从火法炼锌焙烧烟尘中回收锌及其它有价金属的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
火法炼锌的锌精矿在高温氧化焙烧过程中,会产出占加入总量20%的焙烧烟尘,该烟尘成分复杂,回收处理困难。目前应用于工业上的二次焙烧方法,存在着污染严重、流程长、成本高、综合回收率低等无法解决的问题。以焙烧烟尘为研究对象,提出了热酸浸出处理焙烧烟尘的新工艺,并在回收主金属锌的同时,综合回收其它有价金属,从而实现了焙烧烟尘的全湿法清洁生产工艺。同时,本论文还对新工艺的反应机理、动力学和工艺条件进行了系统研究。
     首先对焙烧烟尘分别采用了浮选法、生物浸出法和热酸浸出法进行了探索性的实验,实验结果表明,浮选法处理过程中各产物中的有价金属更为分散,无法继续分离回收;生物浸出法存在着时间长,浸出率低,溶解的镉对细菌生长有影响等缺点。因此,前两种方法均不适合处理焙烧烟尘。
     系统研究了中性浸出焙烧烟尘的工艺条件、反应机理及其动力学。最终确定的最优工艺条件为:反应温度65℃,始酸浓度90g/l,液固比5:1,反应时间60min,在此条件下,锌的浸出率为71.29%,渣率54.84%,渣中含锌23.12%。动力学研究表明,该过程表观活化能为E=11.92kJ/mol,处于扩散控制步骤。
     深入研究了热酸浸出中性浸出渣的工艺条件、反应机理及其动力学。最终确定的最优工艺条件为:始酸浓度200g/1,反应温度95℃,液固比5:1,反应时间180min,二氧化锰加入量为理论量的0.6倍,在此条件下,锌浸出率为93.37%,渣含锌8.38%。动力学研究表明,该过程可用收缩核模型表示,反应的表观活化能为48.09kJ/mo1,说明反应处于化学控制步骤,[H+]及[Fe3+]对反应的影响级数分别为0.4、0.2,反应的宏观动力学方程为:1-(1-α)1/3=4.90[H+]0.4[Fe3+]0.2d0-exp(-48090/RT)t+A
     研究了针铁矿法对热酸浸出液进行除铁的工艺,并优化了工艺条件:pH=3.0,温度60℃,反应时间80min,空气流量为20L/min,在此条件下,浸出液除铁率99.5%以上,除铁液含铁小于0.1g/1。
     分别研究了焙烧烟尘综合回收铟、镉、铅及银等工艺。铟回收工艺包括预中和富集、铟渣酸浸、萃取及反萃取、置换等工序,并获得了品位为97.75%的海绵铟,铟的总回收率为92.66%。镉回收工艺包括浸出液净化除铜、铜镉渣的酸浸、酸浸液置换除铜、酸浸液置换除镉及粗镉熔铸等工序,可获得品位为98.45%的粗镉,镉总回收率为90.73%。铅及银回收采用浮选脱硫及碱熔工艺,可获得含铅98.29%,含银0.169%的粗铅,铅及银的总回收率分别为90.09%和94.14%。
     基于实验的结果,在葫芦岛锌厂进行了热酸浸出焙烧烟尘的扩大试验,并验证了实验结果,锌总浸出率为97.45%。
     以葫芦岛锌厂每年所产的焙烧烟尘量6.3万吨为基础,分析了焙烧烟尘中各主要成分的全流程走向,每年回收进入中浸液中的锌量为2.63万吨,总锌回收率为93.93%;回收粗镉394.9吨;粗铅2330吨(其中含铅2290吨、银3.86吨);海绵铟2.56吨。焙烧烟尘中主要有价金属损失有:锌进入浸出渣1.50%,进入除铁渣4.49%,其它0.08%;铅进入除铁渣3.90%,进入熔炼渣3.61%,其它2.40%;镉进入浸出渣0.11%,进入除铁渣中的2.89%,进入其它铜镉渣及镉渣0.53%;铟进入浸出渣0.89%,进入除铁渣4.17%,其它渣2.28%银进入熔炼渣1.74%,进入熔炼烟尘2.63%,其它1.49%。
     综上所述,本论文针对火法炼锌焙烧烟尘的特点,提出了热酸浸出的新工艺,通过实验系统地研究了该工艺的反应机理、动力学和最优化工艺条件,并通过扩大试验对该工艺进行了验证。该工艺有着流程短、成本低、综合回收率高的优点,它不仅减少了环境污染,还实现了资源的综合利用和清洁生产。与其它火法炼锌处理焙烧烟尘回收工艺相比,具有一定的推广前景和重要的意义。
During the high-temperature oxide roasting of zinc concentrate in zinc pyrometallurgy, a large quantity of roasting dust will be produced, which account for 20% of the total input. Because of its complex components, it is difficult to be recycled. At present, the recovery method in industrial, such as roasting kiln, causes serious environmental pollution, and it is also complicated and cost high. Therefore, in my thesis, I focus on "Study on the recovery of Zinc and other valuable metals from roasting dust of Zinc pyrometallurgy". A new process for deal with roasting dust with hot acid leaching is put forward, which can recycle zinc and other valuable metals. The process realizes the clean production with completely hydrometallurgy, the conditions and reaction mechanism of the process is investigated systematically.
     Pre-Experiments of roasting dust with method of flotation, bio-leaching and hot acid leaching showed that:the flotation process made the valuable metal more deconcentration and can not be recycled; bio-leaching has the shortcomings with a long time and low leaching ratio, and dissolved cadmium has bad effects on the growth of bacteria. As a result, the pre-experiments illustrate that both flotation and bio-leaching methods are not suitable to deal with roasting dust.
     The operation condition, reaction mechanism and kinetics of neutral leaching roasting dust are investigated. The optimal operating conditions are determined as follows:reaction temperature 65℃, acid concentration 90g/L, solid-liquid ratio 5:1 and reaction time 60min, in accordance with these conditions, zinc leaching ratio is 71.29%, slag ratio is 54.84%, and the content of zinc in slag is 23.12%. The kinetics show that the apparent activation energy for the process is E=11.92kJ/mol, the process is under the control of diffusion.
     The operation condition, reaction mechanism and kinetics of hot acid leaching slag are studied. The optimal operating conditions for the process are obtained as follows:reaction temperature 95℃acid concentration only 200g/L, solid-liquid ratio 5:1, reaction time 180min. The MnO2 addition is 0.6 times of the theoretical capacity. In accordance with these operation conditions, zinc leaching ratio is 93.37%, slag ratio 8.38%. The kinetics shown that the process can be expressed with shrinking core model. The apparent activation energy for the process is 48.09kJ/mol, it is under the control of chemical reaction, the reaction order of [H+] and [Fe3+] is 0.4,0.2 respectively, the reaction kinetics equation is: 1-(1-α)1/3=4.90 [H+]0.4 [Fe3+]0.2d0-exp(-48090/RT)t+A
     The process of removing iron from hot-acid leaching solution with the method of goethite is researched, and the operation condition is optimized as follows:the end of pH=3.0, temperature 60℃, reaction time 80min, air flow velocity 20L/min, the results shows that the ratio of removing iron is over 99.5% and iron in liquid is less than 0.1g/L.
     The processes for recycling indium, cadmium, lead, and silver form roasting dust are studied respectively. Indium recovery process includes:indium enrichment from hot acid leaching solution, acid leaching indium slag, extraction and anti-extraction, and extracting sponge indium with the replacement of aluminum plate. After that, sponge indium can be obtained at the purity of 97.75%, and its recovery ratio is 92.66%. Cadmium recovery process includes:the cleaning of neutron leaching solution, the acid leaching of copper and cadmium slag, the copper removal of acid leaching solution, the extraction of sponge cadmium with the replacement of zinc powder, and the casting of sponge cadmium etc. The pig cadmium can be obtained at the purity of 98.45%, and its recovery ratio is 90.73%. The lead and silver can be recycled by the folation process of sulphur and the alkali smelting technology, and pig lead can be obtained in which contain lead 98.29% and silver 0.169%. The recovery ratio are 90.09% for lead and 94.14% for sliver.
     Based on the experimental results, the expanding test is done in Liaoning Huludao Zinc Smelter. The experiment result, total zinc leaching ratio 97.45%, is verified at the expanding test in factory.
     According to the amount of 63,000 tons roasting dust per year produced by Liaoning Huludao Zinc Smelter, the whole industry process for dealing with roasting dust is designed. According this process, it is known that 26,300ton zinc per year will be recycled from neutron leaching solution, which occupies 93.93% of total zinc amount in roasting dust. Cadmium can be recycled 394.9 tons, pig lead 2330 tons (in which lead 2290t, sliver 3.86t), and sponge indium 2.56 t. The loss of metal in roasting dust as follows:zinc loss 1.50% since its residue in leaching slag, loss 4.49% in the slag of removing ferrous, and 0.08% in other slag. Lead loss 3.90% in ferrous slag, loss 3.61% in smelting slag,2.40%in other. Cadmium loss 0.11% in leaching slag,2.89% in ferrous slag, and 0.53% in other slag like cupper cadmium and cadmium slag. Indium loss 0.89% in leaching slag,4.17% in ferrous slag, and 2.28% in other slag. Sliver loss 1.74% in smelting slag,2.63% in dust of smelting,1.49% in other.
     To sum up, base on the characteristic of zinc roasting dust, a new process of treating roasting dust with hot acid is put forward, the operation condition, reaction mechanism, and kinetic of the process are studied systematically, and the process is verified with expanding test in industry. It is very important to dealing with zinc roasting dust, and recycle all metals, this not only can meet the industrial production, but also protect environmental, and make the resource to be utilized in the comprehensive way.
引文
1. 彭容秋.有色金属提取冶金手册[M],北京:冶金工业出版社,1981,10-120.
    2. 彭容秋.重金属冶金学[M],长沙:中南工业大学出版社,1998,8-61.
    3. 梅光贵,王德润,周敬元等.湿法冶金学[M],长沙:中南工业大学出版社,2001,1-20.
    4. 彭容秋主编.锌冶金[M],长沙:中南大学出版社,2005,1-35.
    5. 铅锌冶金学编委会.铅锌冶金学[M],北京:冶金工业出版社,2000,1-144.
    6. 徐鑫坤,魏旭.锌冶金学[M],昆明:云南科技出版社,1994,1-38.
    7. 刘志宏.国内外锌冶炼技术的现状及发展动向[J],世界有色金属,2000,(1):23-26.
    8. 张乐如.铅锌冶炼新技术[M],长沙:湖南科学技术出版社,2006,1-111.
    9. 孙成余,周开敏,蔡才.109 m2沸腾焙烧炉系统设计与生产实践[J],云南冶金,2007,36(1):41-44.
    10.刘杰峰.我国湿法炼锌技术的进展[J],湖南有色金属,2001,17(3):16-18.
    11.刘志宏.国内外铅锌冶炼技术的现状及发展动向[J],有色金属,2000(1):23-26.
    12.刘斌,王伟.涛浅谈湿法炼锌工艺的浸出渣问题[J],四川环境,26(2):105-108.
    13.孙德方.国内外锌冶炼技术的新进展[J],中国有色冶金,2004,6(3):14.
    14.关亚君.湿法炼锌常规工艺铁的浸出及沉铁pH值的研究[J],稀有金属,2006,30(3):419-421.
    15.王辉.湿法炼锌工业挥发窑窑渣资源化综合循环利用[J],中国有色冶金,2007,6:46-50.
    16.蒋继穆.我国锌冶炼工业进展概况[J],中国有色建设,2007,2:34-36.
    17.蒋继穆.我国锌冶炼现状及近年来的技术进展[J],中国有色冶金,2006,5:19-22.
    18.许冬,朱军,王正民.湿法炼锌中沸腾焙烧过程的研究进展[J],湖南有色冶金,2007,23(6):20-22.
    19. Vakil S. Technological innovation in the zinc electrolyte purification process of a hydro-metallurgical zinc plant through reduction in zinc dust consumption[J], Hydrometallurgy,1996,40(1-2):247-262.
    20. Tozawa K, Nishimura T, Akabori M. Comparsion between purification process for zinc leach solutions with arsenic and antimony trioxides[J], Hydrometallurgy,1992,30(3):445-446.
    21. Liana M, Maurin G, Oniciu L, et al. Influence of metallic impurities on zinc cleclrowinning from sulphate electrolyte[J], Hydrometallurgy,1996,43(1-3):345-354.
    22. Neou-Syngouna P, Scordilis D. Sulphation of a Greek complex sulpHide concentrate[J], Hydrometallurgy,1990,25(3):367-374.
    23. Sigmund F, Kurt S, Eero T, et al. Continuous improvement at the Kollola zinc plant[J], Lead-Zinc, 1998,12(5):23-32.
    24.杨如中.锌冶炼企业能耗现状调查[J],中国冶金节能,200,72:54-57.
    25.郭兴忠.铅锌分离的理论及应用研究[D],重庆:重庆大学材料科学与工程学院,2002.
    26.谢克强,杨显万,舒毓璋等.氧压酸浸液中和除铁工艺研究[J],云南冶金,2007,36(2):52-56.
    27.周廷熙.高铁硫化锌精矿加压浸出工业化研究[D],昆明:昆明理工大学冶金工程.2005.
    28.王吉坤,周廷熙,吴锦梅.高铁闪锌矿精矿加压酸浸新工艺研究(冶炼部分)[J],2004,1:5-8.
    29.刘祺,王继峰,宋功文.高铁闪锌矿氧化酸浸试验研究[J],湖南有色冶金,2007,23(2):27-28.
    30.冯林永,谢克强,杨显万等.铁闪锌矿氧压浸出热力学[J],中国稀土学报,2006,24:21-24.
    31.陈智和,何醒民.锌精矿氧压浸出技术[J],湖南有色金属,2002,18(1):26-28.
    32. Harvey F I, Yen W Tai, Paterson. Kinetics investigation into the pressure oxidation of sphalerite from a complex concentrate[J], Minerals Engineering,1993,6(8-10):949-067.
    33. Ozberk E, Collins M J, Makwana M, et al. Zinc pressure leaching at the Ruhr-Zink Refinery[J], Hydrometallurgy,1995,39(1-3):53-62.
    34. Jankola W A. Zinc pressure leaching at Cominco[J], Hydrometallurgy,1995,39(1-3):63-70.
    35. Collins M J, Mc-Conaghy E T, Stauffer R F, el al. Starting up the Sherritt zinc pressure leach process at Hudson Bay[J], JOM,1994,46(4):51-55.
    36. Ozberk B, Jankola W A, Vecchiarelli M, et al. Commercial operations of the Sherritt zinc pressure leach process[J], Hydrometallurgy,1995,39(1-3):49-52.
    37. Jean C, Proger G, Philippe V. Thermodynamic and kinetic study of the pressure leaching of zinc sulfide in aqueous sulfuric acid[J], Hydrometallurgy,1988,21(1):85-102.
    38.谢克强,杨显万,舒毓璋等.多金属硫化矿浮选精矿加压酸浸研究[J],有色金属(冶炼部分),2006,4:6-9.
    39.谢克强.高铁硫化锌精矿和多金属复杂硫化矿加压浸出工艺及理论研究[D],昆明理工大学有色金属冶金,2006.
    40.王吉坤,董英,周廷熙.高铁硫化锌精矿加压浸出工业试验及产业化[J],中国工程科学,2005,7:202-205.
    41.徐志峰,邱定蕃,卢惠民.锌精矿氧压酸浸过程的研究进展[J],有色金属,2005,57(2):101-105.
    42.孙天友.高铁硫化锌精矿加压浸出的动立学研究[D],昆明:昆明理工大学有色会属冶金,2006.
    43.叶军乔,何静,曾令成.ISP烧结工艺的特点及发展趋势[J],有色冶金设计与研究,2004,5(1):3-9.
    44.仝一.铅锌烧结技术的新进展[J],工程设计与研究,2006,119:6-9.
    45.林运驯,高天星,李仕雄.烧结工艺实施自身平衡的生产实践[J],湖南有色金属,2006,22(1):21-22.
    46.钟勇,李仕雄,曾令成等.韶冶铅锌烧结添加有机粘结剂工业试验研究[J],湖南有色金属,2003,19(4):17-19.
    47.钟勇.提高铅锌烧结块率的工业应用研究[D],长沙,中南大学冶金科学与工程学院,2004.
    48.张建立.韶冶铅锌密闭鼓风炉系统(Ⅰ)技术改造及效果[J],江西有色金属,2007,21(2):48-50.
    49.刘冬根.提高ISP工艺产能的有效途径[J],湖南有色金属,2006,22(3):28-29.
    50.刘明海.焦洗ISF炉结工艺研究与应用[D],长沙:中南大学冶金科学与工程学院,2004.
    51.徐克华.ISF鼓风炉影响因素分析及相关数模的建立[D],长沙:中南大学冶金科学与工程学院,2004.
    52.刘朝东.铅锌密闭鼓风炉内熔炼过程与气粒两相流动的数值模拟研究[D],长沙:中南大学热能工程,2007.
    53.曾建生.国外铅锌富氧烧结生产实践[J],冶金丛刊,2003,3:18-21.
    54. Sasaoka H, Tatsuta N, Kadoya H. Recent operational improvements in the ISP plant[J], Metallurgical Review of MMIJ,1996,13(1):154-165.
    55. Nishika, WaM, Oshita T. Improvements in ISP operation with a single condenser at Hachinohe smelter. Proceedings of the 1st International Conference on Processing Materials for Properties [J], Publ by Minerals, Metals & Materials Soc(TMS),1993:401-404.
    56.陈德喜,段力强.我国电炉炼锌工艺的技术进步与发展[J],有色金属(冶炼部分),2003,(2):20-21.
    57.帅群芳,吴志平.电炉炼锌的生产实践及技术改进[J],中国有色冶金,2005,(4):45-47.
    58.李曰荣,印国敏,胡丕成.电炉炼锌技术的现状及展望[J],2002年全国铜冶炼生产技术及产品应用学术交流会论文集,2002,148-152.
    59.王斌,防止炼锌电炉炉底积铁的生产实践[J],中国有色冶金,2007,(3):38-39.
    60.孙娅茹,李振强,柏振海.延长炼锌电炉炉龄的生产实践[J],中国有色冶金,2004,(5):42-43.
    61.陈俊.炼锌电炉设计探索及实践[J],冶金信息导刊,2003,(3):20-21.
    62.李龙生.电炉炼锌工艺及炉龄问题的探讨[J],有色金属(冶炼部分),2001,(1):14-15.
    63.刘特明,陈德喜,胡丕成.电炉炼锌工艺实践与探讨[J],有色冶炼,1998,(5):11-15.
    64.朱威,未立清,郭天立.粗锌精馏用碳化硅塔盘制作新工艺[J],世界有色金属.2005,(3):37-39.
    65.郭天立,高良宾.当代竖罐炼锌技术述评[J],中国有色冶金,2007,(1):5-6.
    66.郭天立,赵永,李淑全.竖罐炼锌残渣回收技术的现状与展望有色金属冶炼部分[J],2003,4:20-22.
    67.陈志强.论降低长沙锌厂竖罐渣含锌的主要途径[J],湖南有色金属,1999,15(1):26-29.
    68.陈锐,李淑艳,郭天立.竖罐炼锌强化生产的途径分析[J],有色冶炼,2003,(3):6-9.
    69.未立清,张宇光,肖立新.干粉粘合剂在竖罐炼锌生产中应用的研究[J],矿冶,2000,9(2):63-66.
    70.傅志华,蒋绍坚,周乃君.竖罐蒸馏炼锌的节能技术[J],冶金能源,1995,14(2):32-36.
    71.杨飚等.二氧化硫减排技术与烟气脱硫工程[M],冶金工业出版社,2004.
    72.张伟等.葫芦岛锌厂二焙烧烟气治理[J],有色矿冶,2003.
    73.张武,王强等.锌精矿制粒氧化沸腾焙烧小型及扩大型试验总结.葫芦岛锌厂一车间试验组,1990.
    74. D.K.Xia, Pickles C A. Caustic Roasting and leaching of electric arc furnace dust[J], Canadian Metallurgy Quarterly,1999,38(3):175-186.
    75. Cruells M, Roca A, Nunz C. Electric arc furnace flue dusts:characterization and leaching with sulpHuric acid[J], Hydrometallurgy,1992,31(3):213-231.
    76. Bruckard W J, Davey K J, Rodopoulos T, et al. Water leaching and magnetic separation for decreasing the chloride level and upgrading the zinc content of EAF steelmaking baghouse dusts [J],2005, 75(1-2):1-20.
    77. Gokhan O. Leaching and cementation of heavy metals from electric arc furnace dust in alkaline medium [J], Hydrometallurgy,2005,78(3-4):236-245.
    78. Barrett E C, Nenniger E H, Jacek D. A hydrometallurgical process to treat carbon steel electric arc furnace dust[J], Hydrometallurgy,1992,30(1-3):59-68.
    79.王东彦,陈伟庆,周荣章等.钢铁厂含锌、铅粉尘基本物性及造球工艺[J],北京科技大学学报,1998,20(2):113-116.
    80.王东彦,陈伟庆,周荣章等.钢铁厂含锌铅粉尘配碳球团的直接还原工艺[J],北京科技大学学报,1997,19(2):139-133.
    81.张丙怀,郭兴忠,阳海彬等.钢铁厂含锌铅粉尘中锌铅分离理论及实践[J],有色金属(冶炼部分).2001,1:7-11.
    82.朱诚意,李光强,秦庆伟.炼钢电弧炉炉尘处理工艺进展[J],过程工程学报,2006,6(1):133-138.
    83.朱子宗,沈勇玲,乔胜普.用铁浴法分离高炉炉尘中的铅和锌[J],钢铁研究学报,2002,14(6):1-5.
    84.郭兴忠,张丙怀,阳海彬.冶金含锌铅炉尘回收处理新方法[J],环境工程,2002,20(2):53-55.
    85.许菱,许孙曲.用湿法冶金法从高炉烟道灰中回收锌[J],中国物资再生,1999,11:9-10.
    86.唐谟堂,张鹏,何静,原霞等.Zn(Ⅱ)-(NH4)2SO4-H2O体系浸出锌烟尘[J],中南大学学报,2007,38(5):867-872.
    87.张鹏.高氟氯氧化锌烟尘制备电锌新工艺研究[D],长沙:中南大学有色金属冶金,2007.
    88. Grygar T, Klimova Z, Jandova J. Dissolution reactivity of metal oxide mixtures containing ZnO[J], Hydrometallurgy,60(1):109-135.
    89. Strobos J G, Friend J F C. Zinc recovery from baghouse dust generated at ferrochrome foundries [J], Hydrometallurgy,2004,74(1-2):165-171.
    90. Kelebek S, Yoruk S, Davis B. Characterization of basic oxygen furnace dust and zinc removal by acid leaching[J], Minerals Engineering,2004,17(2):285-291.
    91. Cuneyt A, Fatma A. Recovery of copper, cobalt, and zinc from copper smelter and converter slags[J], Hydrometallurgy,2002,67(1-3):1-7.
    92. Singh L N, Row B R L. Recovery of zinc from melting furnace residue[J], Hydrometallurgy,1981, 6(3-4):261-267.
    93. Altundogan H S, Tumen F. Metal recovery from copper converter slag by roasting with ferric sulphate[J], Hydrometallurgy,44(1-2):261-267.
    94.刘俊峰.炼铜烟灰制取硫酸锌除铁方法比较[J],矿冶工程,1999,19(4):40-42.
    95. Iginio C, Sergio M, Umberto M. Kinetic models for the leaching with sulphuric acid of zinc-containing slags[J], Hydrometallurgy,1983,10(1):61-67.
    96. Zeydabadi B A, Mowla D, M. H. Shariat, et al. Zinc recovery from blast furnace flue dust [J], Hydrometallurgy,1997,47(1):113-125.
    97. Colussi I, Meriani S. Beneficiation of a zinc-oxide rich phase by leaching refired Imperial Smelting Process slags[J], International Journal of Mineral Processing,1980,7(1):43-55.
    98. Eham N, Inoue K. Recovery of lead and zinc from fly ash generated from municipal incineration plants by means of acid and/or alkaline leaching [J], Hydrometallurgy,2000,56(3):269-292.
    99. Blanco L J L, Zapata V F M, Garcia D D J. Statistical analysis of laboratory results of Zn wastes leaching[J], Hydrometallurgy,1999,54(1):41-48.
    100. Turan M D, Altundogan H S, Fikret T. Recovery of zinc and lead from zinc plant residue[J], Hydrometallurgy,2004,75(1-4):1-10.
    101.沈庆峰.从低品位氧化锌矿浸出渣中回收锌的工艺研究及其产业化[D],昆明:昆明理工大学有色金属冶金系,2006.
    102.刘斌,王伟.涛浅谈湿法炼锌工艺的浸出渣问题[J],四川环境,2007,26(2):105-108.
    103.邵琼,兰尧中.湿法炼锌废渣综合浸出过程动力学研究[J],有色金属(冶炼部分),2006,3:11-13.
    104.陶政修,唐耀文.湿法炼锌渣中回收锌铟的研究[J],湖南有色冶金,2006,22(3):23-24.
    105.王辉.湿法炼锌工业挥发窑窑渣资源化综合循环利用[J],中国有色冶金,2007,6:46-50.
    106.葫芦岛锌业股份有限公司铅锌密闭鼓风炉替代竖罐炼锌技术改造工程环境影响评价大纲[M],辽宁省环境科学研究院,2002.
    1. 彭容秋.有色金属提取冶金手册[M],北京:冶金工业出版社,1981,1-55.
    2. Das B, Prakash S, Reddy P S R. Effective utilization of blast furnace flue dust of integrated steel plants[J], European Journal of Minerial Processing and Environmental Protection,2002,2-2.
    3. 李学清,兰坪难选氧化铅锌矿选矿试验研究[J],有色金属(选矿部分),2003,1:1-3.
    4. Onal G, Bulut G, Gul A, et al. Flotation of Aladag oxide lead-zinc-ores[J], Minerals Engineering, 2005,18(2):279-282.
    5. Pereira C A, Peres A E C. Reagents in calamine zinc ores flotation[J], Minerals Engineering,2005, 18(2):273-277.
    6. 孙水裕,王淀佐,李柏淡.闪锌矿的电化学调控浮选[J],有色金属学报,1992,2(2):21-25.
    7. Fuerstenau M C, Clifford K L, Kuhn M C. The role of zinc-xanthate precipitation in sphalerite flotation[J], International Journal of Mineral Processing,1974,1(4):193-205.
    8. Palsson B I, Forssberg K S E. Computer-assisted calculations of thermodynamic equilibria in spHalerite-xanthate systems[J], International Journal of Mineral Processing,1989,26(3-4):223-258.
    9. Kuzina Z P, Maksimov N G, Samoylov V G. Interaction of butyl xanthate with oxidized surface of spHalerite[J], European Journal of Minerial Processing and Environmental Protection,2005,5-1.
    10. Karavasteva M. The Effect of certain surfactants on Zinc dissolution in sulphuric acid solutions containing metal[J], Canadian Metallurgy Quarterly,2004,43(4):461-466.
    11. Yoon R H. Collectorless flotation of chalcopyrite and spHalerite ores by using sodium sulfide [J], International Journal of Mineral Processing,1981,8(2):177-193.
    12. Buckley A N, Woods R, Wouterlood H J. An XPS investigation of the surface of natural sphalerites under flotation-related conditions [J], International Journal of Mineral Processing,1989,26(1-2): 29-49.
    13.罗仙平,邱廷省,胡珍林等.某复杂铅锌硫化矿选矿工艺试验研究[J],有色金属(选矿部分),2003,4:1-3.
    14. Baldwin D A, Manton M R, Pratt J M, et al. Studies on the flotation of sulphides. I:The effect of Cu(II) ions on the flotation of zinc sulphide [J], International Journal of Mineral Processing,1979, 6(3):173-192.
    15. Plichon V, Rollat N. Application of mirage spectroscopy:Zinc sulpHide activation by copper ions used in flotation processing [J], International Journal of Mineral Processing,1990,39(1-2):75-85.
    16.邱廷省,周源,罗仙平,复杂难选高氧化率铅锌硫化矿石浮选工艺研究[J],有色金属(选矿部分),2003,2:37-40.
    17.王化军,吴砚红,张强.锡铁山氧化铅锌矿选矿工艺研究[J],有色金属(选矿部分),2002,6:4-6.
    18. Weller K R, Morrell S, Gottlieb P. Use of grinding and liberation models to simulate tower mill circuit performance in a lead/zinc concentrator to increase flotation recovery [J], International Journal of Mineral Processing,1996, (44-45):213-224.
    19.马玉斌,于兴良提高铅硐山铅锌矿选矿指标的研究[J],有色金属(选矿部分),2002,1:1-4.
    20.戴新宇,王昌良,饶系英.某铅锌矿选矿工艺试验研究[J],有色金属(选矿部分),2006,3:19-22.
    21.杨钊雄,罗开贤,孙肇淑.矿泥和流失混合浮选工艺研究及生产实践[J],有色金属(选矿部分),2002,1:1-3.
    22. Brill G, Pratt J M. Studies on the flotation of sulphides. Ⅱ. The effect of urea on the flotation of zinc sulphide[J], International Journal of Mineral Processing,1979,6(3):193-205.
    23. Pistorio M, Curutchet G, Donati E, et al. Direct Zinc sulphide bioleaching by theiobacillus ferrooxidans and thiobacillus thiooxidans[J], Biotechnolagy Letter,1994,16(4):419-424.
    24. Porro S, Ramiez S, Reche C, et al. Bacterial attachment:its role in bioleaching process, Process Biochemistry[J],1997,32(7):573-578.
    1. Jean F. Leaching of oxidized zinc ores in various media[J], Hydrometallurgy,1985,15(2):243-253.
    2. Rogers G, Simkovich G, Osseo-Asare K. The effect of point defects on the dissolution of zinc oxide in sodium hydroxide solutions[J], Hydrometallurgy,1983, (3):313-328.
    3. 张元福,梁杰,李谦.铵盐法处理氧化锌矿的研究[J].贵州工业大学学报(自然科学版),2002,31(1):37-41.
    4. Dvorak P, Jandova J. Hydrometallurgical recovery of zinc from hot dip galvanizing ash[J], Hydrometallurgy,2005,77(1-2):29-33.
    5. Cruells M, Roca A, Nunz C. Electric arc furnace flue dusts:characterization and leaching with sulpHuric acid[J], Hydrometallurgy,1992,31(3):213-231.
    6. 铅锌冶金学编委会.铅锌冶金学[M],北京:冶金工业出版社,2000.
    7. Filippou, Demopoulus D. A kinetic model for the leaching of industrial zinc ferrite particulates in sulpHuric acid media[J], Can. Metal,1992,31:41-50.
    8. 徐采栋,林蓉,汪大成.锌冶金物理化学[M],上海:上海科学技术出版社,1979.
    9. 傅崇说.有色冶金原理[M],北京:冶金工业出版社,1993.
    1. Chen T T, Dutrizac J E. Characterization of the calcines produced by the roasting of Zinc sulphide concentrates in a torbed[J], Canadian Metallurgy Quarterly,2003,42(1):1-16.
    2. Iana H, Evangelia M. Kinetic study of the solid state reaction between alpha-Fe2O3 and ZnO for Zinc ferrite formation[J], Canadian Metallurgy Quarterly,1994,33(2):99-109.
    3. Athalie L, Eric Meux, Jean-Marie Lecuire. Hydrometallurgical extraction of zinc from zinc ferritesfJ], Hydrometallurgy,2003,70:175-183.
    4. Elgersma F, Witkamp G J, Rosmalen G M V. Kinetics and mechanism of reductive dissolution of zinc ferrite in H2O and D2O[J], Hydrometallurgy,1993,33(1-2):165-176.
    5. Imitrios F, George P. Demopoulos. Reaction Kinetic Model for the Leaching of Industrial Zinc Ferrite Particulates in SulpHuric Acid[J], Canadian Metallurgy Quarterly,1992,31(1):41-54.
    6. Swarnkar S R, Gupta B L, Sekharan R D. Iron control in zinc plant residue leach solution[J], Hydrometallurgy,1996,42(1):21-26.
    7. Sarma V N R, Kapil D, Biswas A K. Dissolution of zinc ferrite samples in acids[J], Hydrometallurgy, 1976,2:171-184.
    8. Elgersma F, Kamst G F, Witkamp G J, et al. Acidic dissolution of zinc ferrite[J], Hydrometallurgy, 1992,29:173-189.
    9. Crundwell F K, Verbaan B. Kinetics and mechanisms of the non-oxidative dissolution of sphalerite (zinc sulphide) [J], Hydrometallurgy,1987,17(3):369-384.
    10. Dutrizac J E. The leaching of sulphide minerals in chloride media[J], Hydrometallurgy,1992,29(1): 21-45.
    11.刘俊峰,易平贵.常压酸浸铁闪锌矿制取硫酸锌工艺研究[J],无机盐工业,1995,5:13-15.
    12.罗扣庆.闪锌矿直接常压浓酸浸出工艺研究[J],有色金属,1998,41-44.
    13. Crundwell F K. Kinetics and mechanism of the oxidative dissolution of a zinc sulphide concentrate in ferric sulphate solutions[J], Hydrometallurgy,1987,19(2):253-258.
    14. Massaccia P, Recinellaa M, Piga L. Factorial experiments for selective leaching of zinc sulphide in ferric sulphate media[J], International Journal of Mineral Processing,1998,53(4):213-224.
    15. Erika G, Peter B,Eva B. Structural and temperature sensitivity of the chloride leaching of copper, lead and zinc from a mechanically activated complex sulphide[J], Hydrometallurgy,2002,65(1):83-93.
    16. Dutrizac J E. The leaching of sulphide minerals in chloride media[J], Hydrometallurgy,1992,29(1-3): 1-45.
    17. Vazarlis H G. Hydrochloric acid-hydrogen peroxide leaching and metal recovery from a Greek zinc-lead bulk sulphide concentrate[J], Hydrometallurgy,1987,19(2):243-251.
    18. Guy S, Broadbent C P, Lawson G J, et al. Cupric chloride leaching of a complex copper/zinc/lead ore[J], Hydrometallurgy,1983,10(2):243-255.
    19. Zuo-Mei J, Warren G W, Henein H. Reaction kinetics of the ferric chloride leaching of sphalerite-an experimental study[J], Metallurgical Transactions,15B:5-12.
    20. Panda S C, Sukla L B, Jena P K. Sulfation kinetics of Zinc sulfide with ammonium sulfate and ammonium bisulfate[J], Canadian Metallurgy Quarterly,1990,29(2):141-146.
    21. Ghosh M K, Anand S, Das R P. Effect of dissolved impurities during ammonia leaching of pure zinc sulphide[J], Hydrometallurgy,1989,22(1-2):207-221.
    22. Mishra P K, Das R P. Kinetics of zinc and cobalt sulphide precipitation and its application in hydrometallurgical separation[J], Hydrometallurgy,1992,28(3):373-379.
    23. Shaohua J, Mo-tang T, Sheng-hai Y, et al. Dissolution kinetics of smithsonite ore in ammonium chloride solution[J], Hydrometallurgy,2005,80(1-2):67-74.
    24. Rao K S, Anand S, Das R P, et al. Kinetics of ammonia leaching of multimetal sulphides[J], Mineral Process and Extractive Metallurgy,1992,10:11-27.
    25.卢立柱,谢惠琴.协同催化氧化体系中锌精矿的直接浸出[J],有色金属,1998,50(1):45-50.
    26.梅光贵,钟竹前.硫化锌精矿与软锰矿同时浸出及Zn-MnO2同时电解的研究[J],有色金属(冶炼部分),1986,5:24-28.
    27.李军旗.硫化锌精矿与软锰矿同时浸出动力学因素的研究[J],贵州工学院学报,1998,17(3):119-125.
    28. Raghavan R, Upadhyay R N. Innovative hydrometallurgical processing technique for industrial zinc and manganese process residues[J], Hydrometallurgy,1999,51(2):207-226.
    29.刘俊峰,邓文艳,刘胜姿.闪锌矿常压酸浸制取硫酸锌除铁工艺研究[J],矿冶工程,2001,1:53-55.
    30.刘俊峰,易平贵,黄可龙.常压酸浸闪锌矿的条件对锌浸出率的影响[J],中国有色金属学报,2000,10(5):728-731.
    31. Peng P, Hui-qin X, Li-zhu L. Coupling leaching of sphalerite concentrate[J], Minerals Engineering, 2005,18(5):553-555.
    32. Balaz P, Alacova A, Achimovicova M, et al. Mechanochemistry in hydrometallurgy of sulphide minerals[J], Hydrometallurgy,2005,77(1-2):7-9.
    33. Dutrizac J E, Macdonald R J C. The dissolution of spHalerite in ferric chloride solutions[J], Metallurgical Transactions,1978,9B:543-551.
    34. Rath P C, Paramguru R K, Jena P K. Kinetics of dissolution of zinc sulphide in aqueous ferric chloride solution[J], Hydrometallurgy,1981,6(3-4):219-225.
    35. Mandre N R, Sharma T. preferential leaching of lead zinc complex sulphide ore using ferric chloride[J], International Journal of Mineral Processing,1993,39(1-2):75-85.
    36. Tka ova K, Bala P, Miura B, Vigdergauz V E, et al. Selective leaching of zinc from mechanically activated complex Cu---Pb---Zn concentrate[J], Hydrometallurgy,1993,33(3):291-300.
    37. Bala P, Ebert I. Oxidative leaching of mechanically activated sphalerite[J], Hydrometallurgy,1991, 27(2):141-150.
    38. Lochmann J, PedLik M. Kinetic anomalies of dissolution of sphalerite in ferric sulfate solution[J], Hydrometallurgy,1995,37(1):89-96.
    39. Heidi M, Sigmund F, Daniel V, et al. Reduction of ferric to ferrous with sphalerite concentrate-kinetic modeling[J], Hydrometallurgy,2004,73:269-282.
    40. Massaccia P, Recinellaa M, Piga L. Factorial experiments for selective leaching of zinc sulpHide in ferric sulpHate media[J], International Journal of Mineral Processing,1998,53(4):213-224.
    41. Dreisinger D B, Peters E. The oxidation of ferrous sulpHate by molecular oxygen under zinc pressure-leach conditions[J], Hydrometallurgy,1989,22(1-2):101-119.
    42. Susan A. Baldwin, George P. Demopoulos. Assessment of alternative iron sources in the pressure leaching of zinc concentrates using a reactor model[J], Hydrometallurgy,1995,39(1-3):147-162.
    43. Pande A M, Gupta K N, Altekar V A. Single cell extraction of zinc and manganese dioxide from zinc sulphide concentrate and manganese ores[J], Hydrometallurgy,1982,9:57-68.
    1. Elgersma F, Witkamp G J, Rosmalen G M V. Simultaneous dissolution of zinc ferrite and precipitation of ammonium jarosite[J], Hydrometallurgy,1993,34(1):23-47.
    2. Salinas E, Rocab A, Cruellsb M, et al. Characterization and alkaline decomposition-cyanidation kinetics of industrial ammonium jarosite in NaOH media[J], Hydrometallurgy,2001,60(3):237-246.
    3. Elgersma F, Witkamp G J, Rosmalen G M. Incorporation of zinc in ferrous sulfate monohydrate[J], Hydrometallurgy,1993,33(3):301-311.
    4. Dutrizac J E, Dinardo O. The co-precipitation of copper and zinc with lead jarosite[J], Hydrometallurgy,1983,11(1):61-78.
    5. Dutrizac J E, Chen T T. Mineralogical study of the Jarosite phase formed during the autoclave leaching of Zinc concentrate [J], Canadian Metallurgy Quarterly,1984,23(2):147-153.
    6. Elgersma F, Witkamp G J, Rosmalen G M. Incorporation of Zinc in continuous jarosite precipitation[J], Hydrometallurgy,1993,33(3):313-339.
    7. Loan M, Newman O M G, Cooper R M G, et al. Defining the paragoethite process for iron removal in zinc hydrometallurgy[J], Hydrometallurgy,2006,81(2):104-129.
    8. Claassen J O, Meyer E H O, Rennie J, et al. Iron precipitation from Zinc-rich solutions:defining the Zincor process[J], Hydrometallurgy,2002,67:87-108.
    9. 陈家镛等.湿法冶金中铁的分离与应用[M],北京:冶金工业出版社,1991,134.
    10. Doyle F M, Hernando A, Feng L M. Iron removal during oxidative, acid pressure leaching of a Zinc sulpHide concentrate[J], International Journal of Mineral Processing,1989,25(3-4):241-260.
    1. 邓孟俐,谢冰.锌冶炼工艺过程中铟、锗的综合回收[J],工程设计与研究,2007,123:1-6.
    2. 马荣骏.热酸浸出针铁矿除铁湿法炼锌中萃取法回收铟[J],湿法冶金,1997,2:58-61.
    3. 张诠,梁柳姬,麦从文.高锌烟灰中提取锌及富集铟工艺研究[J],广东化工,2004,4:30-31.
    4. 郭天立,任益民.湿法炼锌生产中铟的富集实践[J],有色矿冶,1998,6:25-27.
    5. 李仕庆.高铁铟锌精矿无铁渣湿法炼锌提铟及铁源高值化利用工艺与原理研究[D],中南大学,2006.
    6. 王靖芳,杨文斌,冯彦琳等.二(2-乙基已基)磷酸萃取铟的研究[J],山西大学学报,1991,14(4):385-389.
    7. 王淑坤,娄振宁,杨家振. D2EHDTPA萃取铟的热力学研究[J],稀有金属,2003,27(3):343-346.
    8. 张博亚,王吉坤,彭友奇等.湿法炼锌过程中铟锗的综合回收[J],云南冶金,2007,(5):25-28.
    9. 宋素格,蒋开喜,李运刚等.湿法炼锌过程中铟铁的分离[J],有色金属(冶炼部分),2006,3:5-7.
    10.李剑利,李连友,田承飞.从竖罐炼锌焦结烟尘中回收铟工艺条件的优化[J],中国有色冶金,2007,1:59-60.
    11.俞小花,谢刚,王吉坤等.酸性介质中萃取铟的研究[J],云南冶金,2006,35(4):28-31.
    12.邹学付,陈卫华.火法生产精镉工艺[J],世界有色金属,2007,9:22-23.
    13.赵宏,王泰祥,郭树东.西北铅锌冶炼厂铜镉渣提取技术[J],甘肃冶金,2002,4:8-10.
    14.曾惫华.冶锌工业废渣中铅、锌、铜、镉提取工艺的研究[D],广东工业大学化学工程,2003,40-44.
    15.新村隆平等.镉生产工序的改造[J],有色冶炼,1992,6:19-22.
    16.李冬云.韶冶电尘提镉工艺和设备的改进研究[J],有色金属冶金,2004,48-52.
    17.黄庄,唐摸堂,何静.从锌精矿焙烧电尘中提取镉[J],中国有色冶金,2005,4:51-54.
    18.F·拉什申,崔洪山,李长根.从锌浸出渣中回收铅的研究[J],国外金属矿选矿,2005,6:3741.
    19.梁经冬,王忠梅,封木开图等.湿法炼锌超浸渣的浮选研究[J],矿冶工程,1990,10(3):27-31.
    20.陆克源,于红.铅渣回收新工艺[J],再生资源研究,1995,2:18-19.
    21.郑顺德,陈世民,林兴铭等.从锌渣浸渣中综合回收铟锗铅银的试验研究[J],有色冶炼,2001,2:34-35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700