ) ceramics can not meet the demand any more. Thus it is integral to identify novel materials with better combination property for the next generation thermal barrier coating applications. In this dissertation, several rare-earth oxides series ceramics were identified and the effect of crystal structure and point defects on the thermophysical properties of materials was investigated by means of doping, nonstoichiometry, substitution of rare earth ions and composition design, which is crucial to the materials selection and properties tailoring.
     Alkaline earth ions doping was carried out to tailor the thermophysical properties of rare-earth zirconate Sm_2Zr_2O_7. The results show that the thermal expansion coefficient of material is remarkably increased through MgO doping with a maximum value around 11.94×10~(-6) K~(-1) (RT~1000℃) though there is a slight increase in thermal conductivity. A new solid-solution model that is different from previous research was proposed and confirmed by analyzing the variation of the Raman spectroscopy, lattice parameters, X-ray photoelectron spectroscopy, and experimental density of samples. It involves various kinds of point defects and a turning point in solid solution mechanism, which may be responsible for the variation of the thermophysical properties.
     The solid solutions of SmO_(1.5)-ZrO_2 system in pyrochlore/fluorite phase region were identified and the effect of nonstoichiometry on the crystal structure, defect species and thermlphysical properties was investigated. It has been shown that the thermal conductivity and thermal expansion coefficient decrease simultaneously with the nonstoichiometry. Sample with composition of 0.55 SmO_(1.5)·0.45ZrO_2 turns out to be the one with best combination property, that is, low thermal conductivity and relative high thermal expansion coefficient. Moreover, the Raman spectra of this system provide some important information of fluorite/pyrochlore phase transformation and experimental evidence for the assignments of vibration modes.
     The crystal structure and thermophysical properties of rare-earth stannate pyrochlores were also investigated. The experimental data of thermal conductivity and average thermal expansion coefficient of rare-earth stannates are 1.9~2.3 W/(m·K) and 8.3~9.3×10-6 K~(-1) (30~1000℃), respectively. The minimum thermal conductivity calculated by Clarke model shows that there is a possibility to reduce the thermal conductivity further.
     The thermal conductivities of rare-earth silicates with apatite structure which shows a good composition tolerance were studied for the first time. Various kinds of point defects were introduced into the crystal through composition design, and the effect of defect species and concentration on the thermal conductivity was investigated. These compounds show a very low and almost temperature-independent thermal conductivity. The increase of cation and anion vacancies in crystal further reduces the thermal conductivity while oxygen interstitial ions exhibit no remarkable influence.
引文
[1] Clarke D R, Phillpot S R. Thermal barrier coating materials. Mater Today, 2005, 8:22-29.
    [2]刘家富.燃气涡轮发动机制造技术的发展.先进制造与材料应用技术, 1998, 4:7-10.
    [3]丁彰雄.热障涂层的研究动态及应用.中国表面工程, 1999, 12:31-37.
    [4] Caron P, Khan T. Evolution of Ni-based superalloys for single crystal gas turbine blade applications. Aerosp Sci Technol, 1999, 3:513-523.
    [5] Meier S M, Gupta D K. The evolution of thermal barrier coatings in gas-turbine engine applications. J Eng Gas Turbines Power-Trans ASME, 1994, 116:250-257.
    [6]陈炳贻.燃气轮机用热障涂层的进展.燃气轮机技术, 1995, 8:24-27.
    [7]徐惠彬,宫声凯,刘福顺.航空发动机热障涂层材料体系的研究.航空学报, 2000, 21:7-12.
    [8] Padture N P, Gell M, Jordan E H. Materials science - Thermal barrier coatings for gas-turbine engine apptications. Science, 2002, 296:280-284.
    [9] Clarke D R, Levi C G. Materials design for the next generation thermal barrier coatings. Ann Rev Mater Res, 2003, 33:383-417.
    [10] Tian Y S, Chen C Z, Wang D Y, et al. Recent developments in zirconia thermal barrier coatings. Surf Rev Lett, 2005, 12:369-378.
    [11] Evans A G, Mumm D R, Hutchinson J W, et al. Mechanisms controlling the durability of thermal barrier coatings. Prog Mater Sci, 2001, 46:505-553.
    [12] Cao X Q, Va?en R, St?ver D. Ceramic materials for thermal barrier coatings. J Eur Ceram Soc, 2004, 24:1-10.
    [13] Klemens P G, Gell M. Thermal conductivity of thermal barrier coatings. Mater Sci Eng A-Struct, 1998, 245:143-149.
    [14] Maloney M J. Thermal barrier coating systems and materials. US Patent, 6117560. 2000.
    [15] Ahrens M, Va?en R, St?ver D. Stress distributions in plasma-sprayed thermal barrier coatings as a function of interface roughness and oxide scale thickness. Surf Coat Technol, 2002, 161:26-35.
    [16] Hamacha R, Dionnet B, Grimaud A, et al. Residual stress evolution during the thermal cycling of plasma-sprayed zirconia coatings. Surf Coat Technol, 1996, 80:295-302.
    [17] Kokini K, DeJonge J, Rangaraj S, et al. Thermal shock of functionally graded thermal barrier coatings with similar thermal resistance. Surf Coat Technol, 2002, 154:223-231.
    [18] Kim J H, Kim M C, Park C G. Evaluation of functionally graded thermal barrier coatings fabricated by detonation gun spray technique. Surf Coat Technol, 2003, 168:275-280.
    [19] Bao G, Cai H. Delamination cracking in functionally graded coating/metal substrate systems. Acta Mater, 1997, 45:1055-1066.
    [20] Dong Z L, Khor K A, Gu Y W. Microstructure formation in plasma-sprayed functionally graded NiCoCrAlY/yttria-stabilized zirconia coatings. Surf Coat Technol, 1999, 114:181-186.
    [21] Busso E P, Lin J, Sakurai S, et al. A mechanistic study of oxidation-induced degradation in a plasma-sprayed thermal barrier coating system. Part I: Model formulation. Acta Mater, 2001, 49:1515-1528.
    [22] Va?en R, Kerkhof G, St?ver D. Development of a micromechanical life prediction model for plasma sprayed thermal barrier coatings. Mater Sci Eng A-Struct, 2001, 303:100-109.
    [23] Wu J, Wei X Z, Padture N P, et al. Low-thermal-conductivity rare-earth zirconates for potential thermal-barrier-coating applications. J Am Ceram Soc, 2002, 85:3031-3035.
    [24] Clarke D R. Materials selection guidelines for low thermal conductivity thermal barrier coatings. Surf Coat Technol, 2003, 163:67-74.
    [25] Schelling P K, Phillpot S R, Grimes R W. Optimum pyrochlore compositions for low thermal conductivity. Philos Mag Lett, 2004, 84: 127-137.
    [26] Siebert B, Funke C, Va?en R, et al. Changes in porosity and Young's modulus due to sintering of plasma sprayed thermal barrier coatings. J Mater Process Technol, 1999, 93:217-223.
    [27] Miller R A. Thermal barrier coatings for aircraft engines: History and directions. J Therm Spray Technol, 1997, 6:35-42.
    [28]尹衍升,李嘉.氧化锆陶瓷及其复合材料.北京:化学工业出版社, 2004.
    [29] Stecura S. Two-layer thermal barrier coating for turbine airfoils-fumace and burner rig test results. NASA TM X-3425, National Aeronautics and Space Administration, 1976.
    [30] Stecura S. Optimization of the NiCrAI-Y/ZrO2-Y2O3 Thermal Barrier System. NASA TM 86905, National Aeronautics and Space Administration, 1985.
    [31] Va?en R, Cao X Q, Tietz F, et al. Zirconates as new materials for thermal barrier coatings. J Am Ceram Soc, 2000, 83:2023-2028.
    [32] Stecura S. New ZrO2-Yb2O3 plasma-sprayed coatings for thermal barrier applications. Thin Solid Films, 1987, 150:15-40.
    [33] Rahaman M N, Gross J R, Dutton R E, et al. Phase stability, sintering, and thermal conductivity of plasma-sprayed ZrO2-Gd2O3 compositions for potential thermal barrier coating applications. Acta Mater, 2006, 54:1615-1621.
    [34] Jones R L, Mess D. Improved tetragonal phase stability at 1400oC with scandia, yttria-stabilized zirconia. Surf Coat Technol, 1996, 86-87:94-101.
    [35] Jones R L, Reidy R F, Mess D. Scandia, yttria-stabilized zirconia for thermal barrier coatings. Surf Coat Technol, 1996, 82:70-76.
    [36] Leoni M, Jones R L, Scardi P. Phase stability of scandia-yttria-stabilized zirconia TBCs. Surf Coat Technol, 1998, 108-109:107-113.
    [37] Huang X, Wang D, Lamontagne M, et al. Experimental study of the thermal conductivity of metal oxides co-doped yttria stabilized zirconia. Mater Sci Eng B, 2008, 149:63-72.
    [38] Zhu D, Miller R A. Sintering and creep behavior of plasma-sprayed zirconia- and hafnia-based thermal barrier coatings. Surf Coat Technol, 1998, 108-109:114-120.
    [39] Xu H B, Guo H B, Liu F S, et al. Development of gradient thermal barrier coatings and their hot-fatigue behavior. Surf Coat Technol, 1999, 130:133-139.
    [40] Winter M R, Clarke D R. Thermal conductivity of yttria-stabilized zirconia-hafnia solid solutions. Acta Mater, 2006, 54:5051-5059.
    [41] Ibagazene H, Alperine S, Diot C. Yttria-stabilized hafnia-zirconia thermal barrier coatings: the influence of hafnia addition on TBC structure and high-temperature behaviour. J Mater Sci, 1995, 30:938-51.
    [42] Brandon J R, Taylor R. Phase stability of zirconia-based thermal barrier coatings part II. Zirconia-ceria alloys. Surf Coat Technol, 1991, 46:91-101.
    [43] Dalmaschio R, Scardi P, Lutterotti L, et al. Influence of Ce3+/Ce4+ ratio on phase stability and residual stress field in ceria-yttria stabilized zirconia plasma-sprayed coatings. J Mater Sci, 1992, 27:5591-5596.
    [44] Schulz U, Fritscher K, Peters M. EB-PVD Y2O3- and CeO2/Y2O3-stabilized zirconia thermal barrier coatings - Crystal habit and phase composition. Surf Coat Technol, 1996, 82:259-269.
    [45] Sodeoka S, Suzuki M, Ueno K, et al. Thermal and mechanical properties of ZrO2-CeO2 plasma-sprayed coatings. J Therm Spray Technol, 1997, 6:361-367.
    [46] Lee C H, Kim H K, Choi H S, et al. Phase transformation and bond coat oxidation behavior of plasma-sprayed zirconia thermal barrier coating. Surf Coat Technol, 2000, 124:1-12.
    [47] Han Z H, Xu B S, Wang H J, et al. A comparison of thermal shock behavior between currently plasma spray and supersonic plasma spray CeO2-Y2O3-ZrO2 graded thermal barrier coatings. Surf Coat Technol, 2007, 201:5253-5256.
    [48] Thornton J, Majumdar A, McAdam G. Enhanced cerium migration in ceria-stabilised zirconia. Surface and Coatings Technology, 1997, 94-95: 112-117
    [49] Raghavan S, Wang H, Porter W D, et al. Thermal properties of zirconia co-doped with trivalent and pentavalent oxides. Acta Mater, 2001, 49:169-179.
    [50] Zhu D M, Miller R A. Low Conductivity and Sintering-Resistant Thermal Barrier Coatings. US Patent, 7186466, 2006.
    [51] Zhu D M, Nesbitt J A, Barrett C A, et al. Furnace cyclic oxidation behavior of multicomponent low conductivity thermal barrier coatings. J Therm Spray Technol, 2004, 13:84-92.
    [52] Minervini L, Grimes R W, Sickafus K E. Disorder in pyrochlore oxides. J Am Ceram Soc, 2000, 83:1873-1878.
    [53] Stanek C R, Minervini L, Grimes R W. Nonstoichiometry in A2B2O7 pyrochlores. J Am Ceram Soc, 2002, 85:2792-2798.
    [54] Cao X Q, Vassen R, Jungen W, et al. Thermal stability of lanthanum zirconate plasma-sprayed coating. J Am Ceram Soc, 2001, 84:2086-2090.
    [55] Zhou H M, Yi D Q, Yu Z M, et al. Preparation and thermophysical properties of CeO2 doped La2Zr2O7 ceramic for thermal barrier coatings. J Alloys Compounds, 2007, 438:217-221.
    [56] Lehmann H, Pitzer D, Pracht G, et al. Thermal conductivity and thermal expansion coefficients of the lanthanum rare-earth-element zirconate system. J Am Ceram Soc, 2003, 86:1338-1344.
    [57]徐强.稀土锆酸盐热障涂层陶瓷材料的研究[博士后研究报告]:清华大学材料系, 2005.
    [58] Suresh G, Seenivasan G, Krishnaiah M V, et al. Investigation of the thermal conductivity of selected compounds of lanthanum, samarium and europium. J Alloys Compounds, 1998, 269:L9-L12.
    [59] Catchen G L, Rearick T M. O-Anion Transport Measured in Several R2M2O7 Pyrochlores Using Perturbed-Angular-Correlation Spectroscopy. Phys Rev B, 1995, 52:9890-9899.
    [60] Suresh G, Seenivasan G, Krishnaiah M V, et al. Investigation of the thermal conductivity of selected compounds of gadolinium and lanthanum. J Nucl Mater, 1997, 249: 259-261
    [61] Xu Q, Pan W, Wang J D, et al. Rare-earth zirconate ceramics with fluorite structure for thermal barrier coatings. J Amer Ceram Soc, 2006, 89:340-342.
    [62] Tabira Y, Withers R L. Structure and crystal chemistry as a function of composition across the wide range nonstoichiometric (1-ε)ZrO2·εSmO1.5, 0.38 <ε< 0.55, oxide pyrochlore system. J Solid State Chem, 1999, 148:205-214.
    [63] Feighery A J, Irvine J T S, Zheng C. Phase relations at 1500oC in the ternary system ZrO2-Gd2O3-TiO2. J Solid State Chem, 2001, 160:302-306.
    [64] Wu J, Padture N P, Klemens P G, et al. Thermal conductivity of ceramics in the ZrO2-GdO1.5 system. J Mater Res, 2002, 17:3193-3200.
    [65] Wu J, Padture N P, Gell M. High-temperature chemical stability of low thermal conductivity ZrO2-GdO1.5 thermal-barrier ceramics in contact withα-Al2O3. Scripta Mater, 2004, 50:1315-1318.
    [66] Leckie R M, Kramer S, Ruhle M, et al. Thermochemical compatibility between alumina and ZrO2-GdO3/2 thermal barrier coatings. Acta Mater, 2005, 53:3281-3292.
    [67] Wan C L, Pan W, Xu Q, et al. Effect of point defects on the thermal transport properties of (LaxGd1-x)2Zr2O7: Experiment and theoretical model. Phys Rev B, 2006, 74:144109.
    [68] Liu Z G, Ouyang J H, Zhou Y. Preparation and thermophysical properties of (NdxGd1-x )2Zr2O7 ceramics. J Mater Sci, 2008, 43:3596-3603.
    [69]万春磊.低热导率高稳定性热障涂层材料的研究[博士学位论文].北京:清华大学材料系, 2008.
    [70] Ling L, Qiang X, Fuchi W, et al. Thermophysical properties of complex rare-earth zirconate ceramic for thermal barrier coatings. J Am Ceram Soc, 2008, 91:2398-2401.
    [71] Liu Z G, Ouyang J H, Zhou Y, et al. (Ln0.9Gd0.05Yb0.05)2Zr2O7 ceramics with pyrochlore structure as thermal barrier oxides. Adv Eng Mater, 2008, 10:754-758.
    [72] Cao X Q, Vassen R, Fischer W, et al. Lanthanum-cerium oxide as a thermal barrier-coating material for high-temperature applications. Adv Mater, 2003, 15:1438-1442.
    [73] Cao X Q, Vassen R, Tietz F, et al. New double-ceramic-layer thermal barrier coatings based on zirconia-rare earth composite oxides. J Eur Ceram Soc, 2006, 26:247-251.
    [74] Ma W, Gong S K, Xu H B, et al. On improving the phase stability and thermal expansion coefficients of lanthanum cerium oxide solid solutions. Scripta Mater, 2006, 54:1505-1508.
    [75] Ma W, Gong S K, Xu H B, et al. The thermal cycling behavior of lanthanum-cerium oxide thermal barrier coating prepared by EB-PVD. Surf Coat Technol, 2006, 200:5113-5118.
    [76] Dai H, Zhong X H, Li J Y, et al. Neodymium-cerium oxide as new thermal barrier coating material. Surf Coat Technol, 2006, 201:2527-2533.
    [77] Wan C L, Pan W, Qu Z X, et al. Thermophysical properties of samarium-cerium oxide for thermal barrier coatings application. Key Eng Mater, 2007, 336-338:1773-1775.
    [78] Ni Y X, Hughes J M, Mariano A N. Crystal chemistry of the monazite and xenotime structures. Am Miner, 1995, 80: 21-26
    [79] Hikichi Y, Ota T, Daimon K, et al. Thermal, mechanical, and chemical properties of sintered xenotime-type RPO4 (R = Y, Er, Yb, or Lu). J Am Ceram Soc, 1998, 81:2216-2218.
    [80] Hikichi Y, Nomura T, Tanimura Y, et al. Sintering and Properties of Monazite-Type CePO4. J Am Ceram Soc, 1990, 73:3594-3596.
    [81] Friedrich C, Gadow R, Schirmer T. Lanthanum hexaaluminate - a new material for atmospheric plasma spraying of advanced thermal barrier coatings. J Therm Spray Technol, 2001, 10:592-598.
    [82] Friedrich C J, Gadow R, Lischka M H. Lanthanum hexaaluminate thermal barrier coatings. Ceram Eng Sci Proc. 2001, 22: 375-382.
    [83] Gadow R, Lischka M. Lanthanum hexaaluminate - novel thermal barrier coatings for gas turbine applications - materials and process development. Surf Coat Technol, 2002, 151-152:392-399.
    [84] Cao X Q, Zhang Y F, Zhang J F, et al. Failure of the plasma-sprayed coating of lanthanum hexaluminate. J Eur Ceram Soc, 2008, 28:1979-1986.
    [85] Padture N P, Klemens P G. Low thermal conductivity in garnets. J Am Ceram Soc, 1997, 80:1018-1020.
    [86] Su Y J, Trice R W, Faber K T, et al. Thermal conductivity, phase stability, and oxidation resistance of Y3Al5O12 (YAG)/Y2O3-ZrO2 (YSZ) thermal-barrier coatings. Oxid Metals, 2004, 61:253-271.
    [87] Breval E, McKinstry H A, Agrawal D K. New [NZP] materials for protection coatings. Tailoring of thermal expansion. J Mater Sci, 2000, 35:3359-3364.
    [88] Trice R W, Su Y J, Faber K T, et al. The role of NZP additions in plasma-sprayed YSZ: microstructure, thermal conductivity and phase stability effects. Mater Sci Eng A-Struct, 1999, 272:284-291.
    [89] Wan C L, Qu Z X, He Y, et al. Ultralow thermal conductivity in highly anion-defective aluminates. Phys Rev Lett, 2008, 101:085901.
    [90] Dietrich M, Verlotski V, Va?en R, et al. Metal-glass based composites for novel TBC-systems. Mat.-wiss. u. Werkstofftech. 2001, 32:669-672.
    [91] Chen H, Ding C X. Nanostructured zirconia coating prepared by atmospheric plasma spraying. Surf Coat Technol, 2002, 150:31-36.
    [92]陈煌,丁传贤.等离子喷涂氧化锆纳米涂层显微结构研究.无机材料学报, 2002, 17:882-886.
    [93] Kittel C. Interpretation of the thermal conductivity of glasses. Phys Rev, 1949, 75: 972
    [94] Klemens P G. The thermal conductivity of dielectric solids at low temperatures - Theoretical. Proc Royal Soc London Series A, 1951, 208:108-133.
    [95]关振铎,张中太,焦金生.无机材料物理性能.北京:清华大学出版社, 1992.
    [96] Klemens P G. Phonon scattering by oxygen vacancies in ceramics. Physica B, 1999, 263:102-104.
    [97]奚同庾.无机材料热物性学.上海:上海科学技术出版社, 1981.
    [98] Kingery W D, Bowen H K, Uhlmann D R. Introduction to ceramics. 2nd ed. New York: Wiley, 1976.
    [99] Klemens P G. The scattering of low-frequency lattice waves by static imperfections. Proc Phys Soc London Section A, 1955, 68:1113-1128.
    [100] Klemens P G. Thermal resistance due to point defects at high temperatures. Phys Rev, 1960, 119:507-509.
    [101] Abeles B. Lattice Thermal conductivity of disordered semiconductor alloys at high temperatures. Phys Rev, 1963, 131:1906-1911.
    [102] Bodzenta J. Influence of order-disorder transition on thermal conductivity of solids. Chaos Solitons & Fractals, 1999, 10:2087-2098.
    [103] Cahill D G, Watson S K, Pohl R O. Lower limit to the thermal conductivity of disordered crystals. Phys Rev B, 1992, 46:6131-6140.
    [104] Ruffa A R. Temperature dependence of the elastic shear moduli of the cubic metals. Phy Rev B, 1977, 16:2504-2514.
    [105] Ruffa A R. Thermal expansion in insulating materials. J Mater Sci, 1980, 15:2258-2267.
    [106] Ruffa A R. Thermal expansion and melting in cubic crystals. Phys Rev B, 1981, 24:6915-6925.
    [107] Ruffa A R. Thermal expansion and zero-point displacement in isotopic lithium hydride. Phys Rev B, 1983, 27: 1321-1325.
    [108] Kraftmakher Y. Equilibrium vacancies and thermophysical properties of metals. Phys Rep, 1998, 299:79-188.
    [109] Grimvall G. Thermophysical properties of materials. Amsterdam: Elsevier, 1999
    [110] Shimamura K, Arima T, Idemitsu K, et al. Thermophysical properties of rare-earth-stabilized zirconia and zirconate pyrochlores as surrogates for actinide-doped zirconia. Inter J Thermophys, 2007, 28:1074-1084.
    [111] Leitner J, Chuchvalec P, Sedmidubsky D, et al. Estimation of heat capacities of solid mixed oxides. Thermochim Acta, 2003, 395:27-46.
    [112] Barin I. Thermochemical data of pure substances. Weinheim: VCH, 1993
    [113] Cape J A, Lehman G W. Temperature and finite pulse-time effects in the flash method for measuring thermal diffusivity. J Appl Phys, 1963, 34:1909-1913.
    [114] Mehling H, Hautzinger G, Nilsson O, et al. Thermal diffusivity of semitransparent materials determined by the laser-flash method applying a new analytical model. Inter J Thermophys, 1998, 19:941-949.
    [115] Clark L M I, Taylor R E. Radiation loss in the flash method for thermal diffusivity. J Appl Phys, 1975, 46:714-719.
    [116] Nair J, Nair P, Doesburg G B M, et al. Sintering of lanthanum zirconate. J Am Ceram Soc, 1999, 82:2066-2072.
    [117] Wu J. Novel Low-thermal-conductivity ceramics for thermal barrier coating applications [Ph.D. Dissertation]: University of Connecticut Materials, 2004
    [118] McCauley R A. Structural characteristics of pyrochlore formation. J Appl Phys, 1980, 51:290-294.
    [119] Moon J, Awano M, Maeda K. Hydrothermal synthesis and formation mechanisms of lanthanum tin pyrochlore oxide. J Am Ceram Soc, 2001, 84:2531-2536.
    [120] Tabira Y, Withers R L, Minervini L, et al. Systematic structural change in selected rare earth oxide pyrochlores as determined by wide-angle CBED and a comparison with the results of atomistic computer simulation. J Solid State Chem, 2000, 153:16-25.
    [121] Scheetz B E, White W B. Characterization of anion disorder in zirconate A2B2O7 compounds by Raman spectroscopy. J Am Ceram Soc, 1979, 62:468-470.
    [122] Vandenborre M T, Husson E, Chatry J P, et al. Rare-earth titanates and stannates of pyrochlore structure; vibrational spectra and force fields. J Raman Spectrosc, 1983, 14:63-71.
    [123] Poulsen F W, Glerup M, Holtappels P. Structure, Raman spectra and defect chemistry modelling of conductive pyrochlore oxides. Solid State Ionics, 2000, 135:595-602.
    [124] Gupta H C, Brown S, Rani N, et al. Lattice dynamic investigation of the zone center wavenumbers of the cubic A2Ti2O7 pyrochlores. J Raman Spectrosc, 2001, 32:41-44.
    [125] Hess N J, Begg B D, Conradson S D, et al. Spectroscopic investigations of the structural phase transition in Gd2(Ti1-yZry)2O7 pyrochlores. J Phys Chem B, 2002, 106:4663-4677.
    [126] Zhang F X, Manoun B, Saxena S K, et al. Structure change of pyrochlore Sm2Ti2O7 at high pressures. Appl Phys Lett, 2005, 86:181906.
    [127] Gupta H C, Brown S, Rani N, et al. A lattice dynamical investigation of the Raman and the infrared frequencies of the cubic A2Sn2O7 pyrochlores. Inter J Inorg Mater, 2001, 3:983-986.
    [128] Saha S, Muthu D V S, Pascanut C, et al. High-pressure Raman and x-ray study of the spin-frustrated pyrochlore Gd2Ti2O7. Phys Rev B, 2006, 74:064109.
    [129] Vandenborre M T, Husson E. Comparison of the force field in various pyrochlore families. I. The A2B2O7 oxides. J Solid State Chem, 1983, 50:362-371.
    [130] Shannon R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystall, 1976, A32:751-767.
    [131] Chen J, Lian J, Wang L M, et al. X-ray photoelectron spectroscopy study of irradiation-induced amorphizaton of Gd2Ti2O7. Appl Phys Lett, 2001, 79:1989-1991.
    [132] Chen J, Lian J, Wang L M, et al. X-ray photoelectron spectroscopy study of disordering in Gd2(Ti1-xZrx)2O7 pyrochlores. Phys Rev Lett, 2002, 88:105901.
    [133] Rohrer G S. Structure and bonding in crystalline materials. New York: Cambridge University Press, 2001.
    [134] Wilde P J, Catlow C R A. Defects and diffusion in pyrochlore structured oxides. Solid State Ionics, 1998, 112:173-183.
    [135] Pirzada M, Grimes R W, Maguire J F. Incorporation of divalent ions in A2B2O7 pyrochlores. Solid State Ionics, 2003, 161:81-91.
    [136] Parker W J, Jenkins R J, Butler C P, et al. Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. J Appl Phys, 1961, 32:1679-1684.
    [137] Kutty K V G, Rajagopalan S, Mathews C K, et al. Thermal expansion behaviour of some rare earth oxide pyrochlores. Mater Res Bull, 1994, 29:759-766.
    [138] Pannetier J. Energie electrostatique des reseaux pyrochlore. J Phys Chem Solids, 1973, 34:583-589.
    [139] Serena S, Sainz M A, de Aza S, et al. Thermodynamic assessment of the system ZrO2-CaO-MgO using new experimental results: Calculation of the isoplethal section MgO·CaO-ZrO2. J Eur Ceram Soc, 2005, 25:681-693.
    [140] Wang C, Zinkevich M, Aldinger F. Phase diagrams and thermodynamics of rare-earth-doped zirconia ceramics. Pure Appl Chem, 2007, 79:1731-1753.
    [141] Wang C, Zinkevich M, Aldinger F. Experimental investigation and thermodynamic modeling of the ZrO2-SmO1.5 system. J Am Ceram Soc, 2007, 90:2210-2219.
    [142] Perez y Jorba M. Contribution a l’etude des systems zircon-oxydes de terres rares. Ann Chim, 1962, 7:479-511.
    [143]黄昆.固体物理学.北京:高等教育出版社, 1988.
    [144] Boccaccini D N, Boccaccini A R. Dependence of ultrasonic velocity on porosity and pore shape in sintered materials. J Nondestruct Eval, 1997, 16:187-192.
    [145] Ondracek G. The quantitative microstructure-field property correlation of multiphase and porous materials. Rev Powder Metal Phys Ceram, 1987, 3:205-322.
    [146] Boccaccini A R, Fan Z. A new approach for the Young's modulus-porosity correlation of ceramic materials. Ceram Inter, 1997, 23: 239-245
    [147] Brisse F, Knop O. Pyrochlores. III. X-Ray, neutron, infrared, and dielectric studies of A2Sn2O7 stannates. Can J Chem, 1968, 46:859-873.
    [148] Chakoumakos B C. Systematics of the pyrochlore structure type, ideal A2B2X6Y. J Solid State Chem, 1984, 53:120-129.
    [149] Minervini L, Grimes R W, Tabira Y, et al. The oxygen positional parameter in pyrochlores and its dependence on disorder. Phil Mag A, 2002, 82:123-135.
    [150] Kennedy B. Structural and Bonding Trends in Tin Pyrochlore Oxides. J Solid State Chem, 1997, 130:58-65.
    [151] Bisson J F, Fournier D, Poulain M, et al. Thermal conductivity of yttria-zirconia single crystals, determined with spatially resolved infrared thermography. J Am Ceram Soc, 2000, 83:1993-1998.
    [152] Mévrel R, Laizet J C, Azzopardi A, et al. Thermal diffusivity and conductivity of Zr1-xYxO2-x/2 (x=0, 0.084 and 0.179) single crystals. J Eur Ceram Soc, 2004, 24:3081-3089.
    [153] Roufosse M C, Klemens P G. Lattice Thermal conductivity of minerals at high temperatures. J Geophys Res, 1974, 79:703-705.
    [154] Yu T-H, Tuller H L. Ionic conduction and disorder in the Gd2Sn2O7 pyrochlore system. Solid State Ionics, 1996, 86-88:177-182.
    [155] Gale J D, Rohl A L. The General Utility Lattice Program (GULP). Mol Simulat, 2003, 29:291-341.
    [156] Perrière L, Bregiroux D, Naitali B, et al. Microstructural dependence of the thermal and mechanical properties of monazite LnPO4 (Ln = La to Gd). J Eur Ceram Soc, 2007, 27:3207-3213.
    [157] Ternane R, Cohen-Adad M T, Boulon G, et al. Synthesis and characterization of new oxyboroapatite. Investigation of the ternary system CaO-P2O5-B2O3. Solid State Ionics, 2003, 160:183-195.
    [158] Panteix P J, Julien I, Abelard P, et al. Influence of cationic vacancies on the ionic conductivity of oxyapatites. J Eur Ceram Soc, 2008, 28:821-828.
    [159] Takahashi M, Uematsu K, Ye Z-G, et al. Single-crystal growth and structure determination of a New Oxide Apatite, NaLa9(GeO4)6O2. J Solid State Chem, 1998, 139:304-309.
    [160] Bechade E, Julien I, Iwata T, et al. Synthesis of lanthanum silicate oxyapatite materials as a solid oxide fuel cell electrolyte. J Eur Ceram Soc, 2008, 28:2717-2724.
    [161] Jones A, Slater P R, Islam M S. Local defect structures and ion transport mechanisms in the oxygen-excess apatite La9.67(SiO4)6O2.5. Chem Mater, 2008, 20:5055-5060.
    [162] Nakayama S, Kageyama T, Aono H, et al. Ionic conductivity of lanthanoid silicates, Ln10(SiO4)6O3 (Ln = La, Nd, Sm, Gd, Dy, Y, Ho, Er and Yb). J Mater Chem, 1995, 5:1801-1805.
    [163] Boyer L, Piriou B, Carpena J, et al. Study of sites occupation and chemical environment of Eu3+ in phosphate-silicates oxyapatites by luminescence. J Alloys Compd, 2000, 311:143-152.
    [164] Beaudet-Savignat S, Vincent A, Lambert S, et al. Oxide ion conduction in Ba, Ca and Sr doped apatite-type lanthanum silicates. J Mater Chem, 2007, 17:2078-2087.
    [165] Orera A, Kendrick E, Apperley D C, et al. Effect of oxygen content on the Si-29 NMR, Raman spectra and oxide ion conductivity of the apatite series, La8+xSr2-x(SiO4)6O2+x/2. Dalton Trans, 2008:5296-5301.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700