岩石微生物对碳酸盐岩的风化作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是世界上碳酸盐岩分布面积最大的国家,由于碳酸盐岩的风化溶蚀速率慢,成土速率更慢,且碳酸盐岩地区存在土层薄,土石结合差,降雨量较充沛,降水期较长,水土流失严重等状况,造成了碳酸盐岩地区石漠化日趋严重,因此研究碳酸盐岩的风化就显得十分重要。
     本文利用从碳酸盐岩中分离纯化出的101个微生物菌株,利用碳酸钙风化试验筛选出风化效率最高的一株细菌F8B008(地衣芽孢杆菌Bacillus licheniformis)和一株真菌FeM001(曲霉属Aspergillus sp.)。研究了这两种微生物对碳酸盐岩的风化作用过程与机理,初步探讨了微生物在碳酸盐岩风化中的高效性应用。
     采用液体培养方法研究了3株细菌和3株真菌对碳酸盐岩风化作用,结果表明,微生物可以促进碳酸盐岩的风化,不同微生物之间存在对碳酸盐岩风化速率的差异,大致表现出真菌(FeM001>FeM002>BYwM020)>细菌(BYB013>F8B008>GZKB01)的趋势。温度和机械作用对碳酸盐岩的风化影响不大,第10d时Ca2+浓度在20-30ug/mL之间;无机酸对碳酸盐岩的风化作用较人,考虑到微生物的广泛分布和惊人的繁殖能力,在已有研究结果的基础上提出微生物对碳酸盐岩的风化作用远大于化学对碳酸盐岩的风化作用。对碳酸盐岩的微生物风化作用过程研究发现,真菌对碳酸盐岩的风化作用主要是吸附包裹,细菌则以吸附为主,这造成真菌对碳酸盐岩的风化能力普遍大于细菌,微生物对碳酸盐岩的包裹或者吸附能力是影响到对碳酸盐岩风化能力强弱的重要因素;接种量、菌种转接次数、微生物的繁殖能力、生长速率、嗜碳酸盐岩性等都是微生物风化碳酸盐岩的影响因素。微生物的代谢产物对碳酸盐岩风化也有着很大影响,柠檬酸和曲酸对碳酸盐岩风化有很强的作用(风化效率达到30‰以上),乙酸对碳酸盐岩风化作用不明显;乳糖、多糖对碳酸盐岩的风化效率分别为:0.09‰、4.95‰;乳糖风化碳酸盐岩作用不明显,多糖对碳酸盐岩的风化作用较大(风化效率达到5‰左右);微生物产生的碳酸俄酐酶有促进碳酸盐岩风化的作用,并且可能是微生物蛋白中主要对碳酸盐岩起风化作用的蛋白质。试验还发现外界因素如机械作用、温度和pH值等都是微生物风化碳酸盐岩的重要因素。
     论文从地质微生物和微生物地球化学的角度探讨了微生物对碳酸盐岩的风化作用,为这一领域的研究提供了基础资料,研究结果增进了对碳酸盐岩微生物风化作用过程和机理的认识,并为碳酸盐岩地区石漠化治理提供了新的思路。
Our country has the largest carbonate rock dispersal area in the world since the weathering speed of carbonate rock is slow the speed of carbonate rock to change into soil is evenslower. Futher, the soil layer of carbonate rocks area is thin, the capability of soil bonding with stone is lower, the rainfall amount is quite abundant and the precipitation is long, and the soil and water loss is serious, it has created the stone desert of carbonate rocks areas. Therefore, the result obtained in this work could have a significant impact on studies of carbonate rock with the microorganism weathering. A total of 101 different kinds of microorganisms separated from carbonate rock was used in the screening with the highest weathering efficiency microorganisms, bacterium F8B008 (Bacillus licheniformis.) and fungus FeM001 (Aspergillus sp.) using CaC03 weathering test. The carbonate rock weathering process and mechanism of these two kinds of microorganisms and the application of highly effective weathering carbonate rock of microorganism was also studied.
     The mechanism and the process of F8B008 and FeM001 weather carbonate rock was investigated using submerged fermentation. The result indicated that microorganism could promote carbonate rock weathering, the speed between the different microorganism weather carbonate rock is different and the tendency is fungus (FeM001>FeM002>BYwM020)> bacterium (BYB013>F8B008>GZKBO1). The temperature and the mechanical did not influence the carbonate rock weathering to a signaificant extent, achieving 20-30ug/mL in 10d. The promoter action of inorganic acid which makes decent to carbonate rock is strong but is much higher than in the external environment microorganism quantity of the inorganic acid content and, as the microorganism are living things there is continuous reproduction so long as the nutrition is sufficient, therefore the present study considers the microorganism is better than chemistry in the ability to enhance the carbonate rocks weathering. The experiment revealed that fungi to carbonate rocks sufficiently primarily absorbs the bacterium allowing the fungus to to the carbonate rocks with a greater efficiency. The microorganism is generally affects the decency strong and the weak to the carbonate rocks package or adsorptive capacity the factor; The vaccination quantity, generation cycle, microorganism's reproduction ability, and growth speed are addicted to the carbonate morphology and so on all are the microorganism decency carbonate rocks influence factors. Microorganism's metabolite has very tremendous influence to the carbonate rocks decency, the citric acid and kojic acid has very strong function to the carbonate rocks decency (weathering efficiency to achieve 30‰above), the ethanoic acid is not obvious to the carbonate rocks weathering efficiency; The lactose, the polysaccharide to the carbonate rocks weathering efficiency respectively are:0.09‰,4.95‰; The lactose function relations is not big, the polysaccharide function is big (weathering efficiency to achieve 5‰about); Microorganism's carbonic anhydrase has the function which the promotion carbonate rocks make decent, and took in the microorganism protein mainly gets windy to the carbonate rocks the function protein. The experiment also discovered the outside factor mechanical effect, the temperature, the pH value all are the microorganism decency carbonate rocks primary factors.In the experiment discovered, microorganism when decency carbonate rocks may fall low-water the chemical oxygen demand, has the degeneration function to the heavy metal manganese.
     In the paper, the process and mechanism of carbonate rock weathering by microorganism were studied from the microorganism geochemistry angle, which could supply evidences of the field in the world. Theory and method of advantageous in enhances the carbonate rocks to make decent the earth speed, compared with other report, the speed of carbonate rock to change into soil was enhanced, it provids one rationale how to prevent the stone desert of carbonate rock areas.
引文
[1]丁丽君,连宾.碳酸钙微生物风化试验研究[J].中国岩溶.2008,27(3):197—200.
    [2]丁丽君,连宾.几种微生物碳酸酐酶测定及其对碳酸盐岩的风化作用[J].矿物岩石地球化学通报,2009,28(4):480.
    [3]丁敬敏.化学实验技术基础(Ⅱ)[M].北京:化工出版社.1998,103—136.
    [4]马丁.探索机械风化作用[J].科学课.2008,4:F0004.
    [5]王世杰,季宏兵等.碳酸盐岩风化成土作用的初步研究[J].中国科学.1999,29(5):441—449.
    [6]王兴山,张捷等.石灰岩石刻文物表面硬度与生物风化研究.[J].安徽师范大学学报(自然科学版).2006,29(4):381—394.
    [7]王兴文,董家喜.酒泉风砺石[J].地球.2004,5:20—21.
    [8]王涛,李强,王增银.碳酸盐岩微生物溶蚀作用特征及意义[J].水文地质工程地质.2007,34(3):6—9.
    [9]王福星,曹建华,黄俊发等.初论藻类生物岩溶作用[J].桂林工学院学报.1995,15(2):149—156
    [10]田友萍,张捷,宋林华等.气生藻类在云南石林景观形成中的作用[J].中国科学D辑(地球科学).2004,34(1):75—88.
    [11]孙承兴,王世杰,刘秀明,冯志刚.碳酸盐岩风化壳岩—土界面地球化学特征及其形成过程[J].矿物学报.2002,22(2):126—132.
    [12]叶笑风,迟莉娜,张振家等.两级常温厌氧-好氧-固定化微生物组合工艺处理酿酒废水[J].环境污染与防治.2006,28(11):827—830.
    [13]李为等.不同种类微生物及其碳酸酐酶对土壤—灰岩系统钙镁锌元素迁移作用的土柱模拟实验研究:[J].土壤.2007,39(3):453—45.
    [14]李为,余龙江,袁道先等.不同岩溶生态系统土壤及其细菌碳酸酐酶的活性分析及生态意义[J].生态学报.2004,24(3):438—443.
    [15]李景阳,王朝富.关于喀斯特成土作用舯新认识[J].工程地质信息.1989,3:2—6.
    [16]李景阳,王朝富,樊廷章.试论碳酸盐岩风化壳与喀斯特成土作用[J].中国岩溶.1991,10(3):29—37.
    [17]李景阳,朱立军.论碳酸盐岩现代风化壳和古风化壳[J].中国岩溶.2004,23(1):56—62.
    [18]李景阳,朱立军.碳酸盐岩风化壳及喀斯特成土作用研究[J].贵州地质.1996,13(2):139—145.
    [19]曲东.环境监测[M].北京:中国农业出版社.2007,89.
    [20]朱立军,李景阳.碳酸盐岩风化成土作用及其环境效应[M].北京:地质出版社.2004,80-110.
    [21]朱地琴,唐庆九,张劲松等.龙须菜多糖提取工艺优化及其体外免疫活性研究[J].天然产物研究与开发.2008,20(6):983—987.
    [22]刘再华.外源水对灰岩和白云岩的侵蚀速率野外试验研究:以桂林尧山为例[J].中国岩溶.2000,19(1):1—4.
    [23]刘再华.碳酸酐酶对碳酸盐岩溶解的催化作用及其在大气CO2沉降中的意义[J].地球学报.2001,22(5):477—480.
    [24]刘再华,w. Dreybrodt,韩军等.CaCO3-CO2-H 2O岩溶系统的平衡化学及其分析[J].中国岩溶.2005,24(1):1—14.
    [25]刘再华,袁道先,何师意.岩溶动力系统水化学动态变化规律分析[J].中国岩溶.1999,18(2):103—108.
    [26]刘春茹,刘秀明,王世杰等.贵州碳酸盐岩风化壳形成年龄的初步判定[J].原子能科学技术.2008,42(6):568—569.
    [27]连宾.微生物地球化学作用及其在农业中的应用[M].地质地球化学.1995(6):71—75.
    [28]连宾.硅酸盐细菌的解钾作用研究[M].贵阳:贵州科技出版社.1998,27—39.
    [29]连宾,陈骏,傅平秋等,微生物影响硅酸盐矿物风化作用的模拟试验[J].高校地质学报.2005,11(2):181—186.
    [30]连宾,傅平秋,莫德明,刘丛强.硅酸盐细菌解钾作用机理的综合效应[J].矿物学报.2002,22(2):179—183.
    [31]陆上岭,叶青.浅析城镇环境综合整治定量考核中地面水“COD”指标的分析方法[J].江苏环境科技.1991,1:36—37.
    [32]杨仁怀.贵州中部之地形发育[J].地理学报.1994,11(1).
    [33]杨新星.工业分析技术[M].北京:化工出版社.2000,1—30.
    [34]余龙江,吴云,李为等.微生物碳酸酐酶对石灰岩的溶蚀驱动作用研究[J].中国岩溶.2004,23(3):225—228.
    [35]余素玉、何镜宇.沉积岩石学[M].湖北:中国地质大学出版社.1989,103—209.
    [36]张学丰等.白云岩成因相关问题及主要形成模式.[J].地质科学情报.2006,25(5):32—40.
    [37]张浩等.碳酸盐岩早期风化成土作用的证据[J].中国岩溶.2006,25(1):52—55.
    [38]张捷,包浩生.生物喀斯特及其微形态研究[J].地球科学进展,1995,10(5):454-463.[39]张捷,李升峰,陈泛舒等.南京梁代石刻微侵蚀的研究[J].地理学报.1994,49(5):418—428.
    [40]伯杰氏等.伯杰细菌鉴定手册(第八版,中译本)[M].北京:科学出版社.1984,1—888.
    [41]陈杰等.南极石生地衣主要生物风化作用研究进展与展望.[J].极地研究.2003,15(1):65—74.
    [42]陈杰,龚子同.南极地区的物理风化作用及其对土壤发育的影响[J].土壤学进展.1995,23(1):13—20.
    [43]陈骏,姚素平.地质微生物学及其发展方向.[J].高校地质学报.2005(11)2:154-166.
    [44]沈萍,范秀容,李广武主编.微生物学实验第三版[M].北京:高等教育出版社.1999:31-35.
    [45]何镜宇、孟祥化.沉积岩和沉积相模式及建造[M].北京:地质出版社.1987:94-99.
    [46]周德庆.微生物学教程[M].北京:高等教育出版社.2002,4—7.
    [47]秦中,张捷,刘沛.碳酸盐岩表面过程分析及应用[J].贵州工业大学学报(自然科学版).2006,35(4):4—8.
    [48]秦建华,冉敬,杜谷.青藏高原东部长江流域盆地陆地化学风化研究[J].沉积与特提斯地质.2007,27(4):1—6.
    [49]徐则民,黄润秋,唐正光,费维水.中国南方碳酸盐岩上覆红土形成机制研究进展[J].地球与环境.2005,33(4):29—36.
    [50]徐则民,黄润秋,唐正光,费维水.岩体化学风化的非连续性及其科学意义[J].地球科学进展.2006,21(7):706—712.
    [51]徐英.固定化微生物厌氧.好氧处理焦化废水中COD及氨氮的研究[J].电力学报.2007,22(2):162—165.
    [52]徐慧珍,段秀铭, 高赞东等.济南泉域排泄区岩溶地下水水化学特征[J].水文地质工程地质.2007,34(3):15—19.
    [53]袁春,周常萍,童立强等.贵州土地石漠化的形成原因及其治理对策[J].现代地质.2003,17(2):181—185.
    [54]袁道先.中国岩溶学[M].北京:地质出版社.1994,99—156.
    [55]唐新科,周平兰,谭爱武.菠菜叶绿体蛋白质的提取与分离[J].湘潭师范学院学报:自然科学版.2008,30(4):33—35.
    [56]唐薇薇等.利用藻、菌、草治理沙化土地的研究[J].四川大学学报(自然科学版).2005,42(4):852—854.
    [57]谌书等.磷矿石的微生物风化作用——以一株黑曲霉(Aspergillus niger)为例[J].生态环境.2007,16(3):1007—101.
    [58]曹建华,王福星,黄俊发,等.桂林地区石灰岩表面生物岩溶溶蚀作用[J].中国岩溶.1993,12(1):11—22.
    [59]曹建华,袁道先.石生藻类、地衣、苔藓与碳酸盐岩持水性及生态意义[J].地球化学.1999,28(3):248—256.
    [60]曹建华,袁道先,潘根兴等.岩溶动力系统中的生物作用机理初探[J].地学前缘.2001,8(1):203—209.
    [61]曹建华,袁道先,潘根兴等.不同植被条件下土壤碳转移对岩溶动力系统中碳循环的影响[J].地球与环境.2004,32(1):90—96.
    [62]曹建华,蒋忠诚,杨德生等.我国西南岩溶区土壤侵蚀强度分级标准研究[J].中国水土保持科学.2008,6(6):1—7.
    [63]章程,袁道先.IGCP448:岩溶生态系统全球对比研究进展[J].中国岩溶.2005,24(1):84—88.
    [64]黄仲涛.现代化工词典[M].北京:科学出版社.2004,101—765.
    [65]黄黎英等.几种低分子量有机酸对石灰岩溶蚀作用的室内模拟试验[J].地球与环境.2006,34(3):44—50.
    [66]谢先德,张刚生微生物—矿物相互作用之环境意义的研究[J].岩石矿物学杂志.2001(20)4:382-386.
    [67]韩云,程凯,赵以军.高效降解生活污水中COD的根际微生物的分离筛选[J].微生物学杂志.2008,28(2):61—64.
    [68]韩贵琳,刘丛强.贵州喀斯特地区河流的研究——碳酸盐岩溶解控制的水文地球化学特征[J].地球科学进展.2005,20(4):394—406.
    [69]焦振泉,刘秀梅.16s rRNA序列同源性分析与细菌系统分类鉴定[J].国外医学卫生学分册.1998,25(1):12-16.
    [70]焦振泉,刘秀梅.细菌分类鉴定的分子生物学方法研究进展[J].国外医学卫生学分册.1996,23(6):356-358.
    [71]魏景超.真菌鉴定手册[M].上海:上海科学技术出版社.1979,1—780.
    [72]F.奥斯伯,R.E.金斯顿等.精编分子生物学指南[M].北京:科学出版社.1999,39-40.
    [73]Graham, R. Davies,康新荣,黎发文.受构造控制的热液白云岩储集层[J].国外油气地质信息.2007,4:1—36.
    [74]Avakyan Z A.Silicon cimpounds in solution bacteria quartz degradation Mikrobiologiya[J].1984,54(2):301-307.
    [75]Barker W W, Welch S A, Chu S, et al. Experimental observations of the effects of bacteria on aluminosilicate weathering.[J]. American Mineralogist.1998,83(12):1551—1563.
    [76]Benett P C, Hiebert F K and Choi W J. Microbial colonization and weathering of silicates in a petroleum-contaminated groundwater [M].Chemical Geology.1996,132:45 — 53.
    [77]Bennett P C ,Rogers J R,Choi W J,et al. Silicates, silicate weathering, and microbial ecology. Geomicrobiology Journal[M].2001,18:3—19.
    [78]Benzerara K, Yoon T H, Menguy N, et al. Nanoscale environments associate with bioweathering of a Mg-Fe-pyroxene. PNAS[J]. GEOLOGY.2005,102(4):979—982.
    [79]Blum J D, Gazis C A and Jacobson A D, et al.Carborute versus silicate weathering in the Raikhot watershed within the High Himalayan Crystalline Series[J].Geology.1998, 26(5):411—414.
    [80]BolterM. An extreme habitat for microorganisms. Pedosphere[J].Soil.2004,14(2):137 — 144.
    [38]Campebell N A,Reece J B.Essential biology[M]. Beijing: High Education Press,2001,303 — 325.
    [81]Cao J H, Wang F X. Reform of carbonate rock subsurface by crustose hchens and its environmental significanee[J]. Aeta Geologica Sinica.1998,72(1):94—99.
    [82]Chapelle F H, Zelibor J L, Grimes Jr D J, et al. Bacteria in deep coastal plain sediments of Maryland:A possible source Of CO2 to groundwater[J].Water Resources Research.1987, 23(8):1625—1632.
    [83]Chen J, Gong Z T. Role of lichens in weathering and soil—fprming processes on Fildes Peninsula Antarctica[J]. Pedosphere.1995, (5):305—314.
    [84]Crowther J. Ecological observations in tropical karst terrain, West Malysia, m:Dynamics of the vegetation soil bedrock system[J].Journal of Biogeography.1987,14:157—164.
    [85]Danin A, Garty J. Distribution of cyanobactefia and hehens on hillsides of the Negev Highlands and their impacts on biogenic weathering [J]. Zeitschrift fur Geomorphologie.1983, 27(4):423—444.
    [86]E.Flugel.Microfacies Analysis of limestone[M].Springer-Verlag,Berlin.1982.
    [87]Ehzlich H L. Geomicrobiology: its significance for geology[J]. Earth-Science Reviews, 1998,45:45—60.
    [88]Folk R L.SEM Imaging of Ba cteria and Nannobacteria in Carbonate Sediments and Rocks[J].Sediment. Petrol.1993,63:990 — 999.
    [89]Friedrich S, Platonova N P, Karavaiko G I. Chemical and microbiological solubilization of silicates. Acta Biotechnologica,1991,3:187 — 196.
    [90]Glowa K R,Arocena J M,Massicotte H B. Extraction of potassium and/or magnesium from selected soil minerals by piloderma [J].Geomicrobiology Journal.2003,20(2):99—112.
    [91]Gorbushina A A, Boettcher M, Brumsack H J, et al.Biogenic forsterite and opal as a product of biodeterioration and Lichen tromatolite Formation in Table Mountain Systems(Tepuis) of Venezuela[J].Geomicrobiology Journal.2001,18:117—132.
    [92]Herman J S. Karst geomicrobiology and geochemistry: state of science[J]. Geomicrobiology Journal.1994,12:137—140.
    [93]Hochella Jr M F. There's plenty of room at the bottom: nano-science in geochemistry. Geochim. Cosmochim[J]. Acta.2002,66 (5):735—743.
    [94]Hose L D, Palmer A N, Palmer M V, et al.Microbiology and geochemistry in a hydrogen-sulphide-rich karst environmen[J]. Chemical Geology.2000,169:399—423.
    [95]Hurek T., Wagner B. Identification of N2-fixing plant- and fungus-associated Azoarcus species by PCR genomic fingerprints[J]. Applied and envirmental microbiology,1997,63(11): 4331—4339.
    [96]Ivar B. Ramberg. The making of a land: Geology of Norway[J]. Science.2008,624.
    [97]Kalinowski B E, Liermann L J, Brantley S L, et al. X-ray photoelectron evidence for bacteria-enhanced dissolution of hornblende[J].Geochim. Cosmochim. Acta,2000, 64(4):1331—1343.
    [98]Lian Bin, Wang Bin, Pan Mu, Liu Congqiang, and Teng H. Henry. Microbial Release of Potassium from K-Bearing Minerals By Thermophilic Fungus Aspergillus fumigatus. Geochim. Coschim[J].Acta.2008,72 (1):87—98.
    [99]Lierman L J, Kalinowski B E, Brantley S L, et al. Role of bacterial siderophores in dissolution of hornblende [J]. Geochim. Cosmochim. Acta.2000,64(4):587—602.
    [101]Ling Yuan, Jianguo Huang, Xiaolin Li, Peter Christie. Biological mobilization of potassium from clay minerals by ectomycorrhizal fungi and eucalypt seedling roots[J]. Plant and Soil.2004,262:351—361.
    [102]Maurice P A, Vierkorn M A, Hersman L E, et al.Enhancement of Kaolinite Dissolution by an Aerobic Pseudomonas mendocina Bacterium[J].Geomicrobiology Journal.2001,18:21—35.
    [103]Newman D K, Banfield J F. Geomicrobiology:How molecular scale interaction underpin biogeochemical systems [J]. Science.2002,296:1071—1077.
    [104]Plummer L N, Busby J F, Lee R W, et al.Geochemical modeling of the madison aquifer in parts of Montana, Wyoming and South Dokota[J]. Water Resowee Research.1990,26 (9):1981 —2014.
    [105]Pulina M. Preliminary studies on denudation in SWSpitsbergen[J]. Biulletin de l'Academie Polonaise de Sciences.1974,22:2—3.
    [106]Routh J, G rossman E L and Ulrich G A, et al. Volatile organic acids and microbial processes in the Yegua formation, ast-central Texas. [J]. Applied Geochemistry.2001, 21:66—671.
    [107]Rozanova E P. Leaching of glass and during microbiological oxidation of oil[J]. Mikrobiologiya.1986,55(5):787—791.
    [108]Schwertmann U. Solubility and dissolution of iron oxides[J].Plant Soil.1991,130:1—25.
    [109]Smith K S, Ferry J G. Prokaryotic carbonic anhydrases.[J].FEMS Microbiology Reviews.2000,24:335—366.
    [110]Vasconcelos C, Mackenzie J A. Bernaseoni S. et al_Microbial M ediation as a Possible M echanism for Natural Dolomite For—marion at Low Temperatures[J].Nature, 1995,377:220—222.
    [111]Viles H A. Biokarst—review and prospect[J]. Progress in Physical Geography.1984,8(4): 423—542.
    [112]Welch S A, Barker W W, Barfield J F.Microbial extracellular polysaccharides and plagioclase dissolution[J]. Geochimica et Cosmochimica Acta.1999,63(9):1405—1419.
    [113]Welch S A, Taunton A E and Banfiled J F. Effect of microorganisms and microbial metabolites on apatite dissolution [J]. Geomicrobiology Journal.2002,19:343—367.
    [114]Welch S A and Ullman W J. The effect of organic acids on plagioclase dissolution rates and stoichiometry[J]. Geochimica et Cosmochimica Acta.1993.57:2725—2736.
    [115]Weiner S, Dove P M. An overview of biomineralization processes and the problem of the vital effect[J]. Reviews in Mineralogy &Geochemistry.2003,54:1—29.
    [116]Zhang W J, Feng J X, Wu J, et al, Difference in soil microbial biomass and activity for six agroecosystems with a management disturbance gradient[J]. Pedosphere.2004,14(4):441—447.
    [117]Zhenyan Yu, Liping Xie, Seunghwan Lee, Rongqing Zhang. A novel carbonic anhydrase from the mantle of the pearl oyster (Pinctada fucata) [J]. Comparative Biochemistry and Physiology.2006, Part B 143:190-194.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700