碱性亚氨基二乙酸盐体系处理低品位氧化锌矿的基础理论及工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国存在大量高碱性脉石型复杂低品位氧化锌矿,采用直接酸浸工艺很难经济有效地处理该类矿物,为此,国内外大量科研工作者针对性地开发了氨浸及碱浸工艺,利用配合物的形成在碱性体系选择性浸锌,避免了碱性脉石的大量溶出,取得了较好的效果。但氨浸和碱浸工艺所选择的配体仅局限在NH3、Cl-、OH-,一定程度上限制了选择性浸出体系的发展,因此,本文提出选择合适配体、开发新的选择性浸出体系处理此类复杂低品位氧化锌矿,以期为此类矿物的处理提供新的思路。论文的主要研究内容与结论如下:
     (1)对利用配合物形成浸出有价金属过程中配体选择问题进行研究,得出了评判配体L对金属离子M配合能力强弱的依据,并由此确定了“粗选-精选”两步选择配体的方法。以此法选定亚氨基二乙酸根离子(Ida2-)为配体,且所选配体ida2-对菱锌矿、水锌矿、硅锌矿、异极矿及红锌矿中Zn(Ⅱ)均有较强的配合溶解能力,对低品位氧化锌矿中脉石类杂质Ca、Mg、Fe及Si具有较好的选择性,由此提出了碱性亚氨基二乙酸盐体系处理低品位氧化锌矿方案。
     (2)298K,611,可使Zn2+以ZnO形式沉淀。
     (3)研究了Ida2-H2O体系浸出低品位氧化锌矿的工艺过程,研究表明,温度、pH值对锌浸出效果及杂质溶出情况影响较大,确定了最佳浸出工艺条件:配体总浓度0.9mol·L-1、温度70℃、pH值8、反应时间4h、液固比5:1。在最佳工艺条件下,锌浸出率保持在76%以上,Ca、Mg、Fe、Si在浸出液中含量分别在340mg·L-1、6mg·L-1、16mg·L-1、25mg·L-1左右,由此说明,Ida2--H20体系对矿物中脉石类杂质具有较高的选择性。
     (4)提出采用“沉锌-沉钙-再浸出”工艺处理低浓度含锌浸出液,低浓度含锌浸出液直接用CaO调碱沉锌使Zn2+以ZnO沉淀形式加以回收,回收锌后的浸出液经CO2调酸沉钙脱除沉锌过程中积累的大量钙离子使浸出剂得以再生,再生浸出剂可返回浸矿。研究表明,温度、沉锌终点pH值及反应陈化时间对CaO沉锌效果均有较大影响;温度对CO2调酸沉钙过程影响较大。确定了CaO调碱沉锌最佳工艺条件:温度85℃、沉锌终点pH值10、反应陈化时间60min;CO2调酸沉钙最佳工艺条件:温度70℃、沉钙终点pH值8、CO2流量0.2L/min。浸出液按上述条件经“沉锌-沉钙-再浸出”工艺循环5次,沉锌率均高于90%,沉钙率均高于93%,锌浸出率均高于75%,沉钙过程所得粗氧化锌中平均锌、铅品位分别为60.07%、3.84%,沉钙过程所得碳酸钙纯度达97%以上。
     (5)采用pH电位法测定了25℃、40℃、55℃、70℃下的ida2-加质子常数以及ida2--Zn2+配离子稳定常数,分析了温度对Zn2+-ida2--H2O配合物体系的影响,结果表明,ida2-加质子作用及Ida2-与Zn2+配合作用均随体系温度升高而减弱。结合所测热力学数据,通过理论计算,分析了温度对Zn2+-Ida2--CO32--H2O体系Zn(Ⅱ)溶解及沉淀过程影响,结果表明,由于温度对Ida2-加质子作用及Ida2-与zn2+配合作用的影响,Zn2+-ida2--C032--H20体系锌溶解度随温度升高而下降,且随着体系温度升高,锌溶解度与pH的变化关系曲线(曲面)图规律性地向pH值减小的方向移动。
There is a large amount of low grade refractory zinc oxide ore exiting in our country, in which the gangue is alkaline. It is very difficult to treat this kind of resource economically and efficiently by acid leaching. In order to extract zinc and avoid the alkali gangue being dissolved from this kind of zinc oxide ore, the method of ammonia leaching and alkaline leaching had been studied widely due to the correspond lixivants can complex with Zn(Ⅱ) and the results revealed that it's available to extract zinc selectively by ammonia leaching and alkaline leaching processes. However, it is to some extent restricted the development of separating Zn selectively from low grade zinc oxide ore, because of the ligand used in the above two complex-leaching processes are only NH3, Cl-and OH-. Therefore, the object of this work is to select and develop new ligands for zinc selective leaching from this low grade refractory zinc oxide ore, which will provide a new idea for the zinc hydrometallurgy process. The main contents and conclusions were drawn as follow:
     (1) Ligand selection for complex-leaching valuable metals in alkaline system was investigated, which indicated evaluation rules of the binding capacity of ligand (L) with metallic ion (M). Thus, a two-stage ligand selection method composed of a primary selection and a critical selection was determined. The applications of this method showed that iminodiacetate (Ida2-) can be used as a complex agent for complex-leaching smithsonite (ZnCO3). Moreover, the ligand selected (Ida2-) also had large binding capacity with Zn(Ⅱ) of willemite (Zn2SiO4), hemimorphite (Zn4Si2O7(OH)2·H2O), hydrozincite (Zn5(OH)6(CO3)2) and zincite (ZnO). More importantly, impurities such as Ca, Mg, Fe and Si which were abundant in low grade zinc oxide ore can not be dissolved in alkaline iminodiacetate aqueous solution, it's said that Ida2-had high selectivity with impurities of quasi-gangue during leaching process. Through these results, the scheme for treating low grade zinc oxide ore in alkaline iminodiacetate aqueous solution was proposed.
     (2) Thermodynamics of Zn2+-Ida2--CO32--H2O system with different equilibrium solid phases including ZnCO3, Zn5(OH)6(CO3)2, Zn3(OH)4CO3·H2O and ZnO were studied respectively at298K of pH value6-12. Subsequently, the equilibrium solid phase converting rules and its stable area of all the above probable solid phases in Zn2+-Ida2--C032--H2O system were determined. The results showed that ZnCO3, Zn5(OH)6(CO3)2and ZnO can exist stably as the equilibrium solid phase in a certain area in Zn2+-Ida2--CO32--H2O system, while Zn3(OH)4CO3·H2O can not. In Zn2+-Ida2--CO32--H2O system, the equilibrium solid phase can converted from ZnCO3into Zn5(OH)6(CO3)2and finally into ZnO with the increase of pH. It is inadequate to characterize the dissolution process of Zn(Ⅱ) in alkaline iminodiacetate aqueous solution by using the thermodynamics results of Zn2+-Ida2--CO32--H2O system with only a single equilibrium solid phase, for there is great difference of dissolution characteristics among the different equilibrium solid phases. Ideas for Zn2+precipitation from leaching liquor were proposed by means of the solubility of Zn(II) changes while equilibrium solid phase converted in Zn2+-Ida2--CO32--H2O system. Zn2+would be precipitated as ZnCO3when the pH of Zn2+-Ida2--CO32---H2O system was below8by adding with acid, and adding with alkali to adjust the system of pH>11, Zn2+would be precipitated as ZnO.
     (3) The process of leaching low grade zinc oxide ore in Ida2--H2O system was investigated. It showed that temperature and pH had great effect on Zn(Ⅱ) extraction and the dissolution of impurities. The optimum conditions for leaching low grade zinc oxide ore were determined as follows, total concentration of Ida2-0.9mol·L-1, temperature70℃, pH=8, liquid to solid ratio5:1and leaching time4h. As a result, the extractions of Zn are above76%, concentration of impurities Ca, Mg, Fe and Si are about340mg·L-1,6mg·L-1,16mg·L-1and25mg·L-1respectively in leaching liquor. It's certained that the Ida2--H2O system had high selectivity with impurities of quasi-gangue.
     (4) The process of "Zn2+precipitation-Ca2+precipitation-releaching" was adopted to treat the leaching liquor with low concentration of Zn2+, in which CaO was directly added to adjust the alkalinity and make Zn2+be precipitated as ZnO for recovery. Then the acidity of the residual solution was adjusted by CO2to remove the accumulated Ca2+as CaCO3, and the lixiviant can be regenerated simultaneously for recycling use. It showed that the recovery of Zn was influenced by the factors of temperature, the final pH value and aging time of precipitation, while the precipitation of Ca was affected by temperature. The optimal conditions for Zn2+precipitation were determined as follows:temperature of85℃, final pH of10and aging time of60min. And the optimal conditions for Ca2+precipitation were as follows:temperature of70℃, final pH of8and flow rate of CO2gas of0.2L/min. The results show that when leaching liquor is treated under above optimal conditions for5times cycle operation, the precipitations of and Ca are over90%and93%respectively, and the extractions of Zn by releaching with regenerated lixiviant are above75%. ZnO obtained from Zn2+precipitation process contains60.07%Zn and3.84%Pb (average value), while CaCO3obtained from Ca2+precipitation process has purity more than97%.
     (5) The pH potentiometry was used to determine the protonation constants of Ida2-and stability constants of Ida2" with Zn2+at different temperature (25℃,40℃,55℃,70℃), and the effect of temperature on Zn2+-Ida2--H2O complex medium was investigated subsequently. The results show that the protonation of Ida2-with H+and the complexation of Ida2-with Zn2+become weaker and weaker as the temperature increase. According to the thermodynamic data determined, the effect of temperature on dissolution and precipitation processes of Zn(Ⅱ) in Zn2+-Ida2--CO32--H2O systems were analyzed by theoretical calculation. The results show that the solubility of Zn(Ⅱ) in Zn2+-Ida2--CO32--H2O system declines with the increase of temperature, and the graphs of the solubility of Zn(Ⅱ) against pH on which the solubility of Zn(Ⅱ) curves move ruly with the increase of temperature to the direction of the decrease of pH value. The reason for causing these two phenomena is both due to the effect of temperature on the protonation of Ida2-with and the complexation of Ida2-with Zn2+
引文
[1]梅光贵,王德润,周敬元等.湿法炼锌学[M].长沙:中南大学出版社,2001:11-13.
    [2]奚甡.海外铅锌资源开发现状及其利用[J].资源再生,2009(7):22-24.
    [3]黄仲权.我国铅锌工业发展的现状与对策建议[J].世界有色金属,2004(8):4-6.
    [4]陈喜峰.彭润民.中国铅锌矿资源形势及可持续发展对策[J].有色金属,2008,60(3):129-130.
    [5]刘红卫.低品位氧化锌矿湿法冶金新工艺研究[D].长沙:中南大学,2004.
    [6]肖松文,肖骁,刘建辉,等.二次锌资源回收利用现状及发展对策[J].中国资源综合利用,2004,2:19-23.
    [7]蒋继穆.我国锌冶炼现状及近年来的技术进展[J].中国有色冶金,2006,5:19-23.
    [8]郭天立,高良宾.当代竖罐炼锌技术述评[J].中国有色冶金,2007(1):5-6.
    [9]高良宾.葫芦岛锌厂竖罐炼锌70年回望[J].中国有色冶金.2007(1):1-4.
    [10]杜德军.竖罐炼锌炉的改进[J].有色矿冶,2004,20(1):43-45.
    [11]李曰荣,印国敏,胡丕成.电炉炼锌技术的现状及展望:全国铜冶炼生产技术及产品应用学术交流会[C].北京:中国有色金属学会,2002:146-150.
    [12]陈德喜,段力强.我国电炉炼锌工艺的技术进步与发展[J].有色金属(冶炼部分),2003(2):20-23.
    [13]汤文俚.ISP工艺在韶冶的发展与实践[J].湖南有色金属,2006,22(6):21-23.
    [14]彭容秋.重金属冶金学(第二版)[M].长沙:中南大学出版社.2003:40-42.
    [15]李夏林.韶冶铅锌密闭鼓风炉Ⅰ系统技术改造实践[J].有色冶炼,2001,5:12-15.
    [16]Sasaoka H, Tatsuta N, Kadoya H. Recent operational improvements in the ISP plant[J]. Metallurgical Review of Mining and Metallurgical Institute of Japan, 1996,13(1):154-165.
    [17]赵晓声.ISP炼铅锌技改清洁生产评价[J].工程设计与研究,2007,123:11-19.
    [18]Nishikawa M, Oshita T. Improvements in ISP operation with a single condenser at Hachinohe smelter. Proceedings of the 1st International Conference on Processing Materials for Propertiea[A]. Publ by Minerals, Metals & Materials Soc(TMS)[C].1993:401-404.
    [19]王志刚.密闭鼓风炉炼铅锌技术改进及展望[J].湖南有色金属,2003,19(6):19-22.
    [20]Takewaki M, Kubota H. Zinc-lead smelting and refining at Sumitomo Harima Works[J]. Metallurgical Review of Mining and Metallurgical Institute of Japan, 1995,12(1):77-95.
    [21]Rankin W J, Wright S. The reduction of zinc from slags by Iron carbon melt[J]. Metallurgical and materials transaction,1990,21(10):885-897.
    [22]Donald J R, Pickles C A. A kinetic study of the reaction of Zinc oxide with iron powder[J]. Metallurgical and Materials Transactions B,1996,27(6):363-373.
    [23]郭兴忠,张丙怀,阳海彬,杨辉.熔融还原处理低品位氧化锌矿的研究[J].矿冶工程,2003,23(1):57-60.
    [24]郭兴忠,张丙怀,阳海彬,马鸿鹊.氧化锌矿火法处理新工艺-铁浴熔融还原法[J].有色冶炼,2002(2):18-21.
    [25]杨声海.Zn(Ⅱ)-NH3-NH4Cl-H2O体系制备高纯锌理论及应用[D].长沙:中南大学,2003.
    [26]Gray P M J. Warner zinc process[A]. Proceedings of the International Symposium on Zinc[C], Publ by Australian Inst of Mining & Metallurgy,1993: 483.
    [27]Warner N A, Davies M W, Holdsworth M L, et al. Direct zinc smelting with virtually zero gas emission[A]. Proceedings of the 2nd Internation Symposium on Metallurgical Processes for the year 2000 and Beyond and the 1994 TMS Extraction and Process Metallurgy Meeting[C]. Part 2 (of 2) Minerals, Metals & Materials Soc(TMS),1994:333.
    [28]Gray P. Warner process [J]. Mining Magazine,1992,166(1):14.
    [29]窦明民.沃纳法炼锌[J].有色冶炼,1996,17:20-26.
    [30]Surapunt S, Itagaki K. Thermochemical evaluation of new zinc production processes using liquid copper as smelting medium[J]. Metallurgical Review of MMJ(Mining and Metallurgical Institute of Japan),1994,11 (2):84-103.
    [31]彭容秋.重金属冶金学(第二版)[M].长沙:中南大学出版社.2003:257-259.
    [32]蒋继穆.我国锌冶炼现状[J].世界有色金属,2001(10):8-10.
    [33]孙德堃.国内外锌冶炼技术的新进展[J].中国有色冶金,2004(3):1-2.
    [34]高保军.锌冶炼技术现状及发展探讨[J].中国有色冶金.2008(3):12-13.
    [35]杨大锦,廖元双,徐亚飞,等.锌冶金工艺概述[J].云南冶金,2002,12(6):22-26.
    [36]刘三军,欧乐明.中国锌冶炼工业现状[J].矿产保护与利用,2003,12(6):36-40.
    [37]兰兴华.硫化锌精矿流化床焙烧过程中的矿物形态变化[J].世界有色金属,2005,12:20-22.
    [38]张金成.西北铅锌冶炼厂锌浸出工艺的研究[J].甘肃有色金属,1998,3:2-8.
    [39]Elgersma F, Witkamp G J, Van Rosmalen G. Simultaneous dissolution of zinc ferrite and precipitation of ammonium jarosite[J]. Hydrometallurgy, 1993,34(1):23-47.
    [40]赵永,蒋开喜,王德全,等.用针铁矿法从锌焙烧烟尘的热酸浸出液中除铁[J].有色金属(冶炼部分),2005,5:13-15.
    [41]Dutrizac J E. Effectiveness of jarosite species for precipitating sodium jaro site [J]. JOM,1999,51(12):30-32.
    [42]Mario P, Carlo C, Carlo A, et al. Treatment and recycling of goethite waste arising from hydrometallurgy of zinc[J]. Hydrometallurgy,1996,40(1-2):25-35.
    [43]Gord A R, Pickring R W. Improved leaching technology in the electrolytic zinc industry[J]. Metallurgical Transactions B (Process Metallurgy),1975, 6B(1):43-53.
    [44]Cheng T C M, Demopoulos G P. Analysis of the hematite precipitation process from a crystallization point of view[A]. TMS Annual Meeting[C],1997,599-617.
    [45]张元福,陈家蓉,黄光裕,等.针铁矿法从氧化锌烟尘浸出液中除氟氯的研究[J].湿法冶金,1999,(2):36-40.
    [46]林书英.仲针铁矿法在温州冶炼厂技改工程中的应用[J].有色金属(冶炼部分),1996,5:4-6.
    [47]李衍林,王吉坤,杨大锦.高锗硫酸锌溶液深度净化工业实践[J].云南冶金,2007,36(4):34-37.
    [48]陈敬阳.锌湿法冶炼中高钻矿的处理[J].材料研究与应用,2007,1(1):69-71.
    [49]刘中清,唐谟堂.硫酸锌溶液低温锑盐除钻研究[J].湿法冶金,1999,4:22-27.
    [50]刘芝勇,刘显彬,高良宾.湿法炼锌净化钻渣处理工艺的改进[J].中国有色冶金,2006,35(3):37-38.
    [51]郭天立,高良宾.硫酸锌溶液净化技术的现状与展望[J].有色矿冶,2006,22(1):26-28.
    [52]曾桂生,谢刚,杨大锦,等.锡离子对硫酸锌溶液除钴的影响及机理探索[J].科学技术与工程,2005,5(13):872-875.
    [53]马杨辉,阳雄魁.湿法炼锌锑盐锌粉除钴的生产实践[J].中国有色冶金,2005,34(1):22-23.
    [54]尹华光.逆锑锌粉净化工艺的技术改进[J].湖南有色金属,2005,21(2):20-22.
    [55]刘志宏,唐朝波,张多默,等.锑盐除钴净化工艺研究[J].中南工业大学学报(自然科学版),2000,31(3):225-227.
    [56]唐道文,毛小浩,黄碧芳,等.硫酸锌溶液中氟氯净化的实验研究[J].贵州工业大 学学报:自然科学版,2004,33(3):15-17.
    [57]Vakil S. Technological innovation in the zinc electrolyte purify-cation process of a hydrometallurgical zinc plant through reduction in zinc dust consumption[J]. Hydrometallurgy,1996,40(1-2):247-262.
    [58]Vander Pas, Dreisinger D B. A fundamental study of cobalt cementation by zinc dust in the presence of copper and antimony additives[J]. Hydrometallurgy, 1996,43(1-3):187-205.
    [59]Trina M D, Amy N, George P D, et al. The kinetics of cobalt removal by cementation from an industrial zinc electrolyte in the presence of Cu, Cd, Pb, Sb and Sn additives[J]. Hydrometallurgy,2001,60(2):105-116.
    [60]Raghavan R, Mohanan P K, Verma S K. Modified zinc sulphate solution purification technique to obtain low levels of cobalt for the zinc electrowinning process[J]. Hydrometallurgy,1999,51(2):187-206.
    [61]孙成余,王吉坤,杨大锦.富锗锌原料浸出-深度净化-长周期锌电积工业生产实践[J].云南冶金,2007,36(4):34-37.
    [62]张玉萍.锌电积用阳极的研究与发展[J].湿法冶金,2001,20(4):169-171.
    [63]Saba A E, Elsherief A E. Continuous electrowinning of zinc[J]. Hydrometallurgy, 2000,54(2-3):91-106.
    [64]Rashkow S, Dobrev T, Noncheva Z, et al. Lead-cobalt anodes for electrowinning of zinc from sulphate electrolytes [J]. Hydrometallurgy,1999,52(3):223-230.
    [65]Lupi C, Pilone D. New lead alloy anodes and organic depolariser utilization in zinc electrowinning[J]. Hydrometallurgy,1997,44(3):347-358.
    [66]Liana M, Maurin G, Oniciu L, et al. Influence of metallic impurities on zinc electrowinning from sulphate electrolyte[J]. Hydrometallurgy, 1996,43(1-3):345-354.
    [67]Ivan I. Increased current efficiency of zinc electrowinning in the presence of metal impurities by addition of organic inhibitors [J]. Hydrometallurgy, 2004,72(1-2):73-78.
    [68]Petrova M, Noncheva Z, Dobrev T, et al. Investigation of the processes of obtaining plastic treatment and electrochemical behaviour of lead alloys in their capacity as anodes during the electroextration of zinc 1. Behavious of Pb-Ag, Pb-Ca and Pb-Ag-Ca alloys[J]. Hydrometallurgy,1996,40(3):293-318.
    [69]Rashkov S, Stefanov Y, Noncheva Z, et al. Investigation of the processes of obtaining plastic treatment and electrochemical behaviour of lead alloys in their capacity as anodes during the electroextration of zinc Ⅱ. Electrochemical formation of phase layers on binary Pb-Ag and Pb-Ca, and ternary Pb-Ag-Ca alloys in a sulphuric-acid electrolyte for zinc electroextraction[J]. Hydrometallurgy,1996,40(3):319-334.
    [70]Chalkley M E, Collins M J, Ozberk E. Behaviour of sulphur in the Sherritt zinc pressure leach process[A]. Proceedings of the International symposium on Zinc[C],1993:325.
    [71]Ozberk E, Jankola W A, Vecchiarelli M, et al. Commercial operations of the Sherritt zinc pressure leach process [J]. Hydrometallurgy,1995,39(1-3):49-52.
    [72]Ozberk E, Collins M J, Makwana M, et al. Zinc pressure leaching at the Ruhr-zink Refinery [J]. Hydrometallurgy,1995,39(1-3):53-62.
    [73]Jankola W A. Zinc pressure leaching at Cominco[J]. Hydrometallurgy, 1995,39(1-3):63-70.
    [74]Harvey T I, Yen W T. Influence of chalcopyrite, galena and pyrite on the selective extraction of zinc from base metal sulphide concentrates[J]. Minerals Engineering,1998,11(1):1-21.
    [75]Buban K R, Collins M J, Masters I M. Iron control in zinc pressure leach processes[J]. JOM,1999,51(12):23-25.
    [76]Cbalkley M E, Collins M J, Ozberk E. Behaviour of sulphur in the Sherrit zinc pressure leach process[A]. Proceedings of the International Symposium on Zinc, 1993:325.
    [77]Collins M J, Mc-Conaghy E T, Staufer R F, et al. Starting up the Sherrit zinc pressure leach process at Hudson Bay[J]. JOM,1994,46(4):51-58.
    [78]Buhan K R, Collins M J, Master I M. Iron control in zinc pressure leach process[J]. JOM,1999,51(12):23-25.
    [79]李若贵.常压富氧直接浸出炼锌[J].中国有色冶金,2009(3):12-14.
    [80]刘三平,王海北,蒋开喜,张邦胜.中国湿法炼锌的新进展[J].矿冶,2009,18(4):25-27.
    [81]王吉坤,周廷熙.硫化锌精矿加压酸浸技术及产业化[M].北京:冶金工业出版社.2008:21-23.
    [82]张春生,刘刚.硫化锌加压浸出工艺在湿法冶金中的设计应用[J].有色金属设计,2009,36(4):50
    [83]冯君从.中金岭南有色金属公司丹霞冶炼厂举行50万吨锌冶炼项目奠基仪式[J].中国铅锌锡锑,2007(4):33.
    [84]Collins M J, Kalanchey R J, Masters I M,等.高海拔下锌的高浸出率-谢里特为中国西部矿业公司进行的锌氧压浸出研究[J].中国有色冶金,2009,A(3):16-20.
    [85]董巧龙.锌精矿常压浸出与加压浸出工艺比较[J].中国有色冶金.2007(4):24-26.
    [86]陈智和,何醒民,等.锌精矿氧压浸出技术[J].湖南有色金属,2002,18(1):26-28.
    [87]林文军,刘一宁,赵为上,等.锌精矿氧压浸出工艺现状及工业应用[A].锌加压浸出工艺与装备国产化及液态铅渣直接还原专题研讨会论文集[J].2009:49-53.
    [88]张武存,黄芝林,王万禄.铁闪锌矿氧压酸浸试验[J].云南冶金,990,(6):39-42.
    [89]王吉昆,周廷熙,吴锦梅.高铁闪锌矿精矿加压酸浸新工艺研究[J].有色金属(冶炼部分),2004,(1):5-8.
    [90]王玉芳,蒋开喜,王海北.高铁闪锌矿低温低压浸出新工艺研究[J].有色金属(冶炼部分),2004,(4):4-6.
    [91]Limpo J L, Figueiredo J M, Amer A S, et al. Method for the recovery of zinc, copper and lead of oxidized and/or sulfurized ores and materials. EP0434831A1,1991.
    [92]Limpo J L, Amer A S, Figueiredo J M, et al. Hydrometallurgical treatment of complex sulphide ores using highly concentrated ammonium chloride solutions[A]. ICHM'92, Proceedings of the Second International Conference on Hydrometallurgy[C] (vol.2). Changsha, China,1992:302-309.
    [93]Limpo J L, Figueiredo J M, Amer A S, et al. The CENIM-LNETI process:a new process for the hydrometallurgical treatment of complex sulphides in ammonium chloride solutions[J]. Hydrometallurgy,1993,28(2):149-161.
    [94]Limpo J L, Luis A, Gomez C. Reactions during the oxygen leaching of metallic sulphides in the CENIM-LNETI process[J]. Hydrometallurgy, 1993,28(2):163-178.
    [95]Limpo J L, Luis A. Solubility of zinc chloride in ammoniacal ammonium chloride solutions [J]. Hydrometallurgy,1993,32(2):247-260.
    [96]Figueiredo J M, Novais A Q, Limpo J L, et al. The CENIM-LNETI process for zinc recovery from complex sulphides[A]. International Symposium World Zinc'93, The Australasian Institute of Mining and Metallurgy[C], Hobart, 1993:333-339.
    [97]Figueiredo J M, Novais A Q, Limpo J L, et al. The CENIM-LNETI process for zinc recovery from complex sulphides [A]. Lead and zinc'95[C]. Sendai, Japan, 1995.
    [98]张兆祥.用高浓氯化铵溶液处理复杂硫化矿的湿法冶金工艺[J].有色冶炼,1994(4):41-43.
    [99]王书民,张国春.高铁闪锌矿精矿的氨浸工艺[J].商洛师范专科学校学报,2006(20):100-102.
    [100]曹琴园.机械活化对含锌矿物碱法浸出行为的影响[D].长沙:中南大学,2009.
    [101]Ghosh M K, Das R P, Biswas A K. Oxidative ammonia leaching of sphalerite Part Ⅰ [J]. Noncatalytic kinetics. Int. J. Miner. Process,2002(66):241-254.
    [102]Ghosh M K, Das R, Biswas A K. Oxidative ammonia leaching of sphalerite Part Ⅱ [J]. Cu(Ⅱ)-catalyzed kinetics. Int. J. Miner. Process,2003(70):221-234.
    [103]Olper M, Fracchia P L, Maccagni M. Process for recovering zinc and lead from flue dusts from electrical steel works and for recycling said purified metals to the furnace, and installation for implementing said process. EP0551155A1,1993.
    [104]Olper M. EZINEX process:A new and advanced way for electrowinning zinc from a chloride solution[A]. Proceedings of the International Symposium on Zinc[C]. Publish by Australasian Inst of Mining & Metallurgy,1993:491.
    [105]Olper M, Maccagni M. Electrolytic zinc production from crude zinc oxides with the Ezincx Process[A].2000TMS Fall Extraction & Proceeding[C], Pittsburgh, 2000.
    [106]Olper M. EZINEX process[A]. TMS Annual Meeting[C]. TMS. Publ. by Minerals, Metals & Materials Soc (TMS):1994:513.
    [107]杨显万,邱定蕃.湿法冶金[M].北京:冶金工业出版社.2001:460-488.
    [108]杨大锦,廖元双,徐亚飞,等.高铁闪锌矿悬浮电解工艺研究(Ⅰ)-悬浮电解液对比研究[J].云南冶金,2004,33(1):23-27.
    [109]杨大锦,廖元双,熊昆云等.高铁闪锌矿悬浮电解工艺研究(Ⅱ)[J].云南冶金,2004,33(5):16-19.
    [110]樊远鉴,张元福.硫化锌精矿悬浮电解一步炼锌新工艺[P].中国专利93105469.9.
    [111]梁杰Zn-MnO2同时电解工艺现状及存在问题[J].有色金属(冶炼部分),1992,(3):42-46.
    [112]钟竹前,梅光贵,蔡传算,等Zn-MnO2同时电解工业试验研究(上)[J].中国锰业,1994,12(3):45-50.
    [113]李军旗.硫化锌精矿和软锰矿同时浸出机理[J].有色金属,1996,48(2):90-93.
    [114]李军旗.锌、二氧化锰分步电解新新工艺[J].有色金属(冶炼部分),1997,(3):7-9.
    [115]刘开宇,周向阳.闪锌矿一步法生产活性氧化锌的研究[J].中国矿业,2000,9(4):58-60.
    [116]杨显万,沈庆峰,郭玉霞.微生物湿法冶金[M].北京:冶金工业出版社,2003.
    [117]Ballester A, BI Zquez M L, Gonzolez F, et al. The influence of different variable on the bioleaching of sphalerite[J]. Biorecovery,1989,1:127-144.
    [118]雷云,杨显万.生物湿法冶金与西部矿产资源开发[J].有色金属,2000,52(4):100-103.
    [119]Krafft C, Hallberg R O. Bacterial leaching of two swidish zinc sufide ores[J]. FEMS Microbial Rev.,1993,11:121-128.
    [120]石道民,杨敖.氧化铅锌矿的浮选[M].昆明:云南科技出版社,1996:1-3.
    [121]王资.氧化锌矿浮选研究现状[J].昆明冶金高等专科学校学报,1997,13(3):20-25.
    [122]毛素荣,杨晓军,何剑,等.氧化锌矿浮选现状及研究进展[J].国外金属矿选矿,2007,44(4):4-6.
    [123]Janusz W. Flotation of synthetic zinc carbonate using potassium ethylxanthate[J]. International Journal of Mineral Processing,1983,2(11):79-88.
    [124]Rey M, Rafinot P. The flotation of oxidation zine ores[J]. IMM, 1953,(1):571-579.
    [125]Bustamante H. Surface chemistry and flotation of oxidation zine minerals: 2-flotation with chelating regents[J]. Trans Inst Met Sect C,1983,(12):208-215.
    [126]何晓娟,程德明,宫中桂.螯合型捕收剂-辛基羟肟酸浮选氧化锌矿机理的研究[J].广东有色金属学报,1991,11(1):1-6.
    [127]陈世明,瞿开流.兰坪氧化锌矿石处理方法探讨[J].云南冶金,1998,27(5):3-5.
    [128]杨国栋.韦氏炉生产锌氧粉[J].云南化工,1991,(1):76-79.
    [129]李时晨,朱玉芹.回转窑高温还原挥发处理难选低品位氧化锌矿[J].云南冶金(县乡矿业版),1992,(4):13-15.
    [130]梁杰,王华.低品位氧化铅锌矿的烟化法富集工艺[J].有色金属(冶炼部分):1996,(2):5-7.
    [131]李国民.高硅氧化锌矿浸出脱硅工艺的研究[J].中国有色冶金.2005,(4):32-33.
    [132]周德林,窦明民,陈世明.高硅氧化锌矿全湿法冶炼工艺的研究、应用与发展 [J].有色金属(冶炼部分),1995,(3):1-5.
    [133]蓝卓越,胡岳华,黎维中.低品位氧化锌矿硫酸浸出工艺研究[J].矿冶工程,2002,22(3):63-65.
    [134]刘红卫,蔡江松,王红军,张登凯.低品位氧化锌矿湿法冶金新工艺研究[J].有色金属(冶炼部分),2005,(5):29-31.
    [135]李存兄,魏昶,樊刚等.高硅氧化锌矿加压酸浸处理[J].中国有色金属学报,2009,19(9):1678-1683.
    [136]林祚彦.高硅氧化锌微波辅助浸出机理研究[D].昆明:昆明理工大学,2003.
    [137]Gnoinski J. Skorpion zinc:optimissation and innovation[J]. The Southern African Institue of Mining and Metallurgy, The Fourth Southern African Conference on Base Metals:330-342.
    [138]Peter M C, Kathryn C S, Angus M F. Solvent extraction developments in Southern Africa[J]. Tsinghua Science and Technology,2006,11(2):153-159.
    [139]Peter M C, Kathryn C S. Zinc solvent extraction in the process industry[J]. Mineral Processing and Extractive Metallurgy Review,2006,24(2):91-137.
    [140]Dimitrios F. Innovation hydrometallurgical processes for the primary processing of zinc[J]. Mineral Processing and Extractive Metallurgy Review, 2005,25(3):205-252.
    [141]Schnabel C. Die entsilberung des werkbleies durch zinc and dieneuesten fortschritte dieser ensilberungsmethode auf den fiscalischen hu" ttenwerken des Oberharzes[J]. Zei. Ber. Hu'tt.,1980(28):262-304.
    [142]Harvey T G. The hydrometallurgical extraction of zinc by ammonium carbonate: A review of the Schnabel Process[J]. Mineral Processing and Extractive Metallurgy Review,2006,27(4):231-279.
    [143]彭清静,黄诚.氨浸法菱锌矿制活性氧化锌的研究[J].化学世界,1996(6):294-296.
    [144]杨新生.氨浸过程浅析[J].有色矿冶,1993,(1):34-38.
    [145]Moustafa S A. Extraction of zinc from Egyptian zinc Ore with (NH4)SO4[J]. World of Metallurgy-ERZMETALL,2005,58(1):21-26.
    [146]Saleh H I, Hassan K M. Extraction of zinc from blast-furnace dust using ammonium sulfate[J]. Journal of Chemical Technology and Biotechnology, 2004,79(4):397-402.
    [147]唐谟堂,鲁君乐,袁延胜,等.Zn(Ⅱ)-NH3-(NH4)2SO4-H2O系的氨络合平衡[J].中南矿冶学院学报,1994,25(6):701-705.
    [148]胡汉,朱云.难选氧化锌矿氨浸的热力学[J].云南冶金,2004,33(1):28-31.
    [149]唐谟堂,张鹏,何静,等.Zn(Ⅱ)-(NH4)2804-H2O体系浸出锌烟尘.中南大学学报,2007,18(5):867-871.
    [150]唐谟堂,欧阳民.硫铵法制取等级氧化锌[J].中国有色金属学报,1998,8(1):118-121.
    [151]Yang S H, Tang M T. Thermodynamics of Zn(II)-NH3-NH4Cl-H2O system[J]. Trans Nonferrous Met Soc China,2000,10(6):830-833.
    [152]王瑞祥,唐谟堂,杨建广,等.Zn(Ⅱ)-NH3-Cl--CO32--H2O体系中Zn(Ⅱ)配合平衡[J].中国有色金属学报,2008,18(1):192-197.
    [153]Wang R X, Tang M T, Yang S H, et al. Leaching kinetics of low grade zinc oxide ore in NH3-NH4Cl-H2O system[J]. J. Cent. South Univ. Technol. 2008,15(5):679-683.
    [154]张玉梅,李洁,陈启元,等.超声波对低品位氧化锌矿氨浸行为的影响[J].中国有色金属学报,2009,19(5):960-966.
    [155]Yang S H, Tang M T, Chen Y F, et al. Anodic reaction kinetics of electrowining zinc in the system of Zn(II)-NH3-NH4Cl-H2O[J]. Trans Nonferrous Met Soc China,2004,14(3):626-630.
    [156]张保平,唐谟堂,杨声海.氨法处理氧化锌矿制取电锌[J].中南工业大学学报(自然科学版),2003,34(6):619-623.
    [157]张元福,梁杰,李谦,等.铵盐法处理氧化锌矿的研究[J].贵州工业大学学报(自然科学版),2002,31(1):37-40.
    [158]王瑞祥,唐谟堂,刘维,等.NH3-NH4Cl-H2O体系浸出低品位氧化锌矿制取电锌[J].过程工程学报,2008,8(S1):219-222.
    [159]Nagib S, Inoue K. Recovery of lead and zinc from fly ash generatiod from municipal incineration plants by means of acid and/or alkaline leaching[J]. Hydrometallurgy,2000,56(3):269-292.
    [160]张承龙.含锌危险废物碱法浸出处理研究[J].铀冶炼,2008,27(1):53-56.
    [161]Frenay J. Leaching of oxidized zinc ore in various media[J]. Hydrometallurgy, 1985,15(2):243-253.
    [162]Feng L Y, Yang X W, Shen Q F, et al. Pelletizing and alkaline leaching of powdery low grade zinc oxide ores[J]. Hydrometallurgy,2007,89(3-4):305-310.
    [163]Chen A L, Zhao Z W, Jia X J, et al. Alkaline leaching Zn and its concomitant metals from refractory hemimorphite zinc oxide ore[J]. Hydrometallurgy, 2009,97:228-232.
    [164]Zhao Z W, Long S, Chen A L, et al. Mechanochemical leaching of refractory zinc silicate (hemimorphite) in alkaline solution[J]. Hydrometallurgy,2009, 97:255-258.
    [165]刘三军,欧乐明,冯其明,张国范,卢毅屏.低品位氧化锌矿石的碱法浸出[J].湿法冶金.2005,24(1):23-25.
    [166]Zhao Y C, Standforth. Production of Zn powder by alkaline treatment of smithsonite Zn-Pb ores[J]. Hydrometallurgy,2000,56(2):237-249.
    [167]马启坤,李晓阳,陈世明,等.一种处理低品位氧化锌矿石的方法[P].C02133784.5,2002.09.17
    [168]郑典慧,陈定奔,黄凌.Cu(Ⅱ)与亚氨基二乙酸配合物的合成、晶体结构[J].科学技术与工程,2007,7(12):2940-2942.
    [169]Wang J, Song X M, Zhang W Q, et al. Investigation on molecular and crystal structures of metal complexes with aminopolycarboxylic acids(Ⅰ)-synthesis and structure of Na2[FeⅢ(ida)2]2·3H2O [J]. Chinese Chemical letters, 1997,8(8):48-51.
    [170]熊云,姚胜来,梅伏生,等.配合物二(N-质子化亚氨基)二乙酸锰(Ⅱ)的晶体结构[J].华中师范大学学报(自然科学版),2000,34(4):418-420.
    [171]冯练享,陈均志,任便利.亚氨基二乙酸的生产与应用[J].农药,2006,45(1):12-14.
    [172]颜守保.亚氨基二乙酸的生产技术及其应用[J].安徽化工,2008,34(2):20-22.
    [173]曾庆友,谢荣锦,王钰璠.亚氨基二乙酸的合成与分离纯化技术进展[J].精细石油化工进展,2001,2(10):23-25.
    [174]北京矿冶研究总院分析室.矿石及有色金属分析手册[M].北京:冶金工业出版社,2001:56-60.
    [175]刘永辉.电化学测试技术[M].北京:北京航空学院出版社,1987.267-268.
    [176]Bard A J, Faulkner L R. Electrochemical methods-Fundamentals and applications 2ed[M]. Newyork:JOHN WILEY & SONS, INC,2001.
    [177]腾岛昭,相泽益男,井上徹.电化学测定方法(陈震,姚建年译)[M].北京:北京大学出版社,1995:120-147.
    [178]Ju S H, Tang M T, Yang S H. Thermodynamics and technology of extracting gold from low-grade gold ore in system of NH4Cl-NH3-H2O [J]. Trans. Nonferrous Met. Soc. China,2006,16:203-208.
    [179]王瑞祥,唐谟堂,巨少华,等.Ni(Ⅱ)-NH3-Cl--H2O体系中Ni(Ⅱ)配合平衡热力学[J].中南大学学报(自然科学版),2008,39(5):891-895.
    [180]巨少华,唐谟堂,杨声海.用MATLAB编程求解Zn(Ⅱ)-NH4Cl-NH3-H2O体系热力学模型[J].中南大学学报(自然科学版),2005,36(5):821-827.
    [181]Dean J A. Lange's Handbook of Chemistry (15th Ed) [M]. Science Press,2003: 6.107,6.143-6.144,6.120,8.67,8.81-8.82.
    [182]Martell A E, Smith R M. Critical stability constants Critical stability constants (volume 1:Amino Acids) [M]. New York and London:Plenum Press, 1974:116-118.
    [183]Martell A E, Smith R M. Critical stability constants Critical stability constants (volume 4:Inorganic Ligands)[M]. New York and London:Plenum Press, 1974:37-38.
    [184]Wolfgang P, Heinz G. (Solid +solute) phase equilibria in aqueous solution. Thermodynamic properties of hydrozincite and predominance diagrams for (Zn2++H2O+CO2)[J]. J. Chem. Thermodynamics,2001,33:803-819.
    [185]杨显万,何蔼平,袁宝州.高温水溶液热力学数据计算手册[M].北京:北京工业出版社,1983,558,670.
    [186]贾希俊.氧化锌矿物碱法提取新工艺研究[D].长沙:中南大学,2009.
    [187]杨天足,窦爱春,江名喜,等.氯离子浓度对氨水浸出氯化银的影响[J].贵金属,2006,27(4):6-10.
    [188]Harvey T G. The hydrometallurgical extraction of zinc by ammonium Carbonate:A review of the Schnabel process[J]. Mineral Processing Extractive Metallurgy Review,2006,27(4):231-279.
    [189]Aletan G. Ammonia leaching of oxidized lead-zinc ores of Iran[J]. Geol. Survey of Iran,1969,(15):19-66.
    [190]曹琴园,李洁,陈启元.机械活化对异极矿碱法浸出及物理性能的影响[J].中国有色金属学报,2010,20(2):354-362.
    [191]张玉梅.氧化锌矿氨性强化浸出新方法的研究[D].长沙:中南大学,2009.
    [192]刘志宏,李慧君,李启厚,等.异极矿的氨法浸出研究[J].江西有色金属,2009,23(2):18-21.
    [193]王瑞祥MACA体系中处理低品位氧化锌矿制取电锌的理论与工艺研究[D].长沙:中南大学,2009.
    [194]张家靓MACA法循环浸出低品位氧化锌矿制取电锌理论基础[D].长沙:中南大学,2010.
    [195]Amer S, Figueiredo J M, Luis A. The recovery of zinc from leach liquors of the CENIM-LNETI process by solvent extraction with di(2-ethylhexyl) phosphoric acid[J]. Hydrometallurgy,1995(37):323-337.
    [196]Alguacil F J, Alonso M. Effect of ammonium sulphate and ammonia on the liquid-liquid extraction of zinc using LIX54[J]. Hydrometallurgy,1999,53(2): 203-209.
    [197]Alguacil F J, Martinez S. Solvent extraction equilibrium of zinc(Ⅱ) from ammonium chloride medium by CYANEX923 in Solvesso 100 [J]. Journal of Chemical Engineering of Japan,2001,34(11):1439-1442.
    [198]Amer S, Luis A. Extraction of zinc and other minor metals from concentrated ammonium chloride solutions with D2EHPA and Cyanex272[J]. Revista de Metalurgia (Madrid),1995,31(6):351-372.
    [199]Deep A, De C J. Review on the recent developments in the solvent extraction of zinc[J]. Solvent Extraction and Ion Exchange,2008,26(4):375-404.
    [200]李玲,黄松涛,温建康,等.亚氨基二乙酸树脂对镍和镁离子的吸附性能研究[J].金属矿山,2008,(5):44-48.
    [201]Mendes F D, Martins A H. Selective nickel and cobalt uptake from pressure sulfuric acid leach solutions using column resin sorption[J]. Int. J. Miner. Process, 2005,77:53-63.
    [202]Mendes F D, Martins A H. Recovery of nickel and cobalt from acid leach pulp by ion exchange using chelating resin[J]. Minerals Engineering, 2005,18:945-954.
    [203]王荣耕,李学平,翟学良.离子交换树脂回收钴镍技术进展[J].无机盐工业,2005,37(11):11-13.
    [204]王成彦,江培海.云南中低品位氧化锌矿及元江镍矿的合理开发利用[J].中国工程科学,2005,7(增刊):147-150.
    [205]唐谟堂,张家靓,王博,等.低品位氧化锌矿在MACA体系中的循环浸出[J].中国有色金属学报,2011,21(1):214-219.
    [206]张祥麟,康衡.配位化学[M].长沙:中南工业大学出版社,1986:64-66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700